Interpolating sequences on analytic Besov type spaces

Daniel Blasi Babot

Universitat Autònoma de Barcelona

Stockholm, October 1, 2008

(Joint work with Nicola Arcozzi and Jordi Pau)
Outline

1. Motivation
2. The spaces $B_p(s)$
3. Main result
4. Proof of the main result
5. Open Problems
6. Bibliography
Motivation

Let \mathcal{B} denote the set of analytic functions from the unit disc \mathbb{D} to $\overline{\mathbb{D}}$.

Question

Given $\{z_1, \ldots, z_N\} \subset \mathbb{D}$, for which $\{w_1, \ldots, w_N\}$ the interpolation

$$f(z_n) = w_n, \quad n = 1, 2, \ldots, n,$$

has a solution $f \in \mathcal{B}$?

Theorem Pick'17

There exists $f \in \mathcal{B}$ satisfying (1) if and only if the quadratic form

$$Q_n(t_1, \ldots, t_n) = \sum_{j,k=1}^{n} \frac{1 - w_j \overline{w}_k}{1 - z_j \overline{z}_k} t_j t_k$$

is nonnegative, $Q_n \geq 0$. When $Q_n \geq 0$ there is a Blaschke product of degree at most n which solves (1).
Motivation

$H^\infty \equiv$ bounded analytic functions in \mathbb{D}

Definition

$\{z_n\}$ is an interpolating sequence for H^∞ if for any sequence $\{w_n\} \in \ell^\infty$, the interpolation problem

$$f(z_n) = w_n, \quad n = 1, 2, \ldots$$

has a solution $f \in H^\infty$.

Theorem [Carleson’58]

The following conditions are equivalent

(a) $\{z_n\}$ is an interpolating sequence for H^∞

(b) $\inf_{n \neq m} \beta(z_n, z_m) > 0$ and $\mu = \sum (1 - |z_n|) \delta_{z_n}$ is a Carleson measure.
Let H be a Hilbert space of functions, and let

$$\langle f, g \rangle$$

be the associated inner product, for $f, g \in H$.

Claim

If the point evaluation functional

$$T_z : H \rightarrow \mathbb{C}$$

$$f \rightarrow f(z)$$

is bounded, then there exists a unique function $k_z \in H$ with

$$\langle f, k_z \rangle = f(z) \quad \forall f \in H$$

called reproducing kernel, and it satisfies $\| T_z \| = \| k_z \|_H$.
Interpolating Sequence

A sequence of unimodular functions $\{u_n\} \subset H$ is an Interpolating Sequence (IS) if the operator

$$
H \longrightarrow l^2
f \longrightarrow \{< f, u_n >\}
$$

is onto.

Interpolating Sequence

A sequence of points $\{z_n\}$ is an Interpolating Sequence for H if $\left\{ \frac{k_{z_n}}{\|k_{z_n}\|} \right\}$ is an Interpolating Sequence. I.e,

$$
H \longrightarrow l^2
f \longrightarrow \left\{ \frac{f(z_n)}{\|k_{z_n}\|} \right\}
$$

is onto.

$\forall \{w_n\} \subset l^2$, there exists $f \in H$ such that $\frac{f(z_n)}{\|k_{z_n}\|} = w_n$, $n = 1, 2, ...$
Let D be the Dirichlet space of analytic functions f with

$$
\int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.
$$

Interpolating Sequence for D

A sequence $\{z_n\} \subset \mathbb{D}$ is an Interpolating Sequence for D if for any $\{w_n\} \subset l^2$ there exists $f \in D$ with $\frac{f(z_n)}{\beta(0,z_n)^{1/2}} = w_n$, for $n = 1, 2, \ldots$

Theorem (Marshall-Sundberg’90s)

$\{z_n\} \subset \mathbb{D}$ is an interpolating sequence for D if and only if

1. $\inf_{n \neq m} \beta(z_n, z_m) \geq C \beta(0, z_n)$, for $n, m = 1, 2, \ldots$
2. $\sum \frac{1}{\beta(0,z_n)} \delta_{z_n}$ is a Carleson Measure for D.
The spaces $B_p(s)$

$B_p(s) \equiv$ Analytic functions on \mathbb{D} with

$$
\|f\|_{B_p(s)}^p = |f(0)|^p + \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^{p-2+s} \, dA(z) < \infty
$$

for $1 < p < \infty$ and $0 \leq s < 1$.

Special cases

$p = 2, s = 0$ corresponds to the Dirichlet space \mathcal{D}.

$p \neq 2, s = 0$ corresponds to the Besov space B_p.

Questions

1- What is an interpolating sequence for $B_p(s)$?

2- How we can characterize these sequences?
Carleson measure

A positive measure μ on \mathbb{D} is a Carleson measure for $B_p(s)$ if

$$\int_{\mathbb{D}} |f(z)|^p d\mu(z) \leq C \|f\|^p_{B_p(s)}$$

whenever f is in $B_p(s)$.

