Inference rules for natural deduction
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where ¢t is obtained from ¢v by replacing
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AXIOMS FOR (PARTIAL) ORDERS
Language Lorger = {<}

< a binary relation symbol

Axioms:

<1l Verx <z reflexivity
K2 VaVy(zgyAy<a)—ax=1y) antisymmetry
<3 VaVyVz((zx x yAy<2) = x < z) transitivity

AXIOMS FOR GROUPS
Language L, = {€,7 ', *}

e a constant (a 0-ary function symbol)

~1 a unary function symbol (we write 71 instead of ~!(z))
* a binary function symbol (we write z x y instead of x(x,y))
Axioms:

Gl VaVyVz(zxy)*xz=x*(y*z) x* is associative

G2 Vax(zxe=zxNexx=u1x) e is an identity element

G3 Ve(zxzx'=eAaztxx=¢) ~!gives an inverse

PEANO’S AXTIOMS for N

Language Lpeano = {0, S, +, *} (the intended interpretation in [ ]):
0 a constant (a 0-ary function symbol) [the number 0]
S a unary function symbol [the next number]
+, % binary function symbols [addition and multiplication]
(we write, for instance, z + y and z x y in place of +(x,y) and *(z,y):)
Axioms:

P1 VzVy(S(x)=S(y)—z=1y) successor function injective
P2 VzS(z)#0 0 is not a successor

P3 Vzxa+0=x2x + defined, base

P4 VaVyxz+ S(y) = S(z+y) + defined, step

P5 Veaxx0=0 x defined, base

P6 VaVyxr*S(y)=(r*xy)+x * defined, step

P7 Vz1...V2,((¢0 AVz (¢px— ¢S(x))) = Va ¢z) induction axiom

In P7 ¢x is an arbitrary Lpeano-formula with all free variables among x, 21, . .., zn.
So P7 is really an infinite number of axioms, a so-called axiom schema.

With P7 (usually with n = 0) we can perform proofs by induction in N.



ZERMELO-FRAENKEL’S AXIOMS for set theory
Language Lgois = {€}
€ a binary relation symbol

(Although the intended interpretations have sets as elements, we can not be sure that every ”real”

set of elements from a model also corresponds to an element in the model.)

1. Extensionality
If x and y have the same elements, then = = y,
VeVy (Vz (z Exrz €Ey)—x =1y)

2. Pairing
For all z and y there is a set {x,y} containing exactly = and y,
VeVyIzVu (u € z>(u =z Vu=y))

3. Separation
If P is a property (with a parameter ¢), there is for every = and ¢ a set
y={z€x|P(z,q)} of all z € x with the property P,

VaoVqIyVz (z € yo (2 € T A 6(2,9)))

(¢(z,q) an arbitrary Lges-formula (defining P))

4. Union
For every set z, there is a set y = Jz, the union of the elements of z,
VedyVz(z € y+<>Ju(z EuAu € x))

5. Power set
For every set x, there is a set y = P(x), the set of all subsets of z,
VeIyVz(z € yVu(u € z—u € x))

6. Infinity
There exists an infinite set (a set containing N),

dz (0 € x AVy (y € v = Hy, {y}} € 2))
(@ exists by 3. with z # z as ¢(2). {y} = {y, y} exists by 2.)

7. Replacement
If f is a function, then for any set x there exists a set y = {f(y) | y € x}
Vp (Vz Vy Vz ((¢(z,y,p) A o(x,2,p)) 2y = 2) =
VedyVz(z € y<>Ju(u € z A p(u,2,p))))
(p a parameter, the Lsets-formula ¢ defines f)

8. Regularity (well-foundedness)
€ is a well-founded relation,
Ve(r#d—TJy(yexA ~Jz(zE€xNz€EY)))

9. Choice
If & ¢ z, there is a function f on x which chooses an element from each y € z,
Ve (o € x—3f (funk(f) ANVy (y € 2= f(y) € y)))

(funk(f) is an Lgets-formula saying that f is a function, i.e. a set of ordered pairs
with Ve VyVz (((z,y) € f A (x,z) € f)—y =2). f(2) is given by (z, f(2)) € f.
{a,0) is {{a},{a,b}}.)



