Rule of premises					Rule of DN				
j	(j)	p	premise		a_1,\ldots,a_n	(j)	$\neg\negp$		
Rule of assumptions				a_1,\ldots,a_n	: (k)	p	j	DN	
j	(j)	p	assumption	n					
Rule of $\wedge E$:				Ru	le of	$\wedge \mathbf{I}$:			
a_1,\ldots,a_n	(j)	$p \wedge q$			a_1,\ldots,a_m	(j)	p		
a_1,\ldots,a_n	: (k)	p	i /	\E	b_1,\ldots,b_n	: (k)	q		
1, , ,		$(\mathbf{or} \ q)$			$a_1, \ldots, a_m, b_1, \ldots, b_n$				
					$a_1,\ldots,a_m,b_1,\ldots,b_n$	(1)	$p \wedge q$	j,k	Λ I
$\mathbf{Rule} \ \mathbf{of} \rightarrow \mathbf{E}:$					$\mathbf{Rule} \ \mathbf{of} \rightarrow \mathbf{I}:$				
a_1,\ldots,a_m							p	assı	umption
b_1,\ldots,b_n	: (k)	p			a_1,\ldots,a_n	: (k)	q		
$a_1,\ldots,a_m,b_1,\ldots,b_n$: (l)	q	j,k –	→E	$\{a_1,\ldots,a_n\}/j$: (l)	$p\! ightarrow\!q$	j,k	$\rightarrow I$
Ru	le of	¬ E:			Rul	le of	¬ I:		
a_1,\ldots,a_m	(j)	$\neg p$					p	assi	umption
b_1,\ldots,b_n	: (k)	n			a_1,\ldots,a_n	: (k)	I		
	÷				$\{a_1,\ldots,a_n\}/j$:			
$a_1,\ldots,a_m,b_1,\ldots,b_n$	(1)	\bot	j,k -	¬Ε	$\{a_1,\ldots,a_n\}/j$	(1)	$\neg p$	j,k	¬Ι
Rule of $\forall E$:					Rule of \lor I:				
a_1,\ldots,a_m					a_1,\ldots,a_n				
h	: (h)	p	assumption	n	a_1,\ldots,a_n	: (k)	$p \vee q$	j	$\vee I$
b_1,\ldots,b_n	: (i)	r					(or q	$\lor p)$	
,,о _й	:								
j	(j)	q	assumption	n					
c_1,\ldots,c_u									
X			g,h,i,j,k ∖	/E					
where $X = \{a_1, \dots, \bigcup \{b_1, \dots, b_n\}$		U							

Inference rules for natural deduction

Rule of \leftrightarrow E:

Rule of $\forall E$:

 a_1,\ldots,a_n (j) $\forall \nu \phi \nu$ ÷ a_1,\ldots,a_n (k) ϕt j $\forall\, E$ where ϕt is obtained from $\phi \nu$ by replacing every occurrence of ν in $\phi\nu$ with t

Rule of $\exists E$:

 a_1, \ldots, a_m (j) $\exists \nu \phi \nu$ k (k) ϕt assumption : b_1,\ldots,b_n (l) ψ \vdots X (m) ψ j,k,l ∃E where $X = \{a_1, ..., a_m\} \cup \{b_1, ..., b_n\}/k$ ϕt is $\phi \nu$ with **all** ν replaced by t the name t is not in any of the lines j, l, $\{b_1, \ldots, b_n\}/k$

Rule of = E:

 a_1,\ldots,a_m (j) $t_1=t_2$ $\dot{b}_1,\ldots,\dot{b}_n$ (k) ϕt_1 $\begin{array}{c} \vdots \\ X \quad (\mathbf{l}) \quad \phi t_2 \qquad \mathbf{j}, \mathbf{k} \quad = \mathbf{E} \end{array}$

 ϕt_2 is ϕt_1 with an **arbitrary number** of t_1 replaced by t_2

Rule of \leftrightarrow I:

g	(g)	p	assumption
	÷		
a_1,\ldots,a_m	(h)	q	
	÷		
j	(j)	q	assumption
	÷		
b_1,\ldots,b_n	(k)	p	
	÷		
X	(1)	$p\!\leftrightarrow\!q$	$\mathrm{g,h,j,k}~\leftrightarrow\mathrm{I}$
where $X =$	$\{a_1,$	\ldots, a_m	$(g \cup \{b_1, \ldots, b_n\}/j)$

Rule of \forall I:

$$\begin{array}{cccc} a_1, \dots, a_n & (\mathbf{j}) & \phi t \\ & \vdots \\ a_1, \dots, a_n & (\mathbf{k}) & \forall \nu \phi \nu \quad \mathbf{j} & \forall \mathbf{I} \\ \text{where } t \text{ is not in any of the lines } a_1, \dots a_n \\ \phi \nu \text{ is } \phi t \text{ with all } t \text{ replaced by } \nu \\ \text{the variable } \nu \text{ is not in } \phi t \end{array}$$

Rule of \exists I:

$$\begin{array}{cccc} a_1, \dots, a_n & (\mathbf{j}) & \phi t \\ & \vdots \\ a_1, \dots, a_n & (\mathbf{k}) & \exists \nu \phi \nu \quad \mathbf{j} & & \exists \mathbf{I} \end{array}$$

 $\phi\nu$ is ϕt with an **arbitrary number** of t replaced by ν

> Rule of = I: (j) t = t = I

AXIOMS FOR (PARTIAL) ORDERS Language $\mathcal{L}_{order} = \{\preccurlyeq\}$ \preccurlyeq a binary relation symbol

Axioms:

