Problem session 2, 16 November 2015

- **1.** Is the following information sufficient to find the relation \mathcal{R} ?
 - 1. \mathcal{R} is an equivalence relation on $\mathcal{M} = \{1, 2, 3, 4, 5, 6\}.$
 - 2. $\{(1,2), (2,3), (2,4), (5,6)\} \subseteq \mathcal{R}.$
 - 3. $(2,6) \notin \mathcal{R}$.
- **2.** Describe all equivalence relations \mathcal{R} on $\mathcal{M} = \{1, 2, 3, 4, 5, 6, 7\}$ such that

$$\{(1,5), (1,4), (2,3), (3,6)\} \subseteq \mathcal{R}$$

3. Is divisibility on \mathbb{Z} (i.e. the relation \mathcal{R} defined by $m\mathcal{R}n \Leftrightarrow m \mid n$ for all $m, n \in \mathbb{Z}$) a partial order?

4. Let $f : X \to X$ be a function on a set X and the corresponding binary relation on X be Q (i.e. for all $x, y \in X$, $xQy \Leftrightarrow y = f(x)$). What are the conditions on f that make Q reflexive, symmetric, antisymmetric, and transitive?

5a. Give an example of sets X, Y, Z and functions $f : X \to Y, g : Y \to Z$, such that the composite $gf : X \to Z$ is a bijection, although neither f nor g is. Is either of f and g necessarily injective or surjective?

b. The same question, but with the further condition X = Y = Z.

6. Assume that $f: A \to B$ and $g: B \to A$ are such that

 $(g \circ f)(x) = x$ for all $x \in A$.

Is either of f and g necessarily injective, surjective or bijective?

7. Show that to any sequence a_1, a_2, \ldots, a_n of n positive integers there exists at least one non-empty subsequence

 $a_{i_1}, a_{i_2}, \dots, a_{i_t}$ such that $a_{i_1} + a_{i_2} + \dots + a_{i_t} \equiv 0 \pmod{n}$.

8. Let $m, n \in \mathbb{Z}_+$ and $a_1, a_2, \ldots, a_{mn+1}$ be a sequence of distinct real numbers. Show that there is at least one of

a subsequence $a_{i_1} < a_{i_2} < \ldots < a_{i_{m+1}}$ (where $i_1 < i_2 < \ldots < i_{m+1}$) and a subsequence $a_{j_1} > a_{j_2} > \ldots > a_{j_{n+1}}$ (where $j_1 < j_2 < \ldots < j_{n+1}$).

9a. Show that a union of finitely many countable sets is countable.

b. Is a union of countably many countable sets always countable?

c. Is the set of bijective maps $\mathbb{N} \to \mathbb{N}$ countable?

10. Show that the set of all **finite** sets of natural numbers is countable, i.e.

$$|\mathcal{P}_{fin}(\mathbb{N})| = |\mathbb{N}|,$$

where $\mathcal{P}_{fin}(\mathbb{N}) = \{A \mid A \subset \mathbb{N}, |A| < \infty\}.$

11. Let $A \subset \mathbb{R}$ be countable and B be the set of all $x \in \mathbb{R}$ such that

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = 0,$$

where $a_i \in A$ for i = 0, 1, ..., n. Is B necessarily countable?

12a. Are there $f : \mathbb{R} \to \mathbb{Q}$ and $g : \mathbb{Q} \to \mathbb{R}$, such that $gf : \mathbb{R} \to \mathbb{R}$ is a bijection?

b. Are there $f : \mathbb{Q} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{Q}$, such that $gf : \mathbb{Q} \to \mathbb{Q}$ is a bijection?

13. Recall the **Fibonacci numbers** F_n : 0, 1, 1, 2, 3, 5, 8, 13, ..., recursively defined by

$$\begin{cases} F_0 = 0, \ F_1 = 1\\ F_{n+2} = F_{n+1} + F_n, \quad n = 0, 1, .. \end{cases}$$

a. Show that $F_0^2 + F_1^2 + \dots + F_n^2 = \sum_{i=0}^n F_i^2 = F_n F_{n+1}$ for all $n = 0, 1, 2, \dots$

- **b.** Show that $F_{n-1}F_{n+1} F_n^2 = (-1)^n$ for all n = 1, 2, 3, ...
- **c.** Show that for any $k \in \mathbb{Z}_+$ there is an $n \in \mathbb{Z}_+$ such that $k \mid F_n$.
- **d.** Show that $gcd(F_m, F_n) = F_{gcd(m,n)}$ for all m, n = 0, 1, 2, ...

14. Show that if $x, y, z \in \mathbb{Z}$ satisfy $x^3 + 3y^3 = 9z^3$, then x = y = z = 0.

15. Two lighthouses emit (very short) flashes of light at regular intervals of α and β (minutes), respectively. α and β are irrational numbers such that $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ (so on average, there is one flash per minute).

Show that if they both emit a flash at time t = 0, there will be exactly one flash between t = n - 1 and t = n, for all integer n > 1.