
Conditional Inapproximability and
Limited Independence

PER AUSTRIN

Doctoral Thesis
Stockholm, Sweden 2008



TRITA-CSC-A 2008:18
ISSN-1653-5723
ISRN-KTH/CSC/A--08/18--SE
ISBN 978-91-7415-179-4

KTH Datavetenskap och kommunikation
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges
till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi fre-
dagen den 28 november 2008 klockan 13.00 i D3, Lindstedtsvägen 5, Kungl Tekniska
högskolan, Stockholm.

© Per Austrin, november 2008

Tryck: Universitetsservice US AB



iii

Abstract

Understanding the theoretical limitations of efficient computation is one of the most
fundamental open problems of modern mathematics. This thesis studies the approxim-
ability of intractable optimization problems. In particular, we study so-called Max CSP

problems. These are problems in which we are given a set of constraints, each constraint
acting on some k variables, and are asked to find an assignment to the variables satisfying
as many of the constraints as possible.

A predicate P : [q]k → {0, 1} is said to be approximation resistant if it is intractable
to approximate the corresponding CSP problem to within a factor which is better than
what is expected from a completely random assignment to the variables. We prove that
if the Unique Games Conjecture is true, then a sufficient condition for a predicate P :
[q]k → {0, 1} to be approximation resistant is that there exists a pairwise independent
distribution over [q]k which is supported on the set of satisfying assignments P−1(1) of P .

We also study predicates P : {0, 1}2 → {0, 1} on two boolean variables. The corres-
ponding CSP problems include fundamental computational problems such as Max Cut

and Max 2-Sat. For any P , we give an algorithm and a Unique Games-based hardness
result. Under a certain geometric conjecture, the ratios of these two results are shown
to match exactly. In addition, this result explains why additional constraints beyond the
standard “triangle inequalities” do not appear to help when solving these problems. Fur-
thermore, we are able to use the generic hardness result to obtain improved hardness for
the special cases of Max 2-Sat and Max 2-And. For Max 2-Sat, we obtain a hardness
of αLLZ + ε ≈ 0.94016, where αLLZ is the approximation ratio of the algorithm due to
Lewin, Livnat and Zwick. For Max 2-And, we obtain a hardness of 0.87435. For both
of these problems, our results surprisingly demonstrate that the special case of balanced
instances (instances where every variable occurs positively and negatively equally often)
is not the hardest. Furthermore, the result for Max 2-And also shows that Max Cut is
not the hardest 2-CSP.

Motivated by the result for k-CSP problems, and their fundamental importance in
computer science in general, we then study t-wise independent distributions with random
support. We prove that, with high probability, poly(q) · n2 random points in [q]n can
support a pairwise independent distribution. Then, again with high probability, we show
that (poly(q) ·n)t log(nt) random points in [q]n can support a t-wise independent distribu-
tion. For constant t and q, we show that Ω(nt) random points are necessary in order to be
able to support a t-wise independent balanced distribution with non-negligible probability.
Also, we show that every subset of [q]n with size at least qn(1− poly(q)−t) can support a
t-wise independent distribution.

Finally, we prove a certain noise correlation bound for low-degree functions with small
Fourier coefficients. This type of result is generally useful in hardness of approximation,
derandomization, and additive combinatorics.





v

Acknowledgments

Many years have passed since I started as a PhD student, not being sure what it
meant or what I was supposed to do, but enticed by all the glory and attention
received by computer scientists (or maybe it was something else—I can’t remember).
Now, several years and many more failures later, I am a very different person. A
little less naive, a few beers heavier, and several hours of missed sleep more tired.
There are many people without whom this would not have happened.

A 1 − ε fraction of the acknowledgments go to my advisor, and now co-author,
Johan Håstad. Johan is one of few people of whom I am in true awe, partly
due to his great no-nonsense personality and vast knowledge of many things, but
mostly due to his uncanny ability to immediately understand any idea, however
complicated it might be. Should I ever find myself being a tenth of the scientist
Johan is, I will consider myself lucky.

Many thanks also to my co-author Elchanan Mossel at UC Berkeley and the
Weizmann Institute. I have learned a lot from Elchanan, who is a great person
with something interesting to say on virtually any subject, and I have found his
enthusiasm for “abstract nonsense” highly contagious.

Thanks to Luca Trevisan at UC Berkeley for having me as a visitor during
the spring semester of 2008. I really enjoyed my time there, and already miss the
foggy San Francisco mornings. Thanks also to other people who I have visited for
shorter periods of time: Subhash Khot at New York University, Avner Magen at
the University of Toronto and Rafael Pass at Cornell University.

It has been great fun to work with all the nice people in the theory group
at KTH: I have had lots of inane arguments, pencil wars, and general fun with
office mate and co-author Gunnar Kreitz, together with whom I have more than
once driven our poor next door neighbor Mikael Goldmann nuts. There was also
an office mate called Fredrik Niemelä, but nobody knows what happened to him
(rumor has it he was eaten by industry). I am also encouraged to see the spirit of
room 1445 live on in the recent additions to the theory group, Torbjörn Granlund
and Douglas Wikström, both being almost as obstinate as myself.

Some people actually took the time to look at one or more of the many pre-
liminary versions of this thesis. I am very grateful to Mikael Goldmann, Johan
Håstad, Gunnar Kreitz, Elchanan Mossel and Jakob Nordström for their valuable
comments.

I am very grateful to my family for letting me go my own way in life and not
questioning why on earth I would choose to be a PhD student rather than make
money, and for not asking “when will you be done?” too often. Non-academic
friends are also jolly good to have, and I am particularly happy with the ones I
have, and grateful to them for all the great fun I have had with them.

Finally, thanks to Frida for being who she is, for putting up with my sometimes
very tenuous connection with reality and general absentmindedness, and for her
relentless support.





Contents

Abstract iii

Acknowledgments v

Contents vii

I Introduction 1

1 What is This Thesis About? 3
1.1 Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The Million Dollar Question . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Solutions for the Inaccurately Minded . . . . . . . . . . . . . . . . . 6
1.4 Organization and Contents . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Sets, Vectors, Functions, Inner and Outer Products . . . . . . . . . . 9
2.2 Probability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Noise Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Noise Correlation Bounds . . . . . . . . . . . . . . . . . . . . . . . . 22

II Some Conditional Inapproximability Results 25

3 Preliminaries 27
3.1 Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . . . 27
3.2 Approximation and Inapproximability . . . . . . . . . . . . . . . . . 29
3.3 Probabilistically Checkable Proofs . . . . . . . . . . . . . . . . . . . 31
3.4 The Unique Games Conjecture . . . . . . . . . . . . . . . . . . . . . 33
3.5 Constructions of Pairwise Independence . . . . . . . . . . . . . . . . 35
3.6 Properties of the Bivariate Normal Distribution . . . . . . . . . . . . 38

vii



viii CONTENTS

4 Hardness by Testing Dictators 41
4.1 Dictators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Dictatorship Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Folding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 The BLR Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.6 A Dictatorship Test Based on Distance . . . . . . . . . . . . . . . . . 47
4.7 Influence-based Testing . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Constraints on Many Variables 51
5.1 Hardness from Pairwise Independence . . . . . . . . . . . . . . . . . 53
5.2 Implications for Max k-CSPq . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Sharper Bounds for Random Predicates . . . . . . . . . . . . . . . . 58

6 Constraints on Two Variables 61
6.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Semidefinite Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3 A Generic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 A Generic Hardness Result . . . . . . . . . . . . . . . . . . . . . . . 74
6.5 Results for Specific Predicates . . . . . . . . . . . . . . . . . . . . . . 77
6.6 Max 2-Sat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7 Max 2-And . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8 Subsequent Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

III Some Limited Independence Results 93

7 Preliminaries 95
7.1 Hypercontractivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Concentration Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3 Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8 Randomly Supported Independence 101
8.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2 Limited Independence and Low-Degree Polynomials . . . . . . . . . 102
8.3 Polynomials Are Balanced . . . . . . . . . . . . . . . . . . . . . . . . 104
8.4 Pairwise Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5 k-wise Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6 A Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Noise Correlation Bounds for Uniform Functions 115
9.1 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2 Corollaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.3 Is Low Degree Necessary? . . . . . . . . . . . . . . . . . . . . . . . . 122



ix

9.4 Noisy Arithmetic Progressions . . . . . . . . . . . . . . . . . . . . . . 123

IV Conclusions 127

10 Some Open Problems 129

Bibliography 131





Part I

Introduction



This thirsts for knowledge, yet how is it bought?
With many a sleeplesse night and racking thought?

John Hall – On An Hourglass



Chapter 1

What is This Thesis About?

This chapter gives a non-technical introduction to the subjects of this thesis, inten-
ded to be understandable for people not necessarily sharing the same background
in—and enthusiasm for—theoretical computer science as the author.

1.1 Computing

A large part of this thesis involves, in some way or another, the concept of com-
puting. What exactly does this word mean? While most people are familiar with
it, few probably know an exact definition. Thus, let us begin this thesis with the
perhaps somewhat boring task of looking up computing in Webster’s dictionary.

How do we perform this task? There are several different ways. One way, which
most people would refer to as naive, or maybe even stupid, would be to start at page
one and then scan the pages of the dictionary one by one until the sought word is
found. A second way, which is similar to what we actually do in practice, is to open
the dictionary somewhere roughly in the middle. On the page we open, we might
find words like, “mathematics” or “metaphysical”, and deduce that “computing”
must appear somewhere in the earlier part of the dictionary, before that page.
Then, we can flip to a new page, this time somewhere roughly in the middle of
that first part. Based on the words on this new page, we can again decide whether
“computing” occurs earlier or later in the dictionary. We then continue in this
fashion until we come across a page where we find the word we’re looking for. This
way, we can fairly quickly find any word we seek in any dictionary, even a dictionary
containing several million words.

After flipping some pages in Webster’s dictionary, we come across the following:

compute vt to determine mathematically; to calculate by means of a
computer.

Hence, computing is the process of mathematically determining some fact. Such a
fact may be almost anything, from the fact that 23× 17 = 391, to the fact that the

3



4 CHAPTER 1. WHAT IS THIS THESIS ABOUT?

shortest path from point A to point B goes via point C. The specific process by
which one determines that something is a fact, is known as an algorithm. The two
different ways described earlier for finding a word in the dictionary are examples of
two different algorithms for the computational problem of searching in a sorted list.

Computational complexity is a branch of computer science in which one studies
how much computational resources are required to solve a problem. The most
important computational resource is time—the more time you have at hand, the
more problems you can solve. Another important resource is memory, though it
will not be relevant in this thesis. In order to determine how much time is required
to solve a problem, one can either exhibit an upper bound, by giving an algorithm
using only this or that much time, or one can exhibit a lower bound, by proving
that every possible algorithm for solving the problem must use at least this or that
much time.

A first natural question to ask might be: “can every computational problem
be solved?” The perhaps somewhat surprising answer is: “no”. For instance,
suppose that you would like to write a computer program which analyzes other
computer programs in order to determine whether they can crash or not. Clearly,
such a program must be quite difficult to build, since otherwise someone would
have done so by now and we would not have to put up with the incessant crashing
of our computers any more. However, it turns that it is not only difficult, but even
mathematically impossible to actually write such a program! Somewhat informally,
the reason for this is that one can prove that, for any such program, there would
be cases when it would need to run for an infinite amount of time, which clearly is
a lot longer than we are willing to wait.

1.2 The Million Dollar Question

A second natural question to ask might be: “given some problem which can be
solved, can it be solved using a reasonable amount of resources?”. This brings
us to one of the most fundamental concepts in computer science, that of efficient
computation.

Let us now consider a different problem. Suppose that you are student and need
to decide which courses to take for the next semester. There are some courses you
are interested in, but unfortunately, the schedules of some of these collide, so you
will not be able to take all of them. In order to keep CSN1 happy, you need to
take at least k courses, otherwise they will stop giving you money. Is it possible
for you to take only courses that you are interested in, or are you going to have to
take some additional courses which you are not interested in, just in order to meet
CSN’s requirements?

Can we construct an efficient algorithm which is guaranteed to find the best set
of courses to take? It may sound surprising, but answering this question is actually
worth one million dollars! In computer science jargon, this question is known as

1The Swedish National Board of Student Aid.



1.2. THE MILLION DOLLAR QUESTION 5

the “P vs. NP” question. Who are these “P” and “NP”, why are they fighting each
other, and why are they worth enough money to buy a big apartment in central
Stockholm?

To answer this, we must first elaborate on what we mean by “efficient al-
gorithm”. We say that an algorithm A is efficient, if there is some number x
such that, if we increase the size of the input to A by 1%, the running time of A
increases by at most x%. Another way of characterizing this kind of performance
is to say that the running time grows polynomially in the size of the input.

P is the family of all decision problems for which there exists an efficient al-
gorithm. The name P is simply an acronym for “Polynomial time”. This includes
problems such as deciding whether there is a short path from point A to point B
in a map, and deciding whether a given number n is a prime or not.

The definition of NP, on the other hand, is a bit tricksier2. It is not, as one
might be tempted to guess in light of the definition of P, simply an acronym of
“Not Polynomial”. Rather, NP is the family of all decision problems for which, if
the answer is “yes”, then that fact can be efficiently verified. By “verifying” that
the answer is “yes”, we mean that there is some “certificate” of this fact which we
can look at to convince ourselves that the answer is indeed “yes”. For example, our
course selection problem is in NP: if the answer is “yes”, i.e., if there are k courses
which do not collide, then a list of those courses constitutes a certificate. We can
efficiently verify it by checking that there are at least k courses in the list, and that
no two courses in the list collide. Formulated in a mathematical terminology, one
can think of P as the class of statements which are easy to prove, and of NP as
the class of all statements for which, if they are true, there is a proof which can be
easily checked. A great introduction to P vs. NP for mathematicians can be found
in [104].

Clearly, every problem in P is also in NP—if it is easy to compute whether the
answer is “yes” or “no”, then one can verify that the answer is “yes” simply by
computing the answer and ignoring whatever certificate is given. The P vs. NP
question asks whether the other direction holds, i.e., whether every problem in NP
is also in P. P vs. NP is one of the seven so-called Millennium Problems announced
by the Clay Math Institute in 20003.

