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On a cryptosystem

M and C : Messages (plaintexts) and encrypted messages (ciphertexts),

E and D : Encryption and decryption,
E

M — C D(E(m)) =m, all m e M
D
Traditionally : E and D are only known to the sender and intended recipients.

New (1976) : Public-key cryptosystems with F a one-way function (i.e.,
it is very hard to find D knowing E), known to ”everybody”.

Theorem: Let p, ¢ be different primes, n =p-q, m = (p—1)(¢—1) (= ¢(n)).
Then s=,,1 = 2°=,x, forallx €Z
To construct an RSA system, for each user do the following:
Take p, ¢, large (=~ 10'%°) distinct primes,
computen=p-q, m=(p—1)(qg—1),
choose e with ged(e,m) =1 and find d with e-d =,, 1 (use Euclid),
publish (n, e) and keep d secret (throw away m (in secret)).
E,D : 7, — Z, with by E(z) = 2¢ and D(z) = 2% then give D = E~1.
E(z) can be computed using fo, fi : Z,, — Zp, fo(t) =12, fi(t) =t* -t
If e is (exer—_1 - ..€1€0)2 in binary,
E(z) = feo(fr (- (fery (fer (1)) --2)).
Electronic signature :
1. Send D(x). Anybody with E can read, nobody without D could write.
2. Bsends Ea(Dp(z)) (or Dg(Ea(z))) to A. Only someone with D4 can read

(using also Eg), only someone with Dp (and E4) could write.

The Fermat test (base b, 1 < b < N), to test if N is prime:

Is V"l=y1 7

No : N is composite Yes : We don’t know (for sure)

Pseudoprime, base b: composite number passing the Fermat test, base b.
ex. 341 =11 - 31, base 2.

N is a Carmichael number iff it is a pseudoprime for all b with ged(b, N) =1
& N iS (composite,) square-free and p | N = (p—1) | (IV — 1) (for p prime).
ex. 561 = 3-11-17, 1105 = 5-13-17, 1729 = 7-13-19,...,314821 = 13-61-397.

The Miller-Rabin test (base b, 1 <b< N; N—-1=wu-2", uudda):

Is =51 or pe? =y —1 forsome i, 0<i<r ?

No : N is composite Yes : We don’t know (for sure)
Composite N pass the test for less than % of the bases b with 1 < b < N.

Strong pseudoprimes, base b: composite, pass the M-Rs test, base b.
ex. 2047 = 23 - 89, base 2.



On error-correcting codes

A code C is a set of n-tuples of 0:s and 1:s, i.e.,
ccvr (V=2Zy={0,1})
n: the length of the code

The minimal distance of C:
d = min{d(a,b) | a,b € C, a # b}
where d(a,b) = the number of i:s with a; # b;.

C can detect up to 6 — 1 errors

and correct up to L&TIJ €rrors. (|z] = the integer part of z = the largest integer < x.)

The sphere packing bound:

If the code C, of length n, corrects up to e errors,
CI(E) + () +--+ () <2 (= 1Z5)

C is a linear code if
a,beC=a+beC

i.e., C is a subspace of the vectorspace Z} (if ¢ # o)

|C| = 2%, where k is called (and is) the dimension of C.

For a linear code the minimal distance = the minimal (non-zero) weight,
0 = Wpin = min{w(c) | ¢ € C, ¢ # 0}

where the weight of ¢, w(c), is the number of 1:s in c.

If H is an m x n-matrix, C = {x € Z} | Hx = 0} is a linear code of dimension
n —rank H. H is called a (parity-)check matrix.
0

Theorem: If all columns of H are different and # [0] , C corrects (at least)

one error. 0

To correct errors:
z a code word with error (only) in position ¢ = Hz = the i:th column of H.

Hamming codes are given by a check matrix H with r rows and 2" — 1
columns, all different and 7é 0 (so all possible different columns are used)

length n=2"—1
minimimal distance 6=3
dimension k=2"—r—1

Hamming codes give equality in the sphere packing bound. Codes with that
property are called perfect codes.



