(SF2736, Discrete maths, ht15: L4, Thu 5 Nov 2015)

On a cryptosystem

 \mathcal{M} and \mathcal{C} : Messages (plaintexts) and encrypted messages (ciphertexts), E and D: Encryption and decryption,

$$\mathcal{M} \xrightarrow[D]{E} \mathcal{C} \qquad D(E(m)) = m, \text{ all } m \in \mathcal{M}$$

Traditionally : E and D are only known to the sender and intended recipients. New (1976) : **Public-key cryptosystems** with E a **one-way function** (i.e., it is very hard to find D knowing E), known to "everybody".

Theorem: Let p, q be different primes, $n = p \cdot q$, $m = (p-1)(q-1) (= \phi(n))$. Then $s \equiv_m 1 \Rightarrow x^s \equiv_n x$, for all $x \in \mathbb{Z}$

To construct an **RSA system**, for each user do the following:

Take p, q, large ($\approx 10^{150}$) distinct primes,

compute $n = p \cdot q, \ m = (p - 1)(q - 1),$

choose e with gcd(e, m) = 1 and find d with $e \cdot d \equiv_m 1$ (use Euclid),

publish (n, e) and keep d secret (throw away m (in secret)).

 $E, D: \mathbb{Z}_n \to \mathbb{Z}_n$ with by $E(x) = x^e$ and $D(x) = x^d$ then give $D = E^{-1}$.

E(x) can be **computed** using $f_0, f_1 : \mathbb{Z}_n \to \mathbb{Z}_n, f_0(t) = t^2, f_1(t) = t^2 \cdot t$: If e is $(e_k e_{k-1} \dots e_1 e_0)_2$ in binary,

$$E(x) = f_{e_0}(f_{e_1}(\dots(f_{e_{k-1}}(f_{e_k}(1)))\dots)).$$

Electronic signature :

1. Send D(x). Anybody with E can read, nobody without D could write. 2. B sends $E_A(D_B(x))$ (or $D_B(E_A(x))$) to A. Only someone with D_A can read (using also E_B), only someone with D_B (and E_A) could write.

The **Fermat test** (base b, 1 < b < N), to test if N is prime:

Is
$$b^{N-1} \equiv_N 1$$
 ?

No : N is composite Yes : We don't know (for sure)

Pseudoprime, base *b*: composite number passing the Fermat test, base *b*. ex. $341 = 11 \cdot 31$, base 2.

N is a **Carmichael number** iff it is a pseudoprime for **all** b with gcd(b, N) = 1

 \Leftrightarrow N is (composite,) square-free and $p \mid N \Rightarrow (p-1) \mid (N-1)$ (for p prime). ex. 561 = 3.11.17, 1105 = 5.13.17, 1729 = 7.13.19, ..., 314 821 = 13.61.397.

The Miller-Rabin test (base b, 1 < b < N; $N - 1 = u \cdot 2^r$, u udda):

Is	$b^u \equiv_N 1$	or $b^{u \cdot 2^v}$	$\equiv_N -1$ for s	some $i, 0 \le i < r$?

No : N is composite Yes : We don't know (for sure) Composite N pass the test for less than $\frac{N}{4}$ of the bases b with 1 < b < N. **Strong pseudoprimes**, base b: composite, pass the M-Rs test, base b. ex. $2047 = 23 \cdot 89$, base 2.

On error-correcting codes

A code C is a set of *n*-tuples of 0:s and 1:s, i.e.,

 $\mathcal{C} \subseteq V^n, \quad (V = \mathbb{Z}_2 = \{0, 1\})$

n: the **length** of the code

The minimal distance of C:

 $\delta = \min\{\partial(a, b) \mid a, b \in \mathcal{C}, \ a \neq b\}$ where $\partial(a, b) =$ the number of *i*:s with $a_i \neq b_i$.

 \mathcal{C} can **detect** up to $\delta - 1$ errors

and **correct** up to $\lfloor \frac{\delta - 1}{2} \rfloor$ errors. ($\lfloor x \rfloor$ = the integer part of x = the largest integer $\leq x$.)

The sphere packing bound:

If the code \mathcal{C} , of length n, corrects up to e errors,

$$|\mathcal{C}|\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{e} \le 2^n \ (= |\mathbb{Z}_2^n|)$$

 ${\mathcal C}$ is a linear code if

$$a, b \in \mathcal{C} \Rightarrow a + b \in \mathcal{C}$$

i.e., \mathcal{C} is a **subspace** of the vectorspace \mathbb{Z}_2^n (if $\mathcal{C} \neq \emptyset$)

 $|\mathcal{C}| = 2^k$, where k is called (and is) the **dimension** of \mathcal{C} .

For a linear code the minimal distance = the **minimal** (non-zero) weight,

 $\delta = w_{\min} = \min\{w(c) \mid c \in \mathcal{C}, \ c \neq 0\}$

where the weight of c, w(c), is the number of 1:s in c.

If H is an $m \times n$ -matrix, $\mathcal{C} = \{x \in \mathbb{Z}_2^n \mid Hx = 0\}$ is a linear code of dimension $n - \operatorname{rank} H$. H is called a (parity-)check matrix.

Theorem: If all columns of *H* are different and $\neq \begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix}$, *C* corrects (at least) one error.

To correct errors:

z a code word with error (only) in position $i \Rightarrow Hz = \text{the } i:\text{th column of } H.$

Hamming codes are given by a check matrix H with r rows and $2^r - 1$ columns, all different and $\neq 0$ (so all possible different columns are used)

length	$n = 2^r - 1$
minimimal distance	$\delta = 3$
dimension	$k=2^r-r-1$

Hamming codes give equality in the sphere packing bound. Codes with that property are called **perfect codes**.