- $\preccurlyeq 1 \quad \forall x \, x \preccurlyeq x$ reflexivity antisymmetry
- $\preccurlyeq 2 \quad \forall x \,\forall y \,((x \preccurlyeq y \land y \preccurlyeq x) \to x = y)$
- $\preccurlyeq 3 \quad \forall x \,\forall y \,\forall z \,((x \preccurlyeq y \land y \preccurlyeq z) \rightarrow x \preccurlyeq z) \quad \text{transitivity}$

AXIOMS FOR GROUPS

Language $\mathcal{L}_{ ext{grp}} = \{e, ^{-1}, *\}$

e a constant (a 0-ary function symbol)

 $^{-1}$ a unary function symbol

* a binary function symbol

(we write x^{-1} instead of $^{-1}(x)$) (we write x * y instead of *(x, y))

Axioms:

- G1 $\forall x \forall y \forall z (x * y) * z = x * (y * z) *$ is associative
- G2 $\forall x(x * e = x \land e * x = x)$ e is an identity element G3 $\forall x(x * x^{-1} = e \land x^{-1} * x = e)$ $^{-1}$ gives an inverse

PEANO'S AXIOMS for \mathbb{N}

$ ext{Language } \mathcal{L}_{ ext{Peano}} = \{0, S, +, *\}$	(the intended interpretation in []):
0 a constant (a 0-ary function symbol)	[the number 0]
S a unary function symbol	[the next number]
+, * binary function symbols	[addition and multiplication]
(we write, for instance, $x + y$ and $x * y$ in	place of $+(x, y)$ and $*(x, y)$:)

Axioms:

Ρ1	$\forall x \forall y (S(x) = S(y) \rightarrow x = y)$	successor function injective
P2	$\forall x S(x) \neq 0$	0 is not a successor
P3	$\forall x x + 0 = x$	+ defined, base
P4	$\forall x \forall y x + S(y) = S(x+y)$	+ defined, step
P5	$\forall x x * 0 = 0$	* defined, base
P6	$\forall x \forall y x * S(y) = (x * y) + x$	* defined, step
$\mathbf{P7}$	$\forall z_1 \dots \forall z_n ((\phi 0 \land \forall x (\phi x \to \phi S(x))) \to \forall x \phi x)$	induction axiom

In P7 ϕx is an arbitrary $\mathcal{L}_{\text{Peano}}$ -formula with all free variables among x, z_1, \ldots, z_n . So P7 is really an infinite number of axioms, a so-called **axiom schema**. With P7 (usually with n = 0) we can perform **proofs by induction** in N.

ZERMELO-FRAENKEL'S AXIOMS for set theory

Language $\mathcal{L}_{sets} = \{\in\}$

 \in a binary relation symbol

(Although the intended interpretations have sets as elements, we can not be sure that every "real" set of elements from a model also corresponds to an element in the model.)

1. Extensionality

If x and y have the same elements, then x = y, $\forall x \forall y (\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y)$

2. Pairing

For all x and y there is a set $\{x, y\}$ containing exactly x and y, $\forall x \forall y \exists z \forall u \ (u \in z \leftrightarrow (u = x \lor u = y))$

3. Separation

If P is a property (with a parameter q), there is for every x and q a set $y = \{z \in x \mid P(z,q)\}$ of all $z \in x$ with the property P, $\forall x \forall q \exists y \forall z (z \in y \leftrightarrow (z \in x \land \phi(z,q)))$

 $(\phi(z,q)$ an arbitrary \mathcal{L}_{sets} -formula (defining P))

4. Union

For every set x, there is a set $y = \bigcup x$, the union of the elements of x, $\forall x \exists y \forall z \ (z \in y \leftrightarrow \exists u (z \in u \land u \in x))$

5. Power set

For every set x, there is a set $y = \mathcal{P}(x)$, the set of all subsets of x, $\forall x \exists y \forall z \ (z \in y \leftrightarrow \forall u \ (u \in z \rightarrow u \in x))$

6. Infinity

There exists an infinite set (a set containing \mathbb{N}),

 $\exists x \ (\emptyset \in x \land \forall y \ (y \in x \to \bigcup \{y, \{y\}\} \in x))$ (\$\vee\$ exists by 3. with $z \neq z$ as $\phi(z)$. $\{y\} = \{y, y\}$ exists by 2.)

7. Replacement

If f is a function, then for any set x there exists a set $y = \{f(y) \mid y \in x\}$ $\forall p (\forall x \forall y \forall z ((\varphi(x, y, p) \land \varphi(x, z, p)) \rightarrow y = z) \rightarrow$ $\forall x \exists y \forall z (z \in y \leftrightarrow \exists u (u \in x \land \varphi(u, z, p))))$ (p a parameter, the \mathcal{L}_{sets} -formula φ defines f)

8. Regularity (well-foundedness)

 \in is a well-founded relation,

$$orall x \, (x
eq arnothing
ightarrow \exists y \, (y \in x \land \
eg \exists z \, (z \in x \land z \in y)))$$

9. Choice

If $\emptyset \notin x$, there is a function f on x which chooses an element from each $y \in x$, $\forall x (\neg \emptyset \in x \rightarrow \exists f (funk(f) \land \forall y (y \in x \rightarrow f(y) \in y)))$

 $(funk(f) \text{ is an } \mathcal{L}_{\text{sets}}\text{-formula saying that } f \text{ is a function, i.e. a set of ordered pairs with } \forall x \forall y \forall z ((\langle x, y \rangle \in f \land \langle x, z \rangle \in f) \rightarrow y = z). f(z) \text{ is given by } \langle z, f(z) \rangle \in f.$ $\langle a, b \rangle \text{ is } \{\{a\}, \{a, b\}\}.)$