(SF2736, Discrete maths, ht15: L6, 9 Nov 2015 pm)

A little about sets (Sw. mängder)

We can think of **sets** as "bags" with "objects" (or pointers to objects) in them. The "objects" (which can also be sets) are called the **elements** of the set. Two sets are the same iff they contain the same elements.

 $\{\pi, \sqrt{2}\}$ is the set with elements π and $\sqrt{2}$.

 $\{x \mid Px\}$ is the set of x with the property P, like $\{n \mid n \text{ heltal}, n^2 \equiv_5 2\}$. The empty set $\emptyset = \{x \mid x \neq x\} = \{\}$, "an empty bag".

Note: $\{\emptyset\}$, with one element (\emptyset) , is not the same set as \emptyset , with no elements. The **universe** \mathcal{U} , the set of all the "objects" under consideration.

Standard notation for some sets of numbers: $\mathbb{Z}_+, \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_m$.

Important relations and operations on sets:

- $a \in A$ a is an **element** of A $(a \notin A: a \text{ is not an element of } A)$
- $B \subseteq A$ B is a subset (Sw. delmängd) of A, i.e., $x \in B \Rightarrow x \in A$, for all x
- $B \subset A$ B is a **proper** subset of A, i.e., $B \subseteq A$ and $B \neq A$
- |A| the number of elements in A, A:s cardinality
- $A \cup B$ the **union** of A and B, $\{x \mid \text{at least one of } x \in A, x \in B\}$
- $A \cap B$ the intersection (Sw. snittet) of A and B, $\{x \mid x \in A \text{ and } x \in B\}$
- $A \setminus B$ the **difference** between A and B, $\{x \mid x \in A \text{ and } x \notin B\}$
- $A \times B$ the **product set** (or Cartesian product) of A and B,

 $\{(a,b) \mid a \in A, b \in B\}$, where (a,b) is the **ordered pair** of a and b. A^c the **complement** of $A, U \smallsetminus A$

- A^{\prime} the complement of $A, \mathcal{U} \setminus A$
- $\mathcal{P}(A)$ A:s **power set** (Sw. potensmängd), the set of subsets of A, $\{B \mid B \subseteq A\}$

Basic rules for $\cup, \cap, {}^{c}, \varnothing, \mathcal{U}$ (Boolean algebra) can be found below. They can be proved by studying **Venn diagrams** (useful, but hard to draw here) or reasoning from the definitions of the concepts.

Basic rules for operations on sets

$A \cap B = B \cap A$ $(A \cap B) \cap C = A \cap (B \cap C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	$A \cup B = B \cup A$ $(A \cup B) \cup C = A \cup (B \cup C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	commutativity associativity distributivity
$(A \cap B)^c = A^c \cup B^c$	$(A \cup B)^c = A^c \cap B^c$	De Morgan
$A \cap A = A$	$A \cup A = A$	idempotence
$A \cap (A \cup B) = A$	$A \cup (A \cap B) = A$	absorption
$(A^c)^c = A$		involution
$A\smallsetminus B=A\cap B^c$		\searrow expressed
$A\cap A^c=\varnothing$	$A\cup A^c=\mathcal{U}$	complementarity
$A \cap \varnothing = \varnothing$	$A\cup\mathcal{U}=\mathcal{U}$	
$A \cap \mathcal{U} = A$	$A\cup \varnothing = A$	

Relations

That \mathcal{R} is a **binary relation** on the set X means that (for all $a, b \in X$) the statement $a\mathcal{R}b$ is either **true or false**.

The relation \mathcal{R} can be given as

- A subset of $X^2 = X \times X$, $\{(a, b) \in X^2 \mid a\mathcal{R}b\}$, formally: $\mathcal{R} \subseteq X \times X$ or $\mathcal{R} \in \mathcal{P}(X \times X)$
- A graph with dots corresponding to the elements of X and an arrow from a to b iff $a\mathcal{R}b$
- A matrix with rows and columns corresponding to the elements of X, 1 in position ab if aRb, 0 if aRb (not aRb)

Important **properties** for binary relations:

-		•
${\cal R}$ is	reflexive iff	$x\mathcal{R}x$ for all $x \in X$
\mathcal{R} is	irreflexive iff	$x \mathcal{R} x$ for all $x \in X$
${\cal R}$ is	symmetric iff	$x\mathcal{R}y \Rightarrow y\mathcal{R}x \text{ for all } x, y \in X$
${\cal R}$ is	antisymmetric iff	$x\mathcal{R}y \text{ and } y\mathcal{R}x \Rightarrow x = y \text{ for all } x, y \in X$
\mathcal{R} is	$\mathbf{transitive}$ iff	$x\mathcal{R}y \text{ and } y\mathcal{R}z \implies x\mathcal{R}z \text{ for all } x, y, z \in X$
		··· · · · · · · · · · · · · · · · · ·

An equivalence relation on a set X is a binary relation \mathcal{R} which is reflexive, symmetric and transitive.

An equivalence relation partitions X into **equivalence classes** of elements standing in the relation to each other: $C_x = [x] = \{y \in X \mid y \mathcal{R}x\}$ Conversely, for each partition of X, there is an equivalence relation with its parts as equivalence classes.

A non-strict **partial order** is a binary relation \leq on a set X which is **reflexive**, **antisymmetric and transitive**.

The corresponding strict partial order \prec is given by $x \prec y \Leftrightarrow x \preceq y$ and $x \neq y$. It is

irreflexive and transitive.

If \prec is a partial order on the set X and $a \in A \subseteq X$, a is

a **minimal** element of A iff there is no $x \in A$ with $x \prec a$

a **least** element of A iff $a \leq x$ for all $x \in A$,

correspondingly for **maximal** and **greatest** element.

If $x, y, z \in X$ and $z \leq x, z \leq y, z$ is called a **lower bound** of x, y, correspondingly for **upper bound**.

So, if \leq stands for |, divisibility, lower bound means common divisor. For arbitrary \leq there isn't necessarily for all $x, y \in X$ a **greatest** lower bound (like the gcd).

A partial order \leq is a **total order** (a linear order) iff for all $x, y \in X$:

$$x \preceq y \text{ or } y \preceq x.$$

(or, equivalently, exactly one of: $x \prec y, x = y, y \prec x$.)

For total orders, a minimal element is the same as a least element.

A well-ordering of a set X is a total order \prec , such that every $Y \subseteq X, Y \neq \emptyset$ has a **least** element (but not necessarily a greatest element).