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On a cryptosystem

M and C : Messages (plaintexts) and encrypted messages (ciphertexts),

E and D : Encryption and decryption,
E

M −−−−−→
←−−−−− C

D

D(E(m)) = m, all m ∈M

Traditionally : E and D are only known to the sender and intended recipients.

New (1976) : Public-key cryptosystems with E a one-way function (i.e.,
it is very hard to find D knowing E), known to ”everybody”.

Theorem: Let p, q be different primes, n = p ·q, m = (p−1)(q−1) (= φ(n)).

Then s ≡m 1 ⇒ xs ≡n x, for all x ∈ Z
To construct an RSA system, for each user do the following:

Take p, q, large (≈ 10150) distinct primes,

compute n = p · q, m = (p− 1)(q − 1),

choose e with gcd(e,m) = 1 and find d with e · d ≡m 1 (use Euclid),

publish (n, e) and keep d secret (throw away m (in secret)).

E,D : Zn → Zn with by E(x) = xe and D(x) = xd then give D = E−1.

E(x) can be computed using f0, f1 : Zn → Zn, f0(t) = t2, f1(t) = t2 · t:
If e is (ekek−1 . . . e1e0)2 in binary,

E(x) = fe0(fe1(. . . (fek−1
(fek(1))) . . . )).

Electronic signature :

1. Send D(x). Anybody with E can read, nobody without D could write.

2. B sends EA(DB(x)) (or DB(EA(x))) to A. Only someone with DA can read
(using also EB), only someone with DB (and EA) could write.

The Fermat test (base b, 1 < b < N), to test if N is prime:

Is bN−1 ≡N 1 ?

No : N is composite Yes : We don’t know (for sure)

Pseudoprime, base b: composite number passing the Fermat test, base b.

ex. 341 = 11 · 31, base 2.

N is a Carmichael number iff it is a pseudoprime for all b with gcd(b,N) = 1

⇔ N is (composite,) square-free and p | N ⇒ (p− 1) | (N − 1) (for p prime).

ex. 561 = 3·11·17, 1105 = 5·13·17, 1729 = 7·13·19, . . . , 314 821 = 13·61·397.

The Miller-Rabin test (base b, 1 < b < N ; N − 1 = u · 2r, u udda) :

Is bu ≡N 1 or bu·2
i ≡N −1 for some i, 0 ≤ i < r ?

No : N is composite Yes : We don’t know (for sure)

Composite N pass the test for less than N
4

of the bases b with 1 < b < N .

Strong pseudoprimes, base b: composite, pass the M-Rs test, base b.

ex. 2047 = 23 · 89, base 2.



On error-correcting codes

A code C is a set of n-tuples of 0:s and 1:s, i.e.,

C ⊆ V n, (V = Z2 = {0, 1})
n: the length of the code

The minimal distance of C:
δ = min{∂(a, b) | a, b ∈ C, a 6= b}

where ∂(a, b) = the number of i:s with ai 6= bi.

C can detect up to δ − 1 errors

and correct up to
⌊
δ−1
2

⌋
errors. (bxc = the integer part of x = the largest integer ≤ x.)

The sphere packing bound:

If the code C, of length n, corrects up to e errors,

|C|(
(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
e

)
) ≤ 2n (= |Zn2 |)

C is a linear code if
a, b ∈ C ⇒ a+ b ∈ C

i.e., C is a subspace of the vectorspace Zn2 (if C 6= ∅)

|C| = 2k, where k is called (and is) the dimension of C.

For a linear code the minimal distance = the minimal (non-zero) weight,

δ = wmin = min{w(c) | c ∈ C, c 6= 0}
where the weight of c, w(c), is the number of 1:s in c.

If H is an m× n-matrix, C = {x ∈ Zn2 | Hx = 0} is a linear code of dimension
n− rankH. H is called a (parity-)check matrix.

Theorem: If all columns of H are different and 6=
[

0
0...
0

]
, C corrects (at least)

one error.

To correct errors:
z a code word with error (only) in position i ⇒ Hz = the i:th column of H.

Hamming codes are given by a check matrix H with r rows and 2r − 1
columns, all different and 6= 0 (so all possible different columns are used)

length n = 2r − 1
minimimal distance δ = 3
dimension k = 2r − r − 1

Hamming codes give equality in the sphere packing bound. Codes with that
property are called perfect codes.