Why then, is the question about efficient solutions to our course selection prob-
lem the same as the P vs. NP question? The course selection problem is in fact a
disguised formulation of a well-known problem called the Independent Set prob-
lem. This problem is one of the so-called NP-hard problems. To understand the
importance of NP-hardness, one has to understand the computer scientist’s love for
reductions. It turns out that, as one might guess from the 1 million dollar prize
purse of the P vs. NP problem, it is quite difficult to prove that there does not
exist any efficient algorithm for a given problem. The way computer scientists cope

2Like hobbitses.
3http://www.claymath.org/millennium/. It should be pointed out that one of the problems,

the Poincaré Conjecture from topology, was recently solved by Grigori Perelman.



6 CHAPTER 1. WHAT IS THIS THESIS ABOUT?

with this, is by reductions. Loosely speaking, reductions are ways of relating the
difficulty of one problem to the difficulty of another, rather than to the amount of
resources needed to solve the problem. In particular, we are very good at saying
things of the form “If this problem can be solved efficiently, then all these other
problems can too”, or conversely, “If any of these problems can not be solved effi-
ciently, then this problem can not be solved either”. If an NP-hard problem can be
efficiently solved, then every problem in NP can be efficiently solved, and P = NP.
Today, literally hundreds of problems are known to be NP-hard, many of them
problems which are quite important in practice, such as different types of schedul-
ing and routing problems. The general consensus is that P �= NP, but currently, we
are very far away from proving such a thing.

1.3 Solutions for the Inaccurately Minded

The Max Independent Set problem is the variant of Independent Set where
we are asked to find an independent set (i.e., a list of non-colliding courses) which
is as large as possible. In the previous section, we were only asking if there was a
set of size larger than some given number k. Clearly, Max Independent Set is
even harder than Independent Set—if we are not able to determine whether the
maximum is smaller or larger than k, then we can not hope to compute it. Given
that the Max Independent Set problem is NP-hard, it is natural to ask whether
the problem becomes feasible if we content ourselves with finding an independent
set which is not necessarily of maximum size, but just within, say, 90%, of maximum
size. This type of algorithm, which does not necessarily find the best answer, but at
least finds something which is guaranteed to be close to the best answer, is known
as an approximation algorithm.

It turns out that Max Independent Set is not only NP-hard, it is even NP-
hard to approximate within 90%, or even 1%, or even 0.0001% (or even, for those
familiar with the terminology, within 2(logn)

3/4+ε

/n).
It turns out that different NP-hard problems have very different characteristics

when it comes to approximability. Some problems, such as Maximum Independ-

ent Set, can almost not be approximated at all, whereas others can be approxim-
ated to within almost arbitrarily small error. Understanding the approximability of
different natural combinatorial optimization problems has been a very active area
of computer science in the last 15 years, after the discovery of something known
as the PCP Theorem4. The work of this thesis is, either directly or indirectly,
related to this search for understanding of the theoretical limitations of efficient
computation.

4No, the name is not related to the kind of PCP which sometimes appears in the movies.



1.4. ORGANIZATION AND CONTENTS 7

1.4 Organization and Contents

This thesis has two main parts. Part II gives several inapproximability results for
a certain type of constraint satisfaction problems. Part III is more loosely connec-
ted, and contains two results which both relate to k-wise independent probability
distributions. As large portions of the background material necessary for the two
parts are disjoint, each of these parts has a separate “Preliminaries” chapter, giving
the background necessary for that part. In addition, the next chapter, Chapter 2,
gives preliminaries required for both parts, and introduces much of the notation
used throughout the thesis.

Some of the results in this thesis have appeared previously in a different form.
In particular, the results in Part II are based on three papers. Chapter 5 is based
on “Approximation Resistant Predicates From Pairwise Independence” [9], co-
authored with Elchanan Mossel, which appeared at the IEEE Conference on Com-
putational Complexity, in 2008. Chapter 6 is based on two papers. The first is
“Balanced Max 2-Sat Might Not Be the Hardest” [7], which appeared at the ACM
Symposium on Theory of Computing in 2007. The second is “Towards Sharp In-
approximability for Any 2-CSP” [8], which appeared at the IEEE Symposium on
Foundations of Computer Science in 2007.

The results in Part III are more recent, and have not yet been published else-
where. Chapter 8 is based on a collaboration with my advisor, Johan Håstad.
Chapter 9 is based on a collaboration with Elchanan Mossel.





Chapter 2

Preliminaries

This chapter introduces notation, contains some backgroundmaterial, and describes
some results that will be useful for us. As the chapter covers a fairly large amount of
material in a quite small number of pages, the reader who does not want to become
saturated with definitions may choose to skip ahead and return to it later when the
need arises. To assist this, here are some pointers to when the different parts of
this chapter will be needed. Sections 2.1 and 2.2 contain notation used throughout
the entire thesis, though reading Section 2.2.3 may be postponed until one starts
reading the latter parts of this chapter, i.e., Section 2.3 and onwards. Section 2.3
is primarily used in Chapter 4 and in Part III. Sections 2.4 and 2.5 are first used
towards the end of Chapter 4, and will then be used in the remaining chapters of
Part II as well as in Chapter 9.

2.1 Sets, Vectors, Functions, Inner and Outer Products

We use the following notation for various frequently occurring sets.

Symbol Meaning
R The real numbers
Z The integers
N The natural numbers, i.e., {n ∈ Z : n ≥ 1 }
[n] The integers from 1 to n, i.e., {1, 2, . . . , n}
Zn The integers from 0 to n− 1, i.e., {0, 1, . . . , n− 1}
Fq The finite field with q elements (for q a prime power)

Table 2.1: Standard sets

For two sets X and Y , XY denotes the set of all vectors over X indexed by Y .
For the case when Y = [n], we write Xn rather than X [n]. We will, in general,
make no distinction between XY and the set of functions f : Y → X , and will use
whichever notation we find most convenient for the task at hand.

9



10 CHAPTER 2. PRELIMINARIES

For a vector v ∈ XY and S ⊆ Y , vS ∈ XS is the projection of v to the
coordinates in S (i.e., for every i ∈ S, the vS(i) = v(i)). We make no distinction
between x{i} and xi, even though, syntactically, x{i} is a function from {i} to X ,
whereas xi is an element of X .

For XY and x ∈ X , we often use x to denote the vector in XY in which all
entries are identically equal to x, i.e., xy = x for every y ∈ Y . In particular, 0 ∈ RY

denotes the all-zeros vector, and 1 ∈ RY denotes the all-ones vector. Note that this
is not quite well-defined since x has no reference to the index set Y , but this will
always be clear from the context. We sometimes also use 1[statement] to denote an
indicator function of whether “statement” is true. For instance, if f : X → Y is a
function from X to Y and a ∈ Y is an element of Y , 1[f=a] : X → {0, 1} is the
indicator function

1[f=a](x) =
{

1 if f(x) = a
0 otherwise. .

For two vectors u, v ∈ RX , we denote by 〈u, v〉
R
the standard inner product of u

and v,

〈u, v〉
R
=
∑
x∈X

ux · vx.

For functions f : A → R and g : B → R, f ⊗ g : A × B → R denotes the (outer)
tensor product of f and g, defined by

(f ⊗ g)(a, b) = f(a) · g(b).

We use f⊗n : An → R to denote the n-fold tensor product of f with itself,

f⊗n = f ⊗ f ⊗ . . .⊗ f︸ ︷︷ ︸
n times

.

For functions f : X → Y and g : Y → Z, we denote by g ◦ f : X → Z the
composition of f with g, (g ◦ f)(x) = g(f(x)). In particular, if x ∈ Xn is a string
of length n, and π : [n] → [n] is a permutation, x ◦ π ∈ Xn denotes x permuted by
π, i.e.,

x ◦ π = xπ(1)xπ(2) . . . xπ(n).

2.2 Probability Theory

In this thesis we will concern ourselves with two “types” of probability spaces:
distributions over some finite domain Ω, and the standard Gaussian distribution
over Rd. In this section we will describe the basic notation and facts that we will
use about such distributions.



2.2. PROBABILITY THEORY 11

2.2.1 A Small Formal Note

We shall not be completely formal in our treatment of these spaces, and in particular
we shall not talk about the underlying σ-algebras of the spaces, as these will always
be the “standard” σ-algebras associated with the domain—the complete σ-algebra
in the case of finite domains, and the Borel σ-algebra in the case of Rn.

Consequently, for a domain Ω and probability density function µ : Ω → [0, 1],
we will use (Ω, µ) (or sometimes even Ω when µ is clear from the context) to denote
the space (Ω,A ,P), where A is the “standard” σ-algebra of Ω, and P : A → [0, 1]
is given by

P(S) =
∫
x∈S

µ(x),

the integral being with respect to the “standard” measure over Ω—the Lebesgue
measure in the case of R

n, and the counting measure when Ω is finite.

2.2.2 Basic definitions

Let (Ω, µ) be a probability space. A random variable over (Ω, µ) is a function
f : Ω → R. In most parts of this thesis, the latter view will be the most convenient
one, and we will explicitly talk about functions rather than random variables, but
we will still use some of the notation used for random variables and, e.g., write E[f ]
rather than the more cumbersome Ex∈(Ω,µ)[f(x)] for the expected value of f .

For 1 ≤ p < ∞ we define the �p norm of f : Ω → R as

||f ||p = (E[|f |p])1/p .

For p = ∞, we define ||f ||∞ = maxµ(x)>0 |f(x)|. A basic fact about �p norms is
that they are increasing in p.

Fact 2.2.1. For 1 ≤ p ≤ q ≤ ∞ and f : Ω → R,

||f ||p ≤ ||f ||q.

We use L2(Ω, µ) to denote the set of all functions f : Ω → R such that ||f ||2 < ∞
(for Ω finite, L2(Ω, µ) consists of all functions f : Ω → R). We endow L2(Ω, µ)
with the inner product

〈f, g〉µ = E
x∈(Ω,µ)

[f(x) · g(x)].

In many cases, the probability space (Ω, µ) will be clear from the context, and in
this case we will drop the subscript µ and simply write 〈f, g〉.

When (Ω, µ) is finite, we denote by α(µ) the minimum non-zero probability of
any atom, i.e.,

α(µ) = min
x∈Ω

µ(x)>0

µ(x).



12 CHAPTER 2. PRELIMINARIES

We denote by

Cov[f, g] = E[(f − E[f ])(g − E[g])] = E[fg]− E[f ]E[g]

the covariance between f and g, by

Var[f ] = Cov[f, f ] = E[f2]− E[f ]2 = ||f − E[f ]||22

the variance of f , and by

ρ̃f,g =
Cov[f, g]√
Var[f ] Var[g]

the correlation coefficient between f and g.

Theorem 2.2.2 (Hölder’s Inequality). Let 1 ≤ p ≤ q ≤ ∞ be such that 1/p+1/q =
1. Then

〈f, g〉 ≤ ||f ||p · ||g||q.

Two easy but important corollaries of Hölder’s Inequality are the “Repeated
Hölder’s Inequality” and the Cauchy-Schwarz inequality.

Corollary 2.2.3 (Repeated Hölder’s Inequality). Let f1, . . . , fk ∈ L2(Ω, µ), and∑k
i=1 1/pi = 1, where 1 ≤ pi ≤ ∞ for each i. Then

E

[
k∏
i=1

fi

]
≤

k∏
i=1

||fi||pi .

Corollary 2.2.4 (Cauchy-Schwarz’ Inequality). For every f, g ∈ L2(Ω, µ) we have

〈f, g〉 ≤ ||f ||2 · ||g||2.

2.2.3 Product Spaces and Correlation

In most parts of this thesis, we will be working with probability spaces (Ω, µ) in
which the domain Ω is the Cartesian product of n domains Ω = Ω1 × . . .×Ωn. We
will refer to these spaces as product spaces.

For a product space (Ω, µ), and a set S ⊆ [n], we denote by µ|S the marginal
measure of µ, restricted to

∏
i∈S Ωi. Formally, for Ω finite and x ∈

∏
i∈S Ωi,

µ|S(x) =
∑
y∈Ωn

yS=x

µ(y).

When S = {i}, we write µ|i rather than µ|S .
Many times, the distribution µ over Ωn will simply be a product distribution

µ =
⊗n

i=1 µi for some distributions µi over Ωi. I.e., (Ω1 × . . .× Ωn, µ1 ⊗ . . .⊗ µn)



2.2. PROBABILITY THEORY 13

is the probability space over Ω in which the density of an atom (x1, . . . , xn) ∈ Ω is
given by

∏n
i=1 µi(xi). These distributions are called product distributions.

We will also need to work with product spaces (Ω, µ) where µ is not a product
distribution and there is some dependence between the coordinates of Ω. In the
remainder of this section will introduce some terminology for such spaces.

Let (Ω1 × Ω2, µ) be a product space and f ∈ L2(Ω1, µ|1), g ∈ L2(Ω2, µ|2) be
two functions. We define the correlation coefficient ρ̃f,g by viewing f as a function
on (Ω1 × Ω2, µ) which depends only on the first coordinate, and g as a function
on (Ω1 × Ω2, µ) which depends only on the second coordinate. Formally, define
f̃ , g̃ ∈ L2(Ω1 × Ω2, µ) by f̃(x, y) = f(x) and g̃(x, y) = g(y). Then we define

ρ̃f,g = ρ̃f̃ ,g̃ =
E(x,y)∈(Ω1×Ω2,µ)[f(x)g(y)]− E[f ]E[g]√

Var[f ] Var[g]
.

A notion which will be very important for us is that of the correlation of a
product space, introduced in [78], which is defined as follows.

Definition 2.2.5. Let (Ω1×Ω2, µ) be a product space. The correlation ρ̃(Ω1,Ω2, µ)
of (Ω1 × Ω2, µ) is defined by

ρ̃(Ω1,Ω2, µ) = sup
f∈L2(Ω1,µ|1)
g∈L2(Ω2,µ|2)

ρ̃f,g.

Suppose (x, y) is a sample from the space (Ω1 × Ω2, µ). Intuitively, the correl-
ation ρ̃(Ω1,Ω2, µ) measures how much information you can get about y by being
given x, or vice versa. In particular, if ρ̃ = 0, x and y are completely independent
(i.e., µ is a product distribution). On the other hand, if ρ̃ = 1, there exist non-
trivial partitions S1∪S1 = Ω1 and S2∪S2 = Ω2 such that whenever x ∈ S1, we also
have y ∈ S2 (seeing this is not quite trivial, but it is a consequence of Lemma 2.2.7
below).