A Geometric Description of Carleson measures for $B_p(s)$ was given by [Arcozzi, Rochberg and Sawyer, 02] and [Stegenga, 80].

Multiplier Space

$$\mathcal{M}(B_p(s)) = \{f \text{ such that } fg \in B_p(s) \text{ whenever } g \in B_p(s)\}$$

$f \in \mathcal{M}(B_p(s))$ if and only if

$$f \in H^\infty, \quad |f'(z)|^p(1 - |z|^2)^{p-2+s}dA(z) \text{ is a CM for } B_p(s)$$
The point evaluation functional $T_z : B_p(s) \rightarrow \mathbb{C}$ yields a bounded linear functional at each point $z \in \mathbb{D}$ with norm

$$\|T_z\| \approx \frac{1}{(1 - |z|^2)^{s/p}}$$

for $s > 0$

$$\|T_z\| \approx \beta(0, z)^{(p-1)/p}$$

for $s = 0$
Interpolating sequences for $B_p(s)$

{z_n} is an interpolating sequence for $B_p(s)$ if the map

$$f \mapsto \left\{ \frac{f(z_n)}{\|T_{z_n}\|} \right\}$$

maps $B_p(s)$ onto ℓ^p.

Interpolating Sequences for $\mathcal{M}(B_p(s))$

{z_n} is an interpolating sequence for $\mathcal{M}(B_p(s))$ if the map

$$f \mapsto \{f(z_n)\}$$

transforms the multipliers of $B_p(s)$ onto ℓ^∞.
Main result

The interpolating sequences for \mathcal{D} were simultaneously characterized by Marshall-Sundberg and Bishop.

Theorem [Böe, ’02]

Let $1 < p < \infty$. The following conditions are equivalent

(i) $\{z_n\}$ is an interpolating sequence for B_p.

(ii) $\inf_{n \neq m} \beta(z_n, z_m) \geq C \beta(z_n, 0)$ and $\sum \frac{1}{\beta(0, z_n)^{p-1}} \delta_{z_n}$ is a Carleson measure for B_p.

(iii) $\{z_n\}$ is an interpolating sequence for $\mathcal{M}(B_p)$.

Theorem [Cohn, ’93]

Let $1 < p < \infty$, $0 < s$. The following conditions are equivalent

(i) $\{z_n\}$ is an interpolating sequence for $B_p(s)$.

(ii) $\inf_{n \neq m} \beta(z_n, z_m) \geq C$ and $\sum (1 - |z_n|^2)^s \delta_{z_n}$ is a Carleson measure for $B_p(s)$.
Theorem [Arcozzi, B, Pau ’07]

Let $1 < p < \infty$, $0 < s < 1$. The following conditions are equivalent

(i) $\{z_n\}$ is an interpolating sequence for $B_p(s)$.

(ii) $\inf_{n \neq m} \beta(z_n, z_m) \geq C$ and $\sum (1 - |z_n|^2)^s \delta_{z_n}$ is a Carleson measure for $B_p(s)$.

(iii) $\{z_n\}$ is an interpolating sequence for $\mathcal{M}(B_p(s))$.

Remark

- If $s > 1$ then $\mathcal{M}(B_p(s)) = H^\infty$
- If $s = 1$?
Proof of the main result

Interp. for $\mathcal{M}(B_p(s)) \Rightarrow \text{Separation} + \text{Carleson Measure}$$

Separation is trivial

$$\mathcal{M}(B_p(s)) \subset H^\infty$$

To show the **Carleson Measure** Condition

$$\sum |g(z_n)|^p (1 - |z_n|^2)^s \leq C\|g\|_{B_p(s)}^p$$

for all $g \in B_p(s)$, we use Khinchine’s inequality and a Reproducing formula for $B_p(s)$.
Proof of the main result

Separation + Carleson Measure ⇒ Interp. for \(\mathcal{M}(B_p(s)) \)

Non analytic solution

Given \(\{w_n\} \in l^\infty \), we can find \(\varphi \) such that

i) \(\varphi(z) = w_n \) for \(z \in D_h(z_n, \varepsilon) \)

ii) \(\varphi(z) \equiv 0 \) for \(z \in \mathbb{D} \setminus \bigcup D_h(z_n, 2\varepsilon) \)

iii) \(d\mu_\varphi = |\nabla \varphi(z)|^p (1 - |z|^2)^{p-2+s} dA(z) \) is a Carleson measure for \(B_p(s) \)

Observe that \(\varphi(z_n) = w_n \) but is not analytic.
Analytic solution

Consider $f = \varphi - Bu$ where

i) $B(z)$ is the Blaschke product with zeros $\{z_n\}$

ii) $u(z)$ is a solution of the $\overline{\partial}$–problem

$$\overline{\partial} u = \frac{1}{B} \overline{\partial} \varphi$$

We want a solution u such that $f \in \mathcal{M}(B_p(s))$

Now, $f(z_n) = w_n$ and $f \in Hol(D)$.
How to check that \(f \in \mathcal{M}(B_p(s)) \)?

