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More about the integers, Z
Definition: (”dual” of gcd) If m,n ∈ Z a least common multiple, lcm (Sw.
mgm), of m and n is a g ∈ Z such that

i) m | g, n | g ii) m | h, n | h⇒ g | h iii) g ≥ 0

Proposition: For all m,n ∈ Z, lcm(m,n) exists uniquely and

lcm(m,n) · gcd(m,n) = m · n.

The linear Diophantine (i.e., we want integer solutions x, y) equation

ax + by = c, a, b, c ∈ Z
is solvable iff gcd(a, b) | c.

In that case (if not m = n = 0 and) if d = gcd(a, b) = ma + nb with m,n ∈ Z all

solutions of the equation are given by

{
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d
k

y = c
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d
k

, k ∈ Z.

The ”normal” method to solve such an equation is to do as in the proof of the proposition, i.e.,
find gcd(m,n) = d (using the Euclidean algorithm), divide the equation by d, express 1 as a linear
combination of the coefficients of (the new) equation and multiply with its rhs to find an integer
solution. Euler’s method (not treated in the book) includes the rhs from the start and usually
leads to smaller numbers in the first solution.
Say, for instance, that we want all integer solutions of the equation 108x + 33y = 78.
The Euclidean algorithm: 108 = 3 · 33 + 9, 33 = 3 · 9 + 6, 9 = 1 · 6 + 3, 6 = 2 · 3 + 0, so
d = gcd(108, 33) = 3 and there exist solutions. So we go on to find them.
Division by d gives the equivalent equation 36x + 11y = 26, where gcd(36, 11) = 1.
The ”normal” method:
From the above: 36 = 3 · 11 + 3, 11 = 3 · 3 + 2, 3 = 1 · 2 + 1, (2 = 2 · 1 + 0) and ”backwards” that
gives 1 = 3− 2 = 3− (11− 3 · 3) = −11 + 4 · 3 = −11 + 4(36− 3 · 11) = 4 · 36− 13 · 11.
Multipying by 26 we see that x0 = 4 · 26 = 104, y0 = (−13) · 26 = −338 solve the equation.
If x, y solve it, we get 36(x − x0) + 11(y − y0) = 26 − 26 = 0, so 36(x − x0) = −11(y − y0) and
11 | (x− x0) (since gcd(11, 36) = 1), x = x0 + 11k, k ∈ Z. Then y− y0 = −36k and insertion shows
that these x, y solve the equation for all k ∈ Z.
Euler’s method:
Solve for the unknown with the (in absolute value) least coefficient: y = 26

11
− 36x

11
= 2− 3x + 4−3x

11
.

x, y form an integer solution iff x and z = 4−3x
11

are integers, so iff x, z ∈ Z with 3x + 11z = 4, i.e.,

x = 4
3
− 11z

3
= 1− 3z + 1−2z

3
, so iff z, u = 1−2z

3
are integers, i.e., iff z, u ∈ Z with 2z + 3u = 1, i.e.,

z = −u + 1−u
2

, so iff u, k = 1−u
2

are integers, so u = 1− 2k, with k ∈ Z arbitrary.

Insertion gives z = −(1 − 2k) + 1−(1−2k)
2

= −1 + 3k, x = 1 − 3(−1 + 3k) + 1−2(−1+3k)
3

= 5 − 11k

and y = 2− 3(5− 11k) + 4−3(5−11k)
11

= −14 + 36k.
Both methods give the same solutions (with different k, knormal = −kEuler − 9).

The Fundamental theorem of arithmetic:
Every integer ≥ 1 can be written as a product of primes in a unique way (apart
from the order of the factors). (1 is ”the empty product”.)

The proof of the theorem relies ”only” on the possibility of division with a remainder
”smaller” than the denominator. Therefore the corresponding theorem of unique (almost)
faktorization is true also for polynomials and Gaussian integers (in these cases the faktor-
izations may differ in the order of the factors and factors which are constants or 1, i,−1,−i
respectively (like we could have extra factors ±1 in formulating the theorem for all integers)).


If m = ps11 . . . pskk , n = pt11 . . . ptkk (where the pi are different primes)

m | n iff si ≤ ti for all i = 1, . . . , k and

gcd(m,n) = p
min(s1,t1)
1 . . . p

min(sk,tk)
k , lcm(m,n) = p

max(s1,t1)
1 . . . p

max(sk,tk)
k .

1



2

Modular arithmetic

x ≡ y (mod m), or x ≡m y

means m|(x− y) and is read ”x is congruent to y modulo (or mod) m”.

The set of all integers, Z, is partitioned into m classes of congruent numbers:

[0]m = {0,±m,±2m, . . . },
[1]m = {1,±m + 1,±2m + 1, . . . },

...

[m− 1]m = {−1,±m− 1,±2m− 1, . . . }.
The set of these sets (”the integers mod m”): Zm = {[0]m, [1]m, . . . , [m− 1]m}.

Proposition: x1 ≡m x2, y1 ≡m y2 ⇒ x1 + y1 ≡m x2 + y2, x1 · y1 ≡m x2 · y2.
So we can define + and · on Zm:

[a]m ◦ [b]m = [a ◦ b]m for ◦ = +, ·
We usually write Zm = {0, 1, . . . ,m− 1} and calculate with + and · ”as usual
but taking remainders mod m”.

Definition: r ∈ Zm is invertible iff there is x ∈ Zm with rx = 1 in Zm.

Such an x is called r−1, the inverse of r.

Theorem: r ∈ Zm is invertible iff gcd(r,m) = 1 (in Z).

rx = 1 in Zm iff rx − km = 1 for some k ∈ Z, so r−1 can be found using the
Euclidean algorithm (1 = gcd(r,m) = ar + bm gives r−1 = a).