The definition of ρ̃ is extended to product spaces on many coordinates as follows.

Definition 2.2.6. Let (Ω1 × . . . × Ωn, µ) be a product space. The correlation
ρ̃(Ω1, . . . ,Ωn, µ) is

ρ̃(Ω1, . . . ,Ωn, µ) = max
1≤i≤n

ρ̃(Ωi,
∏
j 	=i

Ωj , µ).

A useful condition for ρ̃ being strictly smaller than 1, which is usually needed,
is the following, which follows from [78], Lemma 2.9.

Lemma 2.2.7. Let (Ω, µ) be a finite product space with Ω = Ω1 × . . . × Ωk, and
consider the graph G = (V,E) defined as follows. The vertices are the elements
V = { a ∈ Ω : µ(a) > 0 } in Ω with positive probability, and there is an edge from
a = (a1, . . . , ak) to a′ = (a′1, . . . , a′k) if a and a′ differ in exactly one coordinate.
Then, if G is connected, we have

ρ̃(Ω1, . . . ,Ωk, µ) ≤ 1− α(µ)2/2.



14 CHAPTER 2. PRELIMINARIES

(b1, b2) µ(b1, b2)
(1, 1) 1+ξ1+ξ2+ρ

4

(1,−1) 1+ξ1−ξ2−ρ
4

(−1, 1) 1−ξ1+ξ2−ρ
4

(−1,−1) 1−ξ1−ξ2+ρ
4

Table 2.2: The distribution µ

In particular, if µ(x) > 0 for every x ∈ Ω, ρ̃(Ω1, . . . ,Ωk, µ) < 1.
In Chapter 6, we will work with the special case of Ω1 = Ω2 = {−1, 1}. In

particular, let ({−1, 1}2, µ) be a probability space on pairs of bits such that

• The expected value of the first bit is ξ1.

• The expected value of the second bit is ξ2.

• The expected value of the product of the bits is ρ.

The parameters ξ1, ξ2, and ρ completely determine any distribution µ over {−1, 1}2
(see Table 2.2).

Proposition 2.2.8. Let ({−1, 1}2, µ) be as in Table 2.2. Then

ρ̃({−1, 1}, {−1, 1}, µ) =
∣∣∣∣∣ ρ− ξ1ξ2√

1− ξ21
√
1− ξ22

∣∣∣∣∣ .
Proof. Since correlation coefficients are invariant under translation and scaling, we
can without loss of generality take ρ̃({−1, 1}, {−1, 1}, µ) as the supremum over
E[fg] for f ∈ L2({−1, 1}, µ|1) and g ∈ L2({−1, 1}, µ|2) with E[f ] = E[g] = 0 and
Var[f ] = Var[g] = 1. But any function on {−1, 1} is determined uniquely (up to
sign) by its expectation and variance. In particular, the only two functions on
({−1, 1}, µ|1) with expectation 0 and variance 1 are f and −f , where

f(x1) =
x1 − E[x1]√

Var[x1]
=

x1 − ξ1√
1− ξ21

=


√

− 1+ξ1
1−ξ1 if x1 = −1√

1−ξ1
1+ξ1

if x1 = 1
,

and similarly for ({−1, 1}, µ|2). Thus,

E[fg] = ±E[(x1 − ξ1)(x2 − ξ2)]√
1− ξ21

√
1− ξ22

= ± ρ− ξ1ξ2√
1− ξ21

√
1− ξ22

.

and hence the supremum over all f and g is as claimed.



2.2. PROBABILITY THEORY 15

Another important notion is that of k-wise independence. The study of k-wise
independent variables goes back at least 30 years [69, 59, 81]. They were first
used in computer science in the work of Alon et al. [2], and have since seen many
applications, in particular in derandomization. See [74] for a survey.

Definition 2.2.9. A product space (Ωn, µ) is k-wise independent with marginals
η (for some probability distribution η over Ω), if, for every subset S ⊆ [n] of at
most k indices, we have that µ|S = η⊗|S| (up to an appropriate identification of the
indices).

Put differently, (Ωn, µ) is k-wise independent if, for every t indices i1 < i2 <
. . . < it, and a1, . . . , at ∈ Ω, we have that

Pr
x∈(Ωn,µ)

[xi1 = a1, xi2 = a2, . . . , xit = at] =
t∏

i=1

η(ai).

When the marginal distribution η is the uniform distribution over Ω, we say that
(Ωn, µ) is balanced k-wise independent. We can of course define k-wise independence
more generally for an arbitrary product space Ω1 × . . . × Ωn with some specified
marginal distributions η1, . . . , ηn, but to keep the exposition simple, we restrict
ourselves to the case Ωn with all marginals equal.

2.2.4 Gaussian Space

For x ∈ R, we denote by φ(x) = 1√
2π
e−x

2/2 and Φ(x) =
∫ x
t=−∞ φ(t)dt the density

and distribution functions of a standard normal variable. A standard normal vector
r ∈ Rn is an n-dimensional vector in which every entry is an independent standard
normal variable.

Fact 2.2.10. Let v1, v2 ∈ Rn, and let r be standard normal vector in Rn. Then
x1 = 〈v1, r〉R

and x2 = 〈v2, r〉R
are jointly normal variables with covariance matrix(
〈v1, v1〉R

〈v1, v2〉R

〈v2, v1〉R
〈v2, v2〉R

)
.

We make the following definition for bivariate normal distributions, which un-
doubtedly looks somewhat cumbersome, but will be convenient for us to work with.

Definition 2.2.11. Let ρ ∈ [−1, 1] and let X1, X2 be jointly normal variables with

E[X1] = 0 and E[X2] = 0, and covariance matrix
(

1 ρ
ρ 1

)
. For µ1, µ2 ∈ [−1, 1],

we define

Γρ(µ1, µ2) = Pr
[
X1 ≤ Φ−1

(
1− µ1

2

)
∧X2 ≤ Φ−1

(
1− µ2

2

)]
.

In Section 3.6, we will study Γρ in more detail and give some of its properties
which are used in Chapter 6.



16 CHAPTER 2. PRELIMINARIES

2.3 Harmonic Analysis

Informally, harmonic analysis is a branch of mathematics in which one seeks to
decompose functions into sums of some “nicely behaved” functions. An example is
the classic Fourier transform of a periodic function over R, in which these “nice”
functions are wave functions. In this thesis, the functions of interest will be random
variables over some product space (Ωn, µ⊗n), and the “nice” basis functions will be
functions that one can think of as multilinear monomials on n variables.

2.3.1 Fourier Decomposition

Let (Ω, µ) be a finite probability space with |Ω| = q, which is non-degenerate in the
sense that µ(x) > 0 for every x ∈ Ω. Let χ0, . . . , χq−1 : Ω → R be an orthonormal
basis for the space L2(Ω, µ) w.r.t. the scalar product 〈·, ·〉µ. Furthermore, let this
basis be such that χ0 = 1, i.e., the function that is identically 1 on every element
of Ω.

For σ ∈ Znq , define χσ : Ωn → R as
⊗

i∈[n] χσi , i.e.,

χσ(x1, . . . , xn) =
∏
i∈[n]

χσi(xi).

Fact 2.3.1. The functions {χσ}σ∈Zn
q
form an orthonormal basis for the product

space L2(Ωn, µ⊗n).

Proof. For σ, σ′ ∈ Znq , we have

〈χσ, χσ′〉µ⊗n = E
x∈(Ωn,µ⊗n)

[
n∏
i=1

χσi(xi)χσ′
i
(xi)

]
=

n∏
i=1

〈
χσi , χσ′

i

〉
µ
,

which if σi �= σ′
i for some i, equals 0, and otherwise equals 1, by the orthonormality

of χ0, . . . , χq−1. Finally, it is clear that |{χσ |σ ∈ Znq }| = qn = dim(L2(Ωn, µ⊗n)),
and hence they form a basis.

Thus, every function f ∈ L2(Ωn, µ⊗n) can be written as

f(x) =
∑
σ∈Zn

q

f̂(σ)χσ(x),

where f̂ : Znq → R is defined by f̂(σ) = 〈f, χσ〉µ⊗n . The most basic properties of f̂
are summarized by Fact 2.3.2, which is an immediate consequence of the orthonor-
mality of {χσ}σ∈Zn

q
.

Fact 2.3.2. We have

E[fg] =
∑
σ

f̂(σ)ĝ(σ) E[f ] = f̂(0) Var[f ] =
∑
σ 	=0

f̂(σ)2.



2.3. HARMONIC ANALYSIS 17

An example of this transform which is widely used in computer science is the
Fourier-Walsh transform (for which there are many different names—the names
Hadamard transform or simply Fourier transform are also commonly used). Here,
Ω = {−1, 1} and µ is the uniform distribution (and hence, (Ωn, µ⊗n) is the n-
dimensional boolean hypercube with the uniform distribution). In this case, we
have χ1(x) = x, and every function f : {−1, 1}n → R can be decomposed as

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi,

i.e., the basis functions in the decomposition are exactly the 2n multilinear monomi-
als over the variables x1, . . . , xn.

As far as we are aware, there is no standard name for the transform f �→ f̂ for
general product spaces and bases. Since it is in some sense a very general type of
Fourier transform, we are simply going to refer to it as the Fourier transform, and
f̂ as the Fourier coefficients of f . We remark that the article “the” is somewhat
inappropriate, since the transform and coefficients in general depend on the choice
of basis {χi}i∈Zq . However, in this thesis, we will always be working with some
fixed (albeit arbitrary) basis, and hence there should be no ambiguity in referring
to the Fourier transform as if it were unique. Furthermore, as we shall see, most of
the important properties of f̂ are actually basis-independent.

Before proceeding, let us introduce some useful notation for the index set Z
n
q of

the Fourier coefficients.

Definition 2.3.3. A multi-index is a vector σ ∈ Znq , for some q and n. The active
set of a multi-index is S(σ) = { i : σi > 0 }. We extend notation defined for S(σ) to
σ in the natural way, and write e.g. |σ| instead of |S(σ)|, i ∈ σ instead of i ∈ S(σ),
and so on.

Another fact which is sometimes useful is the following trivial bound on the �∞
norm of χσ (recall that α(µ) is the minimum non-zero probability of any atom in
µ).

Fact 2.3.4. Let (Ωn, µ⊗n) be a product space with Fourier basis {χσ}σ∈Zn
q
. Then

for any σ ∈ Znq ,

||χσ||∞ ≤
(

1
α(µ)

)|σ|/2
.

To see this, note that ||χσ||∞ =
∏
i∈σ ||χσi ||∞, and that χσi(x) ≤ 1/

√
α for

every x ∈ Ω, since otherwise ||χσi ||2 would exceed 1.

2.3.2 Efron-Stein Decomposition

In this section, we describe a somewhat “coarser” decomposition of f ∈ L2(Ωn, µ⊗n)
than the Fourier decomposition.



18 CHAPTER 2. PRELIMINARIES

Theorem 2.3.5. Any f ∈ L2(Ωn, µ⊗n) can be uniquely decomposed as a sum of
functions

f(x) =
∑
S⊆[n]

fS(x),

where

• fS(x) depends only on xS = (xi : i ∈ S)

• For every S ⊆ [n], for every S′ which does not contain S and yS′ ∈ ΩS
′
, it

holds that
E[fS(x) |xS′ = yS′ ] = 0.

In other words, whenever we condition on some variables xS′ , the expected
value of fS is going to be 0 as long as we have not conditioned on all the
variables that fS depend on.

This decomposition is known as the Efron-Stein decomposition [29] (see also [78],
Definition 2.10). It is easily verified that it relates to the Fourier decomposition as
follows.

Proposition 2.3.6. Fix an arbitrary Fourier basis {χσ}σ∈Zn
q
for (Ωn, µ⊗n). Then,

for any f ∈ L2(Ωn, µ⊗n), the Efron-Stein decomposition f =
∑

fS of f can be
written as

fS(x) =
∑
σ∈Z

n
q

S(σ)=S

f̂(σ)χσ(x). (2.1)

Proving this is just a matter of verifying that the functions fS defined as in
Equation (2.1) satisfy the conditions in Theorem 2.3.5, and that they sum up to f .

This means that, in general, properties of f defined in terms of its Fourier
coefficients in a “nice” way, will be independent of the choice of Fourier basis. For
instance, any expression of the form

∑
S(σ)∈F f̂(σ)χσ , where F is some family of

subsets of [n], is independent of the choice of Fourier basis, as it equals
∑

S∈F fS .
In particular also the sums of squares of Fourier coefficients involved in such sums
are invariant under the choice of basis.

2.3.3 Degree and Influences

Definition 2.3.7. The degree deg(f) of f ∈ L2(Ωn, µ⊗n) is the infimum of all
d ∈ Z such that f̂(σ) = 0 for all σ with |σ| > d.

The degree of f is one of its most important properties. In general, the smaller
deg(f) is, the more nicely behaved f is. When deg(f) ≤ d, we will refer to f as a
degree-d polynomial in L2(Ωn, µ⊗n).



2.3. HARMONIC ANALYSIS 19

Definition 2.3.8. For f : Ωn → R and d ∈ Z, the function f≤d : Ωn → R is
defined by

f≤d =
∑
|σ|≤d

f̂(σ)χσ .

We define f<d, f=d, f>d and f≥d analogously.

Next, we define the important notion of influence. As the name suggests, the
influence of the ith variable on f ∈ L2(Ωn, µ⊗n) measures how much f can change
if the value of the ith variable is changed and all other variables are fixed.

Definition 2.3.9. The influence of i on f ∈ L2(Ωn, µ⊗n) is

Infi(f) = E
x[n]\i

[
Var
xi

[f(x)]
]
.

We sometimes refer to variables with “large” influence (where the exact value
of “large” can differ but usually means bounded from below by some constant
independent of n) as influential, and to functions without influential variables as
low-influence functions.

It turns out that the influence of a function has a particularly nice characteriz-
ation in terms of its Fourier coefficients.

Proposition 2.3.10. For every f ∈ L2(Ωn, µ⊗n),

Infi(f) =
∑
σ∈Z

n
q

i∈σ

f̂(σ)2.