Let \(L^p_s \) be the space of functions \(f \in L^p(\mathbb{T}) \) such that

\[
\int_0^{2\pi} \int_0^{2\pi} \frac{|f(e^{it}) - f(e^{i\xi})|^p}{|e^{it} - e^{i\xi}|^{2-s}} d\xi dt < \infty
\]

Theorem

Let \(1 < p < \infty \), \(0 < s < 1 \), and let \(f \in H^\infty(\mathbb{D}) \), then

\[
f \in \mathcal{M}(B_p(s)) \text{ if and only if } f|_{\mathbb{T}} \in \mathcal{M}(L^p_s).
\]

So, it is enough to show that \(f = \varphi - Bu \in \mathcal{M}(L^p_s) \).
Lemma

Let \(\{z_n\} \) be a separated sequence in \(\mathbb{D} \) such that \(\sum (1 - |z_n|^2)^s \delta_{z_n} \) is a Carleson measure for \(B_p(s) \), then \(B \in \mathcal{M}(L^p_s) \), where \(B \) is the Blaschke product with zeros \(\{z_n\} \).

Solution of the \(\overline{\partial} \)-problem

Theorem

Suppose that \(|g(z)|^p (1 - |z|^2)^{p-2+s} dA(z) \) is a Carleson measure for \(B_p(s) \) (and \(|g(z)|(1 - |z|) \leq C \) for \(1 < p < 2 \)). Then there is \(u \) defined on \(\overline{\mathbb{D}} \) such that

\[
\frac{\partial u}{\partial z} = g(z) \quad \text{for all } z \in \mathbb{D},
\]

and such that the boundary value function \(u \) belongs to \(\mathcal{M}(L^p_s) \).
Open Problems

Problem 1

It is well known that the Dirichlet space D is conformally invariant. I.e, if $\varphi \in \text{M"obius map on } \mathbb{D}$, then

$$\int_{\mathbb{D}} |(f \circ \varphi)'(z)|^2 dA(z) = \int_{\mathbb{D}} |f'(z)|^2 dA(z).$$

If $\{z_n\}$ is an IS for D then $\{\tau(z_n)\}$ is an IS for D?

NO.

K. Seip’04

Perhaps there is a conformally invariant interpolation problem for the Dirichlet space yet to be studied.
Idea

Observe that if \(f \in D \), then there exists a constant \(C > 0 \) such that

\[
|f(z) - f(w)| \leq C \beta(z, w)^{1/2} \quad \text{for all } z, w \in \mathbb{D}.
\]

Interpolating Sequence for \(D \)

A sequence of points \(\{z_n\} \subset \mathbb{D} \) is an interpolating sequence for \(D \) if there exists a constant \(C > 0 \) such that for any \(\{w_n\} \subset \mathbb{C} \) with

\[
|w_n - w_m| \leq C \beta(z_n, z_m)^{1/2} \quad n, m = 1, 2, ...
\]

then there exists a function \(f \in D \) with \(f(z_n) = w_n \) for \(n = 1, 2, \)

In this case the conformally invariance is for free.
Problem 2

Consider the space \(D_\rho \) of analytic functions \(f \) such that

\[
\|f\|_{D_\rho}^2 = |f(0)|^2 + \int_\mathbb{D} |f'(z)|^2 \rho(z) dA(z) < \infty,
\]

where \(\rho \) is a regular weight satisfying the Bekollé-Bonami condition

\[
\int_{S(a)} \rho(z) dA(z) \int_{S(a)} \rho^{-1}(z) dA(z) \leq C m(S(a))^2.
\]

Carleson measures for \(D_\rho \)

Geometric description due to Arcozzi, Rochberg and Sawyer’02.

Question

Characterize the interpolating sequences for the Dirichlet type spaces \(D_\rho \).
Problem 3

A Hilbert space H has the Nevanlinna-Pick property when the matrix

$$(1 - w_n \overline{w}_m) < k_{z_i, k_{z_j}}$$

being positive semi-definite is necessary and sufficient for the existence of $\varphi \in M_H$ satisfying $\varphi(z_n) = w_n$, $\|\varphi\|_{M_H} \leq 1$.

Conjecture (Seip)

Let H be a Hilbert space of analytic functions with the Pick property, then a sequence of points $\{z_n\}$ is an IS if and only if $\{z_n\}$ is H–separated and $\sum_n \|k_{z_n}\|_H^{-2} \delta_{z_n}$ is a Carleson measure for H.

Theorem (Böe’05)

Under some assumptions on H, the conjecture is true.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Authors</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
</table>