Proof. Define f0, f1 : Ωn → R as

f0 =
∑
σ∈Z

n
q

i	∈σ

f̂(σ)χσ f1 =
∑
σ∈Z

n
q

i∈σ

f̂(σ)χσ ,

i.e., f0 is the part of f which does not depend on xi, and f1 is the part which
depends on xi. For x ∈ Ωn, we can then write

Var
xi

[f(x) |x[n]−i] = Var
xi

[f1(x) |x[n]−i] = E
xi

[f1(x)2 |x[n]−i],

where the first equality holds since f0 does not depend on xi, and the second equality
holds since Exi [f1(x) |x[n]−i] = 0. Thus, averaging over all values of x[n]−i, we have

Infi(f) = E[f2
1 ] =

∑
σ∈Zn

q

f̂1(σ)2 =
∑
σ∈Z

n
q

i∈σ

f̂(σ)2.



20 CHAPTER 2. PRELIMINARIES

While the influences of a function are an important property, they will not be
a central part in this thesis. However, the closely related property of low-degree
influence, defined next, is going to play a crucial role in the inapproximability results
obtained in Part II.

Definition 2.3.11. The d-degree influence of i on f ∈ L2(Ωn, µ⊗n) is defined by

Inf≤di (f) = Infi(f≤d).

We often omit the explicit reference to d and simply refer to d-degree influence as
low-degree influence.

Note that, by Proposition 2.3.10, we can write

Inf≤di (f) =
∑
σ∈Z

n
q

i∈σ
|σ|≤d

f̂(σ)2.

The key property of low-degree influence which makes it useful in the context of
hardness of approximation is that the number of variables with large low-degree
influence is always bounded.

Proposition 2.3.12. For any f ∈ L2(Ωn, µ⊗n), the number of variables i ∈ [n]
such that

Inf≤di (f) ≥ τ

is at most d
τ Var[f ].

Proof. The total low-degree influence in all variables can be written as

n∑
i=1

Inf≤di (f) =
∑
σ∈Z

n
q

|σ|≤d

∑
i∈σ

f̂(σ)2 =
d∑

k=1

k · ||f=k||22 ≤ dVar[f ].

In particular, if f : Ωn → [−1, 1], we have Var[f ] ≤ 1 and hence the number of
variables with d-degree influence at least τ is bounded by d/τ .

2.4 Noise Correlation

In this section we introduce the notion of noise correlation.
Various special cases of noise correlation has been the focus of much work, as

we discuss below. Informally, the noise correlation between two functions f and
g measure how much f(x) and g(y) correlate on random inputs x and y which
are correlated. We remark that the name “noise correlation” is a slight misnomer
and that “correlation under noise” would be a more descriptive name—we are not
looking at how well a random variable correlates with noise, but rather how well
two random variables correlate with each other in the presence of noise.



2.4. NOISE CORRELATION 21

Definition 2.4.1. Let (Ω, µ) be a product space with Ω = Ω1 × . . .× Ωk, and let
f1, . . . , fk be functions with fi ∈ L2((Ωi)n, (µ|i)⊗n). The noisy inner product, or
noise correlation, of f1, . . . , fk with respect to µ is

〈f1, f2, . . . , fk〉N = E

[
k∏
i=1

fi

]
.

As it can take some time to get used to Definition 2.4.1, let us write out
〈f1, . . . , fk〉N more explicitly. Let fi : Ωni → R be functions on the product space
Ωni , and let µ be some probability distribution on Ω = Ω1 × . . .× Ωk. Then,

〈f1, . . . , fk〉N = E
X

[
k∏
i=1

fi(Xi)

]
,

where X is a k × n random matrix such that each column of X is a sample from
(Ω, µ), independently of the other columns, and Xi refers to the ith row of X .

The notation 〈f1, . . . , fk〉N is new for this thesis, but such quantities arise nat-
urally in many different settings. They are also of central interest in the recent
work of Mossel [78] and its applications [9, 87]. In the remainder of this section,
we will briefly mention two particularly interesting special cases from two different
areas of mathematics.

One important special case of noise correlation is noise sensitivity, introduced
by Benjamini et al. [14]. The noise sensitivity NSε(f) of f at ε is the answer to
the following question: suppose we pick a uniformly random point x ∈ {−1, 1}n,
and then perturb x by flipping each bit with probability ε, obtaining a point y ∈
{−1, 1}n. What is the probability that f(x) �= f(y)? Noise sensitivity is closely
related to noise stability. The noise stability Sρ(f) of f at ρ ∈ [−1, 1] is Sρ(f) =
Ex,y[f(x)f(y)], where x is a uniformly random string, and y is obtained by flipping
each bit of x with probability (1− ρ)/2, independently (so that the expected value
of each bit xiyi is ρ). It is easily verified that

NSε(f) =
1− S1−2ε(f)

2
.

Also, for an appropriate choice of (Ω, µ), we have Sρ(f) = 〈f, f〉N . There has been
a lot of work on noise sensitivity, partly because of applications in computer science
and the theory of social choice [82, 63, 79], but perhaps even more so because of
applications to the study of so-called crossing probabilities in percolation theory
[14, 97, 40].

A second important special case of noise correlation is the Gowers norm from
additive combinatorics, introduced by Gowers [44] in a Fourier-analytic proof of a
seminal theorem by Szemerédi [100]. Let f : {0, 1}n → R be a function on the
boolean hypercube, and let d ≥ 1 be an integer. Then, the degree-d Gowers norm



22 CHAPTER 2. PRELIMINARIES

of f is defined by

||f ||dUd = E
x,x1,...,xd

 ∏
S⊆[d]

f

(
x+

∑
i∈S

xi

) ,

where x, x1, . . . , xd are independent uniformly random elements of {0, 1}n, and “+”
in {0, 1}n is interpreted as componentwise addition in Zn2 (i.e., Xor). The Gowers
norm, which is indeed a norm, enjoys many interesting properties, and since its
introduction there has been much work aimed at obtaining a better understanding
of it [46, 47, 72]. In our notation, letting k = 2d, and (Ω1× . . .×Ωk, µ) be a suitably
chosen product space, the Gowers norm can be written as 〈f, . . . , f〉1/kN .

2.5 Noise Correlation Bounds

In this section, we review a family of powerful results which have been discovered in
recent years. These results give good bounds on noisy inner products of functions
in various settings. The first such result was the Majority Is Stablest Theorem by
Mossel et al. [79], sometimes also called the MOO Theorem after its authors. This
theorem, which essentially deals with Sρ(f), was first conjectured by Khot et al.
in [63], where it was shown that it implied that the famous Goemans-Williamson
approximation algorithm for the Max Cut problem is optimal under the Unique
Games Conjecture (in Chapter 3 we will talk more about these matters). Sub-
sequently, various minor extensions of the MOO Theorem to slightly more general
settings appeared in different applications [28, 27, 8]. Recently, Mossel [78] gave a
wider generalization which already has found very interesting applications in hard-
ness of approximation, e.g., the result in Chapter 5 and Raghavendra’s result [87]
connecting integrality gaps of semidefinite programs to hardness under the Unique
Games Conjecture. These noise correlation bounds also have interesting applica-
tions in the theory of social choice (in the context of so-called Condorcet paradoxes)
and in additive combinatorics.

For the result in Chapter 5, we will need the result stated in Theorem 2.5.1
below. It essentially says that if f1, . . . , fk do not have influential variables, then
〈f1, . . . , fk〉N under some pairwise independent distribution µ, is close to what it
would be if µ was completely uniform. Put differently, low-influence functions can
not “distinguish” pairwise independence from true independence.

Theorem 2.5.1 ([78], Theorem 6.6). Let (Ω, µ) be a finite probability space over
Ω =

∏k
i=1 Ωi with the following properties:

(a) µ is pairwise independent.

(b) For every a ∈ Ω, µ(a) > 0.

Then for every ε > 0 there exists constants τ > 0 and d > 0, depending only on ε
and the minimum probability α(µ), such that the following holds. Let f1, . . . , fk be



2.5. NOISE CORRELATION BOUNDS 23

functions fi ∈ L2(Ωni , (µ|i)⊗n) with fi(x) ∈ [0, 1] for all x, satisfying that, for all
1 ≤ j ≤ n,

|{ i : Inf≤dj (fi) ≥ τ }| ≤ 2.

Then ∣∣∣∣∣〈f1, . . . , fk〉N −
k∏
i=1

E [fi]

∣∣∣∣∣ ≤ ε.

The statement of [78] is somewhat stronger, it does not require µ(a) > 0 for
every a ∈ Ω, only that ρ(Ω1, . . . ,Ωk, µ) < 1 (which, by Lemma 2.2.7 is a weaker
condition). However, the form of Theorem 2.5.1 will be sufficient for our applica-
tions.

For the result in Chapter 6, we use the following statement, bounding 〈f1, f2〉N
in terms of estimates for normally distributed variables with the same correlation.
This theorem can be viewed as a slight generalization of the Majority is Stablest
Theorem to arbitrary product distributions over {−1, 1}2, and follows from the
original MOO Theorem. See [8], Theorem 2.18 and Corollary 2.19 for proofs. It
can also be viewed as a special case of [78], Theorem 6.3.

Theorem 2.5.2 ([8], Corollary 2.19). Let ({−1, 1}2, µ) be a finite probability space,
and let ρ̃ := ρ̃({−1, 1}, {−1, 1}, µ) < 1. Then for every ε > 0 there exist constants
τ > 0 and d > 0 depending only on ε and α(µ) such that the following holds.

Let f1, f2 be functions fi ∈ L2({−1, 1}n, (µ|i)⊗n) with fi(x) ∈ [−1, 1] for all x,
satisfying that, for all 1 ≤ j ≤ n,

max(Inf≤dj (f1), Inf
≤d
j (f2)) ≤ τ.

Then

Γ−ρ̃(E[f ],E[g])− ε ≤ 〈f1, f2〉N + E[f ] + E[g]− 1 ≤ Γρ̃(E[f ],E[g]) + ε.

In Chapter 9, we obtain a different noise correlation bound, for functions with
no large Fourier coefficients (note that any function with small influences also has
all Fourier coefficients small). It is our hope that this result may find applications
in fields where [78, 79] have been useful, such as inapproximability and additive
combinatorics. Unfortunately, the settings in which this result works are signific-
antly more limited than those of [78, 79], so it is currently not clear whether such
applications are possible.

At the heart of both Theorem 2.5.1 and Theorem 2.5.2 lies what is known as an
invariance principle. An invariance principle is, very loosely speaking, a statement
to the effect that some function A of some random variables f1, . . . , fn behaves “the
same” if f1, . . . fn are replaced by some other random variables g1, . . . gn having
a different distribution. To make this concrete, an example of this which one
encounters in a first course on probability is the Central Limit Theorem (CLT). The
CLT asserts that if x1, . . . , xn is a sequence of i.i.d. random variables with finite
mean µ and variance σ2, then A(x1, . . . , xn) = 1√

n

∑n
i=1 xi converges in distribution



24 CHAPTER 2. PRELIMINARIES

to A(g1, . . . , gn) of n i.i.d. normal random variables g1, . . . , gn with mean µ and
variance σ2, as n tends to ∞, which in turn is simply a normal random variable g
with mean µ and variance σ2. The invariance principles behind Theorem 2.5.1 and
Theorem 2.5.2 can be viewed as generalizations of CLT to low-degree polynomials
with no small influences (or rather of quantitative versions of the CLT such as the
Berry-Esséen Theorem). Note that the average A(x1, . . . , xn) is an extreme case
of such a polynomial, as it has degree 1 and tiny influences. We remark that an
invariance principle similar to the one of [78] was discovered already in 1979 by
Rotar [91], though with worse error bounds and without the truncation arguments
that make it possible to say something about arbitrary functions and not just low-
degree polynomials.



Part II

Some Conditional
Inapproximability Results



Are you familiar with the old robot saying, “ Does not compute”?

Bender Bending Rodríguez – Futurama Season 5 Episode 4



Chapter 3

Preliminaries

In this section, we give some background material necessary for the results of
Chapter 5 and Chapter 6. Most of this material is about approximation algorithms
and hardness of approximation.

3.1 Constraint Satisfaction Problems

We assume some familiarity with combinatorial constraint satisfaction problems, see
e.g. Chapter 1 of [85] for an extensive treatment. For combinatorial optimization
problems in general, we always write Opt(Ψ) to denote the optimum value of an
instance Ψ, and ValΨ(a) to denote the value of a feasible solution a for Ψ. When
the instance Ψ is clear from context as it usually is, we omit the subscript Ψ from
ValΨ and simply write Val(a).

Broadly speaking, a constraint satisfaction problem is a problem in which one is
given a set of constraints acting on a set of variables, and seeks to find an assignment
to the variables so as to maximize the number of satisfied constraints.

A very basic example of a constraint satisfaction problem is the Max Cut

problem, in which we are given an undirected graph G = (V,E), and seek to find
a partition V = U ∪ U such that the number of edges cut by U , i.e., the number
of edges between U and U , is maximized. In this problem there is a variable
xv ∈ {0, 1} for each vertex v ∈ V , and for each edge (u, v) there is a constraint on
xu and xv which is satisfied if xu �= xv.

A very important class of constraint satisfaction problems are the Max k-CSPq

problems. We will discuss various special cases of them in more detail later, but
first, let us define the problem in its full generality.

Definition 3.1.1. Let k and q be positive integers. Then, an instance Ψ of the
Max k-CSPq problem is a tuple Ψ = (C,wt), where C is a set of constraints and
wt : C → [0, 1] assigns a weight to each constraint in C. We assume that wt is
normalized so that

∑
C∈C wt(C) = 1.

27



28 CHAPTER 3. PRELIMINARIES

Each constraint is a function C : [q]S → [0, 1], where S := S(C) ⊆ [n] is a
set of |S| = k variables, which this particular constraint acts on. The value of an
assignment a ∈ [q]n is given by

ValΨ(a) =
∑
C∈C

wt(C)C(aS).

The optimum of Ψ is the maximum value of any assignment,

Opt(Ψ) = max
a∈[q]n

ValΨ(a).

The Max k-CSPq problem is NP-hard whenever k ≥ 2 and q ≥ 2. In the case
when q = 2, we drop the subscript q and simply call it the Max k-CSP problem.
We remark that it is common to define a constraint as a function into {0, 1} rather
than [0, 1] as we do. We take the more general route, as our hardness results apply
also in this setting. We sometimes also refer to a constraint function C : [q]S → [0, 1]
as an objective function.

An important special case of Max k-CSPq are the Max CSP(P ) problems.

Definition 3.1.2. Let P : {0, 1}k → [0, 1] be an objective function.
The Max CSP(P ) problem is the special case of the Max k-CSP problem in

which each constraint C : {0, 1}S → {0, 1} is of the form P (l1, . . . , lk) for some
literals l1, . . . , lk, where each literal is either a variable or a negated variable. In
other words, C is completely specified by the set S ⊆ [n] and a “sign” vector
s ∈ {0, 1}n, viz.

C(xS) = P (xS ⊕ s),

where ⊕ denotes coordinate-wise Xor.
The Max CSP

+(P ) problem is the special case of the Max CSP(P ) problem
in which only positive literals are used, i.e., where the sign vector is always 0.
In other words, it is the special case of the Max k-CSP problem in which each
constraint C is of the form P (x1, . . . , xk) for some set of k variables.

Many fundamental computational problems can be cast as Max CSP prob-
lems. For instance, Max Cut is exactly the Max CSP

+(⊕2) problem, where
⊕2 : {0, 1}2 → {0, 1} is the Xor predicate on two variables. Another famous ex-
ample is the Max 3-Sat problem, which is exactly the Max CSP(∨3) problem,
where ∨3 : {0, 1}3 → {0, 1} is the Or predicate on three variables. Let us give some
formal definitions.

Definition 3.1.3. We define the following special cases of Max k-CSP.
Max k-Xor is the Max CSP(⊕k) problem, where ⊕k(x1, . . . , xk) is the Xor

predicate.
Max k-And is the Max CSP(∧k) problem, where ∧k(x1, . . . , xk) is the And

predicate.
Max k-Sat is the Max CSP(∨k) problem, where ∨k(x1, . . . , xk) is the Or

predicate.



3.2. APPROXIMATION AND INAPPROXIMABILITY 29

For objective functions P : [q]k → [0, 1] on larger domains, we can define
Max CSP(P ) and Max CSP

+(P ) similarly. For the definition of Max CSP(P ),
there are several natural ways of generalizing the notion of a literal. One possible
definition is to say that a literal l is of the form π(xi), for some variable xi and
permutation π : [q] → [q]. A more restrictive definition is to say that a literal is
of the form xi + b, where, again, xi is a variable, b ∈ [q] is some constant, and +
is interpreted as taking place modulo q. In this thesis, we use the second, more
restrictive, definition. As this is a special case of the first definition, our hardness
results apply also to the first definition.

A special case of the Max 2-CSPq problem which is very important in hardness
of approximation is the Label Cover problem. It is important because it often
provides a very good starting point when one wants to prove that some other
problem is hard to approximate. We will elaborate further on this point later,
towards the end of Section 3.3.

Definition 3.1.4. For an integer L > 0, an instance Ψ of the L-Label Cover

problem is a tuple Ψ = (X,Y,E,Π), where (X ∪ Y,E) is a bipartite graph, and
Π = {πe}e∈E associates to each edge e ∈ E a function πe : [L] → [L].

A labeling of Ψ is a function � : X ∪ Y → [L]. An edge e = (x, y) is satisfied by
� if �(y) = πe(�(x)), and the value of � is the fraction of edges satisfied by �,

Val(�) =
1
|E| |{ e ∈ E | � satisfies e }|.

The optimum of Ψ is the maximum value of any labeling,

Opt(Ψ) = max
$:X∪Y→[L]

Val(�).

3.2 Approximation and Inapproximability

Almost since the discovery of NP-completeness, there has been an interest in how
well NP-hard problems can be approximated. A classic example of this is the
Traveling Salesperson Problem (TSP) in a metric space, in which one seeks
the minimum total distance one has to travel to visit some specified set of points.
It is an easy exercise to prove that in a metric space, the minimum cost of a TSP
tour is at least the cost c of a minimum spanning tree, and it is easy to construct a
tour of cost at most 2c by simply traversing a minimum spanning tree. One of the
classic results in approximation algorithms, Christofides’ algorithm [25], improves
upon this: by being careful when taking shortcuts in the spanning tree, it is possible
to always construct a tour which has cost at most 1.5c. This algorithm, while more
than three decades old, is the best one known today for TSP in a general metric
space.

A more fine-grained approach to approximation, which has become more com-
mon in recent years, is to look at not just the worst case ratio between optimum



30 CHAPTER 3. PRELIMINARIES

value and the value found by the algorithm, but at the entire “approximability
curve” of a problem: given that the optimum is at least x, how good solution r(x)
can we find? Many papers, e.g. [42, 22, 64], study the “high” or “low” ends of this
curve, i.e., given that the optimum is 1−ε, or γ+ε (where γ is the smallest possible
value for the optimum), how good solutions can we find? In recent papers such as
[83, 87], the entire curve is studied.

Thus, we define approximation algorithms as follows.

Definition 3.2.1. Let r : R → R be a function. An algorithmA for a maximization
problem P is an r-approximation algorithm if, for every instance Ψ ∈ P ,

ValΨ(A(Ψ)) ≥ r(Opt(Ψ)).

In the case when A is a randomized algorithm, the left hand side in the above
equation is taken to be the expected value of ValΨ(A(Ψ)).

For α ∈ [0, 1], we say that A is an α-approximation algorithm if it is an r-
approximation algorithm with r(x) = αx, i.e., if it is guaranteed to always find a
solution which has a value within a factor α of the optimal value. Note that this
definition only makes sense if Opt(Ψ) ≥ 0 for every Ψ, since if Opt(Ψ) < 0, it is
impossible to find a solution with value at least αOpt(Ψ).

As a simple example of an approximation algorithm, consider the algorithm for
Max 3-Sat which simply picks a random assignment to the variables. It is not
hard to verify that this is an r-approximation algorithm for r(x) = 7

8x, i.e., that it
has an approximation ratio of 7/8.

We remark that in general, r (and α) should be a function not only of Opt(Ψ)
but also of the instance size n = |Ψ|, since it may be the case that the approx-
imation that can be guaranteed will depend on n—e.g., the best approximation
algorithm known for the Maximum Independent Set problem on n vertices has
approximation ratio Ω

(
(log n)3

n(log logn)2

)
[32]. However, for the problems studied in this

thesis, Definition 3.2.1 will suffice.
We make a similar definition for hardness of approximation, which is what the

subsequent chapters will mainly be about.

Definition 3.2.2. Let 0 < s < c. A maximization problem P is (s, c)-hard if
is is NP-hard to distinguish between Ψ ∈ P with Opt(Ψ) ≥ c, and Ψ ∈ P with
Opt(Ψ) < s.

For α ∈ [0, 1], we say that P is NP-hard to approximate within a factor α if
there exists some c such that P is (αc, c)-hard. If P is (s, c)-hard, then for any
r : R → R such that r(c) ≥ s, there does not exist a deterministic polynomial time
r-approximation algorithm for P unless P = NP (and in particular there does not
exist an s/c-approximation algorithm), since such an algorithm would be able to
distinguish Opt(Ψ) < s from Opt(Ψ) ≥ c.

It is easy to verify that if P is (s, c)-hard it is also (s+ x, c)-hard and (s, c− x)-
hard for every x < c− s.



3.3. PROBABILISTICALLY CHECKABLE PROOFS 31

3.3 Probabilistically Checkable Proofs

The most fundamental result in the field of inapproximability is the so-called PCP
Theorem [6, 5]. The acronym PCP stands for Probabilistically Checkable Proofs.
Informally, these are proofs which can be very efficiently verified, in the sense that
one can look at only a constant number of bits of the proof and then with good
probability know whether the proof is correct or not.

A verifier for a language L is a deterministic algorithm V which takes as input
a string x and a “proof” Σ that x ∈ L, and is such that

• if x ∈ L there is some Σ such that V(x,Σ) accepts.

• if x �∈ L then there is no Σ such that V(x,Σ) accepts.

A language is in NP if and only if it has a verifier which runs in time polynomial
in x. For the current discussion, we can think of the “proof” Σ as a binary string,
but in general, it may be a string over some larger alphabet Ω.

A (q, r)-restricted verifier is a probabilistic polynomial time algorithm V which,
just like a regular verifier, is supposed to determine whether a given x is in some
language L, with the help of some auxiliary information Σ. However, a (q, r)-
restricted verifier is not allowed to look at the entire proof Σ, but only at q entries
of Σ. In addition, V is allowed to use up to r random bits. We think of both r and
q as functions of n = |x|, the size of the instance. Clearly, when q is small, such a
verifier has to fail sometimes, unless L is in P. We say that V has completeness c
and soundness s, if the following holds:

• If x ∈ L there is some Σ such that V(x,Σ) accepts with probability at least
c.

• If x �∈ L then for every Σ, the probability that V(x,Σ) accepts is at most s.

We denote by PCPc,s[r, q] the class of all languages having an (r, q)-restricted verifier
with completeness c and soundness s. It is not hard to see that for every s < c and
every q,

PCPc,s[O(log n), q] ⊆ NP .

This holds because if V uses at most O(logn) random bits, then we can construct a
deterministic verifier which enumerates all possible choices of the random bits and
then computes the exact probability that V accepts.

The PCP Theorem [6, 5] asserts that every language in NP has a (O(log n),O(1))-
restricted verifier with completeness 1 and soundness bounded away from 1.

Theorem 3.3.1 (The PCP Theorem). There exists a constant δ < 1 such that

NP ⊆ PCP1,δ[O(logn),O(1)].

What does this have to do with hardness of approximation? Well, the theorem
is in fact equivalent to the following hardness of approximation result.



32 CHAPTER 3. PRELIMINARIES

Theorem 3.3.2 (The PCP Theorem, equivalent formulation). There exists a con-
stant δ < 1 such that Max 3-Sat is (δ, 1)-hard.

Let us sketch why these two formulations are equivalent. Theorem 3.3.1 can
be equivalently stated as saying that there exists an (O(log n), q)-restricted verifier
V for 3-Sat with completeness 1 and soundness δ, for some constant q. Con-
sider the behavior of V on input a 3-CNF formula Ψ0. V will randomly choose
q bits i1, . . . , iq of Σ, and then accept if φ(Σ(i1), . . . ,Σ(iq)) for some function
φ : {0, 1}q → {0, 1} which also depends on the random bits. Now, let us enu-
merate all possible random strings for V , and write down the corresponding con-
straints φ(Σ(i1), . . . ,Σ(iq)). This gives an instance Ψ of the Max q-CSP problem
on 2O(logn) = poly(n) constraints. Furthermore, if Ψ0 was satisfiable, then Ψ is
satisfiable, whereas if Ψ0 was not satisfiable, then Opt(Ψ) ≤ δ. Hence, we have
that Max q-CSP is (δ, 1)-hard. We can write each q-ary constraint φ as a 3-CNF
formula on at most O(q) clauses. Doing this to Ψ gives a Max 3-Sat instance Ψ′

such that if Opt(Ψ) = 1 then Opt(Ψ′) = 1, whereas if Opt(Ψ) ≤ 1 − ε = δ then
Opt(Ψ′) ≤ 1 − ε/O(q) = 1 − Ω(ε) = δ′. Hence Max 3-Sat is (δ′, 1)-hard. This
shows that Theorem 3.3.1 implies Theorem 3.3.2. The other direction is easier.
Theorem 3.3.2 asserts that there exists a reduction R from 3-Sat to Max 3-Sat

such that if x is a 3-CNF formula which is satisfiable, then R(x) is also satisfiable,
and if R(x) is not satisfiable, then Opt(R(x)) ≤ δ. We can then construct a verifier
V which expects as proof Σ a satisfying assignment to R(x), and then verifies this
proof by simply picking a random clause of R(x) and checking that it is satisfied
by Σ. We omit the details.

The PCP Theorem can also be viewed as stating that L-Label Cover is
(δ, 1)-hard for some δ < 1 and some constant L, by the following reduction from
Max 3-Sat to L-Label Cover: given a Max 3-Sat instance, construct a bipart-
ite graph G where the vertex sets are the variables and clauses. The label for a
clause φ is supposed to be one of the 7 satisfying assignments to the variables of
φ, and the label for a vertex x is supposed to be the value of that vertex. A clause
φ and a vertex x is connected by an edge if x occurs in φ, and the constraint π
associated with the edge checks that the label of x is as claimed by the label of φ.

A natural way to boost this (δ, 1)-hardness, is to apply parallel repetition. For
a L-Label Cover instance Ψ = (X,Y,E,Π), the n-fold parallel repetition of
Ψ, denoted Ψn, is the Ln-Label Cover instance (Xn, Y n, E′,Π′), where there
is an edge between (x1, . . . , xn) ∈ Xn and (y1, . . . , yn) ∈ Y n whenever all of
(x1, y1), (x2, y2), . . . , (xn, yn) are edges in E. The label set Ln is identified with
[L]n, and we think of the label �(x) ∈ [L]n of a vertex x = (x1, . . . , xn) ∈ Xn as
assigning labels in [L] to each of x1, . . . , xn. An edge (x, y) ∈ E′ is satisfied by a
labeling � : Xn ∪ Y n → [L]n if the edges (x1, y1), . . . , (xn, yn) are all satisfied by
the labelings of x1, . . . , xn, y1, . . . , yn induced by �(x) and �(y).

It is not hard to see that any labeling of Ψ with value δ can be lifted to a
labeling of Ψ′ with value δn. However, the converse does not necessarily hold.
In other words, there can be labelings of Ψ′ with significantly higher value than



3.4. THE UNIQUE GAMES CONJECTURE 33

δn. A natural question is whether the optimum value of Ψn at least goes down
exponentially with n. This was answered in the affirmative in a celebrated result
by Raz [89], who proved that if Opt(Ψ) ≤ 1− ε with ε > 0, then there exists some
ε′ > 0 depending only on ε, such that

Opt(Ψn) ≤ (1− ε′)Ω(n/ logL)

(recall that L is the number of labels in the L-Label Cover problem). Together
with the PCP Theorem, this implies the following strong inapproximability result
for label cover.

Theorem 3.3.3. For every γ > 0 there exists an L such that the L-Label Cover

problem is (γ, 1)-hard.

As mentioned earlier, Label Cover often provides a useful starting point for
proving strong inapproximability results. The reason for this is exactly the very
strong hardness given by Theorem 3.3.3. Let us explain how the proofs of such
results often proceed. Suppose that P : {0, 1}k → {0, 1} is a predicate and that
we want to prove that Max CSP(P ) is (s, c)-hard for some s and c. We can do
this in the same fashion as our sketch of the proof that Theorem 3.3.1 implies
Theorem 3.3.2: suppose we have an (O(log n), k)-restricted PCP verifier V for L-

Label Cover which only reads k bits b1, . . . , bk of the proof, and then accepts if
P (b1, . . . , bk) is true. Then, to prove that Max CSP(P ) is (s, c)-hard, it suffices to
prove that there exists some γ > 0 independent of L such that

• If Opt(Ψ) = 1, then there is a proof Σ such that Pr[V(Ψ,Σ) accepts] ≥ c.

• If Opt(Ψ) ≤ γ then for every proof Σ it holds that Pr[V(Ψ,Σ) accepts] ≤ s.

Here, the probabilities are taken over the randomness of V . To see this, note that
if we simply write down all possible checks made by the verifier (with according
weights, based on the probabilities of different checks) we obtain a Max CSP(P )
instance Ψ′ such that if Opt(Ψ) = 1 then Opt(Ψ′) ≥ c whereas if Opt(Ψ) ≤ γ
then Opt(Ψ′) ≤ s. Furthermore, this reduction is polynomial (since V uses only
a logarithmic amount of randomness). Hence if L is taken large enough so that
L-Label Cover is (γ, 1)-hard, we get that Max CSP(P ) is (s, c)-hard.

3.4 The Unique Games Conjecture

In 2002, Khot introduced a conjecture known as the Unique Games Conjecture
(UGC). In the short time since it was introduced, this conjecture has established
itself as one of the single most important open problems in theoretical computer
science. The reason for this is that it has been shown that the UGC implies a slew
of optimal or near-optimal inapproximability results which are beyond the reach of
“traditional” PCP techniques. Examples include [65, 66, 64, 63, 28, 94, 56, 7, 8, 9,
83, 75, 67, 87]. In many cases, the UGC not only enables us to prove far stronger



34 CHAPTER 3. PRELIMINARIES

results than the best unconditional results, they also enable us to construct results
which exactly match the performance ratio obtained by the best algorithms.

To formulate the conjecture, we need to define a special case of the Label

Cover problem known as the Unique Label Cover problem.

Definition 3.4.1. The L-Unique Label Cover problem is the special case of the
L-Label Cover problem in which each constraint πe : [L] → [L] is a permutation
on [L].

How hard is L-Unique Label Cover? It is an easy exercise to check that if
the optimum Opt(Ψ) of an L-Unique Label Cover instance is 1, i.e., if there is
a labeling satisfying all edges of Ψ, then such a labeling can be efficiently found in
time O(L · |E|). Hence, in sharp contrast to the state of affairs for Label Cover,
we can not hope that L-Unique Label Cover is (s, 1)-hard for any s < 1. The
Unique Games Conjecture asserts that L-Unique Label Cover is very hard to
approximate as soon as we move to almost-satisfiable instances.

Conjecture 3.4.2 (Unique Games Conjecture). For every γ > 0, there exists an
L such that the L-Unique Label Cover problem is (γ, 1− γ)-hard.

Whenever a problem is hard under the UGC, we say that it is Unique Games-
hard, or more often simply UG-hard. For instance, for every γ > 0, L-Unique

Label Cover is, by definition, (γ, 1− γ)-UG-hard for sufficiently large L.
There have been plenty of works which, either directly or indirectly, has helped

improve our understanding of the UGC. Feige and Reichman [36] showed that for
every γ there exists a δ > 0 and L such that L-Unique Label Cover is (γδ, δ)-
hard. However, the constant δ tends to 0 quite rapidly with γ, and their technique
is inherently limited to getting that type of bounds.

On the algorithmic side, there have been several results [62, 102, 20, 4]. The best
general algorithm is due to Charikar et al. [20], who gave an algorithm which on
input a L-Unique Label Cover instance Ψ with Opt(Ψ) ≥ 1−γ, finds a labeling
with value at least 1−O(

√
γ logL). This implies that in order for the UGC to be

true, L needs to be at least 2Ω(1/γ). This result is nicely complemented by results
of Khot et al. [63], who prove that, if the UGC is true then in the non-bipartite
version one can take L = 2π/(2γ). In other words, any significant improvement of
the algorithm of Charikar et al. would disprove the UGC.

Recently, Arora et al. [4] gave an algorithm for L-Unique Label Cover on
constraint graphs with good expansion (measured in terms of the spectral gap of
the constraint graph). In particular, this has the interesting consequence that L-

Unique Label Cover is not hard on random graphs, as these are likely to be
good expanders. This is contrary to many other constraint satisfaction problems
such as Max 3-Sat, where there are indications that random instances are as hard
as the worst case instances with respect to approximability [95].

Another very interesting line of research related to the UGC is the investigation
of parallel repetition. Recall that Raz [89] proved that for any Label Cover



3.5. CONSTRUCTIONS OF PAIRWISE INDEPENDENCE 35

instance Ψ with value Opt(Ψ) ≤ 1 − ε, the value of the n-fold repetition Ψn is at
most Opt(Ψn) ≤ (1 − ε′)Ω(n/ logL) for some ε′ > 0 depending only on ε (one could
take ε′ = ε32). The proof of Raz was simplified by Holenstein [57], who proved
that Opt(Ψn) ≤ (1 − ε3)Ω(n/ logL). This was then further improved by Rao [88],
who proved that Opt(Ψn) ≤ (1− ε2)Ω(n) (note the lack of dependency on L in the
exponent). We remark that the first two results hold also for a more general class
of Label Cover problems than the ones defined in Definition 3.1.4, where each
πe is an arbitrary relation on [L]× [L] rather than a function from [L] to [L]. Rao’s
result implies the following equivalent formulation of the UGC:

Theorem 3.4.3. Suppose that there exists a constant t > 2 such that for every
γ > 0 there exists an L such that L-Unique Label Cover is (1 − γ1/t, 1 − γ)-
hard. Then the Unique Games Conjecture is true.

In other words, in order for the Unique Games Conjecture to be true, it suffices
that Unique Games are hard on almost-satisfiable instances with just a very small
gap. The obvious question of whether the condition t > 2 in Theorem 3.4.3 can
be improved is known as the Strong Parallel Repetition Conjecture, introduced by
Feige et al. [34]. The conjecture is particularly interesting as it would imply that
proving the UGC is equivalent to proving that Max Cut is (1 − Θ(

√
ε), 1 − ε)-

hard for every ε > 0 (it is already known that the UGC implies such hardness
[63]), and this problem could potentially be much easier to attack than the UGC
in its original form. However, as recently proved by Raz [90], the Strong Parallel
Repetition Conjecture is false, so in some sense, Theorem 3.4.3 is the “weakest
possible” characterization of the UGC.

Despite all the results mentioned above, there are still many aspects of Unique

Label Cover which are not properly understood. For instance, it is not known
how easy or hard the problem is in the special case where the constraint graph is
the boolean hypercube {0, 1}n.

3.5 Constructions of Pairwise Independence

In Chapter 5, we will be interested in pairwise independent distributions with as
small support as possible. There is a rich literature on constructions of t-wise
independence. In this section, we present some such constructions.

3.5.1 Large Alphabets

The following well-known lemma is useful for constructing pairwise independent
distributions.

Lemma 3.5.1. Let R be a finite commutative ring, and let R∗ denote the set of
units (i.e., the elements having a multiplicative inverse) of R. Let u, v ∈ Rn be



36 CHAPTER 3. PRELIMINARIES

two vectors over R such that uivj − ujvi ∈ R∗ for some i, j.1 Let X ∈ Rn be a
uniformly random vector over Rn and let µ be the probability distribution over R2

of (〈u,X〉 , 〈v,X〉) ∈ R2. Then µ is a balanced pairwise independent distribution.

Proof. Without loss of generality, assume that i = 1 and j = 2. It suffices to prove
that, for all (a, b) ∈ R2 and any choice of values of X3, . . . , Xn, we have

Pr[(〈u,X〉 , 〈v,X〉) = (a, b) |X3, . . . , Xn] = 1/|R|2.

For this to be true, we need that the system{
u1X1 + u2X2 = a′

v1X1 + v2X2 = b′

has exactly one solution, where a′ = a −
∑n

i=3 uiXi and similarly for b′. This in
turn follows directly from the condition on u and v.

Consequently, given a set of m vectors in Rn such that any pair of them satisfy
the condition of Lemma 3.5.1, we can construct a pairwise independent distribution
over Rm with support size |R|n.

From this, it is easy construct small pairwise independent distributions over [q]k
for q a prime power.

Theorem 3.5.2. Let q be a prime power. Then, there exists a pairwise independent
distribution µ over [q]k with support size

| Supp(µ)| ≤ k(q − 1)q.

In the special case that k = qr−1
q−1 for some r, the bound on the support improves to

| Supp(µ)| ≤ k(q − 1) + 1.

The construction we use is essentially the same as that of [81], though in a
somewhat different language.

Proof. Let r = �logq(k(q − 1) + 1) , and n = (qr − 1)/(q − 1) ≥ k.
Let P(Frq) be the projective space over Frq, i.e.,

P(Frq) = (Frq \ 0)/∼.

Here ∼ is the equivalence relation defined by (x1, . . . , xr) ∼ (y1, . . . , yr) if there
exists a c ∈ F∗

q such that xi = cyi for all i, i.e., if (x1, . . . , xr) and (y1, . . . , yr) are
linearly dependent. We then have

|P(Frq)| = (qr − 1)/(q − 1) = n.

1In the case that R is a field, the condition is equivalent to saying that u and v are linearly
independent.



3.5. CONSTRUCTIONS OF PAIRWISE INDEPENDENCE 37

Choose n vectors u1, . . . , un ∈ Frq as representatives from each of the equivalence
classes of P(Frq). Then any pair ui, uj satisfy the condition of Lemma 3.5.1. Thus,
we have that (〈ui, X〉)1≤i≤n for a uniformly random X ∈ Frq induces a balanced
pairwise independent distribution over Fnq (and hence over [q]k) with support size
qr.

When k = (qr − 1)/(q − 1), this gives a support of size k(q − 1) + 1, and for
general k, in particular

k = (qr−1 − 1)/(q − 1) + 1,

we lose almost a factor q in the support size.

3.5.2 The Binary Alphabet

Let us now look closer at the special case of pairwise independence over binary
strings, i.e., the case q = 2.

An Hadamard matrix is an n × n matrix over ±1 such that HHT = nI, i.e.,
each pair of rows, and each pair of columns, are orthogonal. Let Had(n) denote
the smallest n′ ≥ n such that there exists an n′ × n′ Hadamard matrix. It is a
well-known fact that Hadamard matrices give pairwise independent distributions.
To be specific, we have the following proposition:

Proposition 3.5.3. For every k, there exists a pairwise independent distribution
µ over {−1, 1}k with support size

| Supp(µ)| = Had(k + 1).

Proof. Let n = Had(k+1) and let A be an n×n Hadamard matrix, normalized so
that one column contains only ones. Remove n−k of the columns, including the all-
ones column, and let A′ be the resulting n× k matrix. Let µ : {−1, 1}k → [0, 1] be
the probability distribution which assigns probability 1/n to each row of A′. Then
µ is a balanced pairwise independent distribution with | Supp(µ)| = Had(k+1).

It is well known that Hadamard matrices can only exist for n = 1, n = 2,
and n ≡ 0 (mod 4). The famous Hadamard Conjecture [99, 50, 84] asserts that
Hadamard matrices exist for all n which are divisible by 4, in other words, that
Had(n) = 4�n/4 ≤ n+3. The smallest value for which the conjecture is not known
to hold is n = 668. It is also possible to get useful unconditional bounds on Had(n).
We now give one such bound, which is an easy consequence of the two following
theorems.

Theorem 3.5.4 ([84]). For every odd prime p and integers e, f ≥ 0, there exists
an n × n Hadamard matrix Hn where n = 2e(pf + 1), whenever this number is
divisible by 4.

Theorem 3.5.5 ([10]). There exists an integer n0 such that for every n ≥ n0, there
is a prime p between n and n+ n0.525.



38 CHAPTER 3. PRELIMINARIES

Corollary 3.5.6. For every n, it holds that Had(n) ≤ n+O(n0.525).

Proof. Let p be the smallest prime larger than n/2, and let n′ = 2(p+1) ≥ n. Then,
Theorem 3.5.4 asserts that there exists an n′×n′ Hadamard matrix, soHad(n) ≤ n′.
If n is sufficiently large (n ≥ 2n0), then by Theorem 3.5.5, p ≤ n/2 + (n/2)0.525

and n′ ≤ n+ 2n0.525, as desired.

To summarize the discussion in this section, we have the following theorem on
pairwise independence over {0, 1}k.
Theorem 3.5.7. There exists a balanced pairwise independent distribution µ over
{0, 1}k with support size

| Supp(µ)| ≤ k +O(k0.525).

Furthermore, if the Hadamard Conjecture is true, there exists µ with

| Supp(µ)| = �(k + 1)/4 ≤ k + 4.

We remark that it should be possible to get a stronger unconditional bound
on Had(n) than the one given by Corollary 3.5.6 by using stronger construction
techniques than the one of Theorem 3.5.4.

3.6 Properties of the Bivariate Normal Distribution

In this section, we prove some basic facts about Γρ (Definition 2.2.11). The first is
the following symmetry observation.

Proposition 3.6.1. For all ρ ∈ [−1, 1], µ1, µ2 ∈ [−1, 1], we have

Γρ(−µ1,−µ2) = Γρ(µ1, µ2) + µ1/2 + µ2/2.

Proof. Let ti = Φ−1
(
1−µi

2

)
, and let X and Y be two ρ-correlated N(0, 1) variables.

Clearly, Γρ(−µ1,−µ2) = Pr[X ≤ −t1 ∧ Y ≤ −t2]. Assume that µ1 < 0, µ2 < 0
(implying t1 > 0 and t2 > 0). We have

Γρ(µ1, µ2)− Γρ(−µ1,−µ2) = Pr[X ≤ t1 ∧ Y ≤ t2]− Pr[X ≤ −t1 ∧ Y ≤ −t2]
= Pr[X ≤ 0 ∧ |Y | ≤ t2] +

Pr[0 ≤ X ≤ t1 ∧ −t2 ≤ Y ≤ 0] +
Pr[0 ≤ X ≤ t1 ∧ 0 ≤ Y ≤ t2] +
Pr[|X | ≤ t1 ∧ Y ≤ −t2].

Note that Pr[0 ≤ X ≤ t1 ∧ 0 ≤ Y ≤ t2] = Pr[−t1 ≤ X ≤ 0∧−t2 ≤ Y ≤ 0] and that
Pr[X ≤ 0 ∧ |Y | ≤ t2] = Pr[X ≥ 0 ∧ | − Y | ≤ t2] = Pr[|Y | ≤ t2]/2 = −µ2/2. Thus,

Γρ(µ1, µ2)− Γρ(−µ1,−µ2) = Pr[X ≤ 0 ∧ |Y | ≤ t2] +
Pr[|X | ≤ t1 ∧ −t2 ≤ Y ≤ 0] +
Pr[|X | ≤ t1 ∧ Y ≤ −t2]

= −µ1/2− µ2/2,



3.6. PROPERTIES OF THE BIVARIATE NORMAL DISTRIBUTION 39

as desired. The other three sign combinations for µ1 and µ2 are taken care of.

Next, we compute the derivative of Γρ. For the rest of this section, let t(x) =
Φ−1

(
1−x
2

)
.

Proposition 3.6.2. For ρ ∈ (−1, 1), we have

∂Γρ
∂µ1

(µ1, µ2) = −1
2
Φ

(
t(µ2)− ρt(µ1)√

1− ρ2

)
.

Proof. This follows from the fact that Γρ(µ1, µ2) can be written as

Γρ(µ1, µ2) =
∫ t(µ1)

x=−∞
φ(x)Φ

(
t(µ2)− ρx√

1− ρ2

)
dx,

giving
∂Γρ
∂µ1

(µ1, µ2) = t′(µ1)φ(t(µ1))Φ

(
t(µ2)− ρt(µ1)√

1− ρ2

)
.

Using t′(x) = − 1
2φ(t(x)) , we obtain the desired result.

As a simple corollary, we get the following result.

Corollary 3.6.3. For ρ ∈ (−1, 1), we have

∂Γρ
∂µ

(µ, µ) = −Φ
(√

1− ρ

1 + ρ
t(µ)

)
.

Note that Corollary 3.6.3 implies that ∂2Γρ

∂µ2 (µ, µ) > 0 for all µ, i.e. that Γρ(µ, µ)
is a convex function in µ.

Proof. Indeed,
∂Γρ
∂µ

(µ, µ) =
∂Γρ
∂µ1

(µ, µ) +
∂Γρ
∂µ2

(µ, µ)

= 2 ·
(
−1
2
Φ

(
(1− ρ)t(µ)√

1− ρ2

))

= −Φ
(√

1− ρ

1 + ρ
t(µ)

)
.

Here, we used the fact that Γρ(µ1, µ2) = Γρ(µ2, µ1), so the derivative of Γρ with
respect to µ2 can also be computed using Proposition 3.6.2.

Another simple but useful corollary of Proposition 3.6.2 is that Γρ is “Lipschitz
continuous”.

Corollary 3.6.4. For any µ1, µ
′
1, µ2, µ

′
2 ∈ [−1, 1] and ρ ∈ (−1, 1), we have

|Γρ(µ1, µ2)− Γρ(µ′
1, µ

′
2)| ≤

|µ1 − µ′
1|+ |µ2 − µ′

2|
2

.





Chapter 4

Hardness by Testing Dictators

This chapter gives a review of a, by now fairly standard, method to obtain inap-
proximability results. In particular, we describe certain algorithms known as dictat-
orship tests, and their intimate connection with PCPs. The connections between
these two types of objects have been known for a long time. In recent years it
has been realized that, when constructing PCPs for Unique Label Cover, this
connection is particularly strong. It turns out that with a “sufficiently general”
definition of what a dictatorship test is, such tests can be used in a black-box fash-
ion to prove Unique Games-based inapproximability for virtually any constraint
satisfaction problem. However, the “sufficient generality” needed in order for us
to be able to derive both the results in Chapter 5 for k-CSPs and the results in
Chapter 6 for 2-CSPs turns out to be fairly large, making the definitions quite
cumbersome to work with. Thus, rather than formally stating and proving this
black-box conversion from dictatorship tests to hardness results, we will in this
chapter give the subject an informal (but still relatively detailed) treatment, and
defer the formal proofs to Chapter 5 and Chapter 6.

This chapter is not a prerequisite for Chapter 5 and Chapter 6, in the sense that
they are both (mostly) self-contained. However, a reader not familiar with these
types of results, wanting to obtain some intuition for how they work, is encouraged
to first read this chapter.

4.1 Dictators

Throughout this chapter, let Ω be a finite domain and n a positive integer. The
reader is encouraged to think of n as being very large, and of |Ω| as being a relatively
small constant. A function f : Ωn → Ω is called a dictator if it is defined by

f(x) = xi

for every x ∈ Ωn. We use Dicti to denote the dictator function returning the i:th
input coordinate (formally, we should also index Dict by Ω and n, but these will

41



42 CHAPTER 4. HARDNESS BY TESTING DICTATORS

always be clear from the context, so we omit them for the sake of brevity).
In the “traditional” inapproximability literature, dictators are commonly also

called long codes, often with a different notation than our notation above. Long
codes were first defined in the context of approximability by Bellare, Goldreich and
Sudan [13], and have since become ubiquitous in the design of strong PCPs. The
name long code comes from the fact that the mapping i �→ Dicti can be seen as
a highly redundant error-correcting code, which maps elements from a set of size
n to a set of size |Ω||Ω|n (the set of all functions f : Ωn → Ω). This code has very
good error-correcting properties. In fact, dictatorship tests, which are defined in
the next section and which play a crucial role in many hardness results, can be
viewed as so-called local error-detection procedures for the long code.

4.2 Dictatorship Testing

Dictatorship testing is a particular case of a subject in theoretical computer science
known as property testing. Loosely speaking, in property testing one seeks to test
whether a given (possibly huge) object has a given property by just looking at a
very small portion of the object, and then making an “educated guess”. As an
example, suppose that we are given the adjacency matrix A of a graph G, and want
to test if G is triangle-free1 by only examining a small number of entries A. This
problem is a special case of the more general and very interesting problem of testing
whether a graph G has some fixed graph H as a subgraph, which has fascinating
applications in additive combinatorics.

The critical performance characteristics of such a test are the completeness and
soundness of the test. If our test accepts every G which has the property (in this
case, triangle-freeness) with probability at least c, we say that it has completeness c.
If our test accepts every G which is “far” from having the property with probability
at most s, we say that it has soundness s. The exact notion of what it means to
be “far” from having a property can vary in different settings as we shall see in the
remainder of this chapter. For the triangle-freeness testing problem, a reasonable
definition is to say thatG is ε-far from every triangle-free graph if at least εn2 entries
of the adjacency matrix A have to be changed in order to make G triangle-free.

For the problem of testing triangle-freeness, it turns out that there is a function
f : (0, 1] → R such that for every ε > 0 there is a testing algorithm looking only at
a constant number f(ε) of entries of A, which accepts every triangle-free graph with
probability 1, and rejects every graph which is ε-far from being triangle-free with
probability at least 1/2 (to readers familiar with the Triangle Removal Lemma of
additive combinatorics, this should not come as a surprise).

Informally, dictatorship testing is the property testing problem in which we are
given access to some arbitrary function f : Ωn → Ω, and should determine whether
or not f = Dicti for some i ∈ [n], by only evaluating f on a small number of

1Recall that a graph G is triangle-free if it contains no triangles, i.e., if there are no u, v, w ∈ V
such that all three of (u, v), (v, w) and (w, u) are edges.



4.3. HARDNESS 43

inputs. To make this testing problem concrete, we need to specify what we mean
by a function f being “far” from every dictator. For the application that we are
interested in, hardness of approximation, we need to define “far” in such a way that
dictatorship tests can be used to construct PCPs. Then, as the performance of the
PCP in general depends directly on the soundness and completeness properties of
tests, we should choose a notion of distance which is as “weak” as possible, in the
sense that it allows us to construct tests with good completeness and soundness,
while at the same time being strong enough so that we can convert such test into
PCPs.

4.3 Hardness

As we shall see in this section, the most important property of a definition of
“distance” is that it should, in some sense, induce a good “code” on the set of all
functions from Ωn → Ω. In particular, suppose that the notion of distance is such
that every function f is close to at most R different dictators, where R is some
number which may depend on Ω but is independent of n.

We will illustrate how a dictatorship test, under any such definition of distance,
can be used to obtain Unique Games-based hardness results. Suppose for concrete-
ness that we have a dictatorship test T with completeness c and soundness s for
f : {−1, 1}n → {−1, 1} which evaluates f in 2 points x and y and then accepts
if f(x) �= f(y). Let us use this test to construct a PCP verifier for L-Unique

Label Cover. We remark that when working with a binary domain, as we do
here, we almost always choose Ω = {−1, 1} rather than {0, 1} because it tends to
make computations a lot cleaner.

The format of the proof is as follows. Given a L-Unique Label Cover instance
Ψ = (X,Y,E,Π), the verifier will expect as a proof a set Σ = {fv}v∈X∪Y of
functions fv : {−1, 1}L → {−1, 1}, one for each vertex of Ψ. The verifier expects
that fv = Dict$(v), for some good labeling � : X ∪ Y → [L] of Ψ.

Given an arbitrary proof Σ, how can we verify it efficiently? Consider the follow-
ing verification process. First pick a random vertex v, and two random neighbors
w1, w2 of v. Now, if the two edges e1 = (v, w1) and e2 = (v, w2) are satisfied
by the labeling which Σ is supposed to encode, then we should have fv = Dicti,
fw1 = Dictπe1 (i)

and fw2 = Dictπe2(i)
for some i ∈ [L]. In particular, checking

whether the two edges selected are satisfied amounts to checking whether

h1 = h2 = Dicti (4.1)

for some i ∈ [L], where hi(x) = fwi(x ◦ π−1
ei
) (recall the definition of composition ◦

from Section 2.1). Checking this is almost the same as a dictator test, except that
we have two different functions which should be the same dictator. It turns out
that this is not really an important difference, and that in general, the dictatorship
test T can be used in this setting as well.



44 CHAPTER 4. HARDNESS BY TESTING DICTATORS

We thus have a verification procedure which only reads two single bits out of the
gigantic proof Σ, and then checks that these bits are not equal. How well does this
verifier work? It is not too hard to see that if Opt(Ψ) ≥ 1 − γ, then the intended
proof is accepted with probability at least c− 2γ, simply because with probability
at least 1−2γ, Equation (4.1) will hold and in this case we accept with probability
at least c.

The soundness analysis is more interesting. Suppose that the verifier accepts
with probability at least s + ε. Then a simple averaging argument shows that for
at least an ε/2 fraction of all v ∈ X it must be the case that the verifier accepts
this particular v with probability at least s+ ε/2. Let us call these vertices “good”,
and fix some “good” vertex v. Another averaging argument shows that for at least
an ε/4 fraction of all pairs (w1, w2) of neighbors of v, T accepts this pair with
probability at least s+ ε/4. Consider the neighbor w∗ which participates as w1 in
the maximum number of such pairs. We then have that for a fraction ε/4 of all
neighbors w of v, T accepts (w∗, w) with probability s + ε/4, which implies that
there is some i such that fw∗ is close to Dictπe∗ (i) and fw is close to Dictπe(i).

Consider now the following random labeling � of Ψ. For each w ∈ Y , pick �(w)
uniformly at random such that fw is close to Dict$(w) (or arbitrarily if fw is not
close to any dictator). For a “good” v ∈ X with neighbor w∗ as above, simply let
�(v) = π−1

e∗ (�(w
∗)). Assign the other labels of X arbitrarily. Now, we claim that the

expected fraction of satisfied edges by � is at least ε2

8R2 . Recall that R is the upper
bound on the number of different dictators that a function can be simultaneously
close to. To prove the bound on E[Val(�)], let v be one of the good vertices with
neighbor w∗, and let w be one of the neighbors such that (w∗, w) is accepted by
T with good probability. Then since w is close to Dictπe(i), the probability that
�(w) = πe(i) is at least 1/R, and since w∗ is close to Dictπe∗ (i), the probability that
�(w∗) = πe∗(i) is at least 1/R. Furthermore these two events are independent. But
if �(w∗) = πe∗(i) then by definition �(v) = i and hence this edge is satisfied with
probability at least 1/R2. In total, this type of edge constitutes an ε2/8 fraction of
all edges, implying the bound on E[Val(�)].

To summarize, this shows that if the verifier accepts with probability at least
s+ ε, it must be the case that Opt(Ψ) ≥ ε2

8R2 . This in turn implies that if we take γ
smaller than ε2

8R2 and then take L large enough so that L-Unique Label Cover

is (γ, 1 − γ)-UG-hard, it will be UG-hard to determine whether there is a proof
that makes the PCP verifier accept with probability at least c− ε, or whether every
proof is accepted with probability at most s + ε. This in turn implies that Max

Cut is (s+ ε, c− ε)-UG-hard to approximate for every ε > 0.
We only used one single property of the notion of “distance”2: that a function

f : Ωn → Ω could be close to at most R different dictators, where R is independent
on n.

2This is not quite true, since we also required that the test T should work even when we plug
in two different functions, and whether or not this is possible to achieve may also depend on the
definition of distance. However, this issue usually turns out to be a minor one.



4.4. FOLDING 45

4.4 Folding

In many hardness applications, it is crucial that the supposed dictator encodings
of the labels in a good labeling are balanced. A function f : Ωn → Ω is balanced if,
for every a ∈ Ω, the equation f(x) = a has exactly |Ω|n−1 solutions, i.e., if f takes
every value equally often. We will see one example where this is crucial shortly, in
Section 4.6, and it will also be needed both in Chapter 5 and Chapter 6.

How can we enforce this condition on an arbitrary proof Σ = {fv}v∈X∪Y ? We
do this by a technique called folding, which enforces a special type of balance. A
function f : Ωn → Ω is said to be folded, if, for every x ∈ Ωn and a ∈ Ω

f(x1 + a, x2 + a, . . . , xn + a) = f(x1, . . . , xn) + a,

where “+” in Ω is defined so that (Ω,+) is an Abelian group. Note that a dictator
is always folded, and that a folded function is completely specified by its values on
the |Ω|n−1 points of Ωn of the form (x1, . . . , xn−1, 0). Thus, we can enforce that fv
is folded by saying that the proof should consist of the values of fv(x1, . . . , xn−1, 0).
Then, when the verifier wants to evaluate fv(x1, . . . , xn), it instead evaluates

fv(x1 − xn, . . . , xn−1 − xn, 0) + xn.

This successfully enforces all supposed dictator encodings to be balanced, but it has
a cost. Suppose that our PCP verifier uses some predicate P : [q]k → {0, 1} when
deciding whether or not to accept. When we use folding, the verifier will read some
k entries y1, y2, . . ., yk ∈ [q] of the proof, and then accept if P (y1 + a1, . . . , yk +
ak) is true. This means that when we use the PCP verifier as a reduction to a
CSP, the resulting instance will have constraints where P is applied to k-tuples of
literals, and not just k-tuples of variables. In other words, we will get hardness for
Max CSP(P ), rather than for Max CSP

+(P ).
To summarize: if we want to show hardness for Max CSP(P ) we can assume

that the supposed dictator encodings in the PCP are balanced, but if we want to
show hardness for Max CSP

+(P ) we can not, in general, make this assumption.

4.5 The BLR Test

Now that we understand how dictatorship tests are used to obtain hardness results,
let us try to make a more explicit definition of distance. The arguably most natural
definition of distance between functions would be the normalized Hamming distance,
defined for two functions f, g : Ωn → Ω as

ham(f, g) =
|{ x ∈ Ωn | f(x) �= g(x) }|

|Ω|n .

Note that this was the notion of distance we used in the triangle-freeness case, when
we said that the distance between two graphs G and G′ is ε if we need to change



46 CHAPTER 4. HARDNESS BY TESTING DICTATORS

at least εn2 entries of the adjacency matrix of G to obtain the adjacency matrix of
G′.

The perhaps most classic result in this setting is the BLR linearity test by Blum,
Luby and Rubinfeld [16]. As the name indicates, this is not a dictatorship test, but
rather a linearity test. In particular, for any groupsG andH , [16] shows how to test
if a given function f : G → H is close to a homomorphism (i.e., if f(ab) = f(a)f(b)
for every a, b ∈ G) using only 3 queries. We will briefly describe their test in the
setting G = {−1, 1}n (with coordinatewise multiplication) and H = {−1, 1} (with
multiplication). The classic Fourier-analytic proof for this setting given below is
due to Bellare et. al [12].

Given a function f : {−1, 1}n → {−1, 1}, the BLR test works as follows: pick
two random x, y ∈ {−1, 1}n, and check that f(xy) = f(x)f(y). It is clear that if f
is linear, then the test accepts with probability 1. What may be more surprising
is the fact that if f is ε-far from linear, the test accepts with probability at most
1 − ε, for any ε ∈ [0, 1/2] (note that every f is at most 1/2-far from linear). Let
us prove this. Arithmetizing the acceptance condition of the test, the probability
that the test accepts can be written as

Pr
x,y

[f(x)f(y) = f(xy)] = E
x,y

[
1 + f(x)f(y)f(xy)

2

]
.

Expanding f =
∑

S⊆[n] f̂(S)χS in terms of its Fourier coefficients and using linear-
ity of expectation, this gives

Pr
x,y

[f(x)f(y) = f(xy)] =
1
2
+

1
2

∑
S,T,U⊆[n]

f̂(S)f̂(T )f̂(U) E
x,y

[χS(x)χT (y)χU (xy)].

However, by the linearity of χS(x) =
∏
i∈S xi, we have χU (xy) = χU (x)χU (y), i.e.,

χS(x)χT (y)χU (xy) = χS(x)χU (x)χT (y)χU (y).

Hence

E
x,y

[χS(x)χT (y)χU (xy)] = E
x
[χS(x)χU (x)]E

y
[χT (y)χU (y)] = 〈χS , χU 〉 · 〈χT , χU 〉 ,

which, by orthogonality of the χ functions, is 0 unless S = T = U , in which case it
equals 1. Thus, the probability that the test accepts equals

Pr
x,y

[f(x)f(y) = f(xy)] =
1
2
+
1
2

∑
S⊆[n]

f̂(S)3 ≤ 1
2
+
1
2
||f̂ ||∞ · ||f̂ ||2 =

1
2
+
1
2
max
S⊆[n]

|f̂(S)|.

But |f̂(S)| is exactly the maximum correlation between f and χS or −χS , hence
1+|f̂(S)|

2 is exactly the maximum agreement of f with χS or −χS , and the maximum
of this quantity over all S is exactly the maximum agreement of f with any linear
function (since any linear function from {−1, 1}n to {−1, 1} is either of the form
χS or of the form −χS).



4.6. A DICTATORSHIP TEST BASED ON DISTANCE 47

4.6 A Dictatorship Test Based on Distance

While the BLR test is a linearity test rather than a dictatorship test, it can be
turned into a dictatorship test with some small modifications. The test we describe
in this section was introduced by Håstad to prove (1/2+ ε, 1− ε)-hardness for Max

3-Xor in his seminal paper [54].
First, it turns out that it is too restrictive to require that every function f which

is far from a dictator in Hamming distance should be rejected with high probability.
For instance, the functions fij : {−1, 1}n → {−1, 1} defined by fij(x) = χij(x) =
xixj are very far from dictators (the hamming distance is 1/2). But intuitively, it
seems very difficult for a test to distinguish between these functions and dictators.

Let us then weaken the notion of distance somewhat, and instead ask for a test
which is only required to reject f if it is not close to any linear function depending
on a small number of variables. I.e., we only ask that the test rejects with good
probability if |f̂(S)| ≤ δ for every S ⊆ [n] with |S| ≤ d for some constants δ and
d. Conversely, we say that f is close to Dicti if |f̂(S)| > δ for some S with i ∈ S
and |S| ≤ d. Note that, with this definition, f can be close to at most R = d/δ2

different dictators, since there can be at most 1/δ2 Fourier coefficients of size δ

(since
∑

S f̂(S)
2 = 1 for any f : {−1, 1}n → {−1, 1}).

Such a test can be constructed by simply adding a small amount of noise to
the BLR test. The intuition behind this is that a dictator is likely not to be
affected by noise, whereas a parity of a large number of variables have a high
probability of being affected by the noise. Hence, we test f as follows: pick x, y
uniformly in {−1, 1}n, and pick z in {−1, 1}n such that each bit of z is −1 with
probability η (which we think of as being very small), independently. Then check
that f(x)f(y) = f(xyz). Let us now analyze this test. First, we no longer have
perfect completeness, but if f is a dictator, it is easy to see that it will be accepted
with probability exactly 1 − η. For the soundness analysis, an analysis similar to
the one for the BLR test will show that the acceptance probability of this test is

Pr
x,y,z

[f(x)f(y) = f(xyz)] =
1
2
+

1
2

∑
S⊆[n]

(1− 2η)|S|f̂(S)3

≤ 1
2
+

1
2
max
S⊆[n]

(1− 2η)|S||f̂(S)|.

This implies that if |f̂(S)| ≤ δ for every |S| ≤ d, then the test accepts with prob-
ability at most

1 + max(δ, (1− 2η)d)
2

,

which is dominated by (1 + δ)/2 if d is a large enough constant compared to η.
There is still a problem with this test, which is the fact that the test accepts the

two constant functions 1 and −1 with probability 1, which is not acceptable since
these are not close to any dictators. This is however easily remedied by folding,



48 CHAPTER 4. HARDNESS BY TESTING DICTATORS

which, as described earlier, allows us to assume that the function f is balanced and
in particular that f̂(∅) = 0.

With an appropriate choice of the parameters δ, η and d, this test, plugged
into a PCP verifier similar to the one described in Section 4.3, shows that for every
ε > 0, Max 3-Xor is (1/2+ε, 1−ε)-UG-hard to approximate. To get unconditional
(1/2 + ε, 1− ε)-NP-hardness, as [54] does, is considerably more involved.

4.7 Influence-based Testing

Unfortunately, even the notion of distance used in the previous section is too strong
for our purposes, in the sense that there are functions that are very far from every
low-degree linear function in Hamming distance, but share important characteristics
with some dictator Dicti, making it hard to distinguish them from Dicti.

In particular, consider a function f : {−1, 1}n → {−1, 1} in which the variable
i has large influence, but every single Fourier coefficient is small. Intuitively, f is
similar to Dicti, in the sense that when we flip the ith bit, f has a good probability
of changing value (over a random choice of the other bits). Nevertheless, in the
previous notion of distance, we would be required to reject it with good probability.

To illustrate that this is a problem, suppose we want to construct the test T
from Section 4.3 for functions f : {−1, 1}n → {−1, 1}, using only 2 queries, but
still having a good gap between completeness and soundness. The most natural
way to construct such a test (and it is hard to imagine any radically different test
which still makes sense) would be to pick a random string x ∈ {−1, 1}n, and then
flip each bit with some probability p, obtaining a string y. For concreteness, let us
take p = 9/10. Then, we check that f(x) �= f(y), since in a dictator, this should
happen with probability 9/10. Similarly to the analysis of the previous tests, one
can here prove that the accept probability equals

1
2
− 1

2

∑
S⊆[n]

(1 − 2 · (9/10))|S|f̂2(S). (4.2)

If one, as before, attempts to produce a bound on the second term in terms of the
largest coefficient of f , one gets an expression of the form

−
∑
S⊆[n]

(−4/5)|S|f̂2(S) ≤ max
S

|f̂(S)| ·
∑
S

(5/4)−|S||f̂(S)|. (4.3)

In general, this quantity can be huge. Consider the following example, due to
Samorodnitsky and Trevisan [93]. Suppose f is defined as

f(x) = g(x1, x2)g(x3, x4) . . . g(xn−1, xn),

where g : {−1, 1}2 → {−1, 1} is the “And” function on {−1, 1}, defined as g(x1, x2) =
−1 if and only if x1 = x2 = −1. Then it is easily verified that f(x) can be written



4.7. INFLUENCE-BASED TESTING 49

as follows

f(x) =
n/2∏
i=1

(
1 + x2i + x2i+1 − x2ix2i+1

2

)
.

This implies that, for every S ⊆ [n], |f̂(S)| = 2−n/2. In particular, we get that

∑
S

(5/4)−|S||f̂(S)| =
n∑

k=0

(5/4)−k
(
n

k

)
2−n/2 ≥

n/2∑
k=0

(5/2)−n/2
(
n

k

)
≥ 1

2
(8/5)n/2

Hence the bound in Equation (4.3) is completely useless. Of course, this does not
prove that the test does not work—the bound in Equation (4.3) is a quite poor
estimate. Still, it shows that if we want to prove that this test works, we will need
a more sophisticated analysis of Equation (4.2)—we will return to this momentarily.

Let us now look at the influences of f . It is easily computed that for every i,
the influence Infi(f) = 1

2 is very large. Hence, f is “similar” to a dictator in the
sense of having high influences. Thus, one might be tempted to revise the notion
of “distance” to say that f is far from a dictator if all influences of f are small.
However, it turns out that this does not work, because this notion of distance is in
general too weak, so that we would not be able to turn such dictatorship tests into
hardness results. Recall that, as described in Section 4.3, the key property that is
needed for a hardness result, is that no function can be close to more than a small
number of dictators. In the case of influences, most notably for the function used
above, every variable has large influence and hence f is “close” to every dictator.

A better notion is then, similarly to the change we made from linearity test
to dictator test in Section 4.6, to look at low-degree influence instead, and only
require that f is rejected with good probability, if for every i, Inf≤di (f) ≤ τ , for
some constants d and τ . Recall that by Proposition 2.3.12, the number of variables
having a large low-degree influence is bounded, and hence this notion could be
used to obtain hardness results. Note however that our “counterexample” function
f has all its low-degree influences small, Inf≤di (f) ≈ nd2−n, hence we still need
that this function is rejected with good probability. Thus we have returned to the
problem of more carefully analyzing quantities such as Equation (4.2), this time
for functions f with small low-degree influences. This is where the very powerful
Theorems 2.5.1 and 2.5.2 come into play, as these give exactly this type of bounds.
Recall the special case of noise correlation 〈f, f〉N called noise stability, Sρ(f),
mentioned in Section 2.4. For the particular test in question, Theorem 2.5.2 gives
that the probability that the test accepts is bounded by (ignoring an additive ε)

1− Sρ(f)
2

≤ 1− E[f ]− 2Γρ(E[f ],E[f ]),

where ρ = −4/5 (this can be verified using Proposition 2.2.8). Furthermore, sup-
pose we enforce f to be balanced by using folding, so that E[f ] = 0. Then,
we get that the soundness of the test is 1 − 2Γ−4/5(0, 0), which turns out to



50 CHAPTER 4. HARDNESS BY TESTING DICTATORS

be around 0.7952, meaning that we can get (0.7952, 0.9000)-UG-hardness for the
Max 2-Xor problem, and in particular that Max 2-Xor is hard to approximate
within ≈ 0.7952/0.9 ≈ 0.8835, which comes very close to matching the ratio of
≈ 0.8785 of the classic Goemans-Williamson algorithm [42]. This concluding dis-
cussion can be viewed as a teaser for Chapter 6, which consists of a more general
hardness result in this flavor.



Chapter 5

Constraints on Many Variables

In this chapter, we study the approximability of constraint satisfaction problems
on k-ary constraints, in particular the Max k-CSPq and Max CSP(P ) problems
for objective functions P : [q]k → [0, 1].

Let us start with considering the case when q = 2, i.e., the case of boolean
variables. A particularly simple approximation algorithm is the algorithm which
simply picks a random assignment to the variables. For Max k-CSP, this algorithm
has a ratio of 1/2k. It was first improved by Trevisan [101] who gave an algorithm
with ratio 2/2k. Recently, Hast [52] gave an algorithm with ratio Ω(k/(2k log k)),
which was subsequently improved by Charikar et al. [21] who gave an algorithm
with approximation ratio c · k/2k, where c > 0.44 is an absolute constant.

The PCP Theorem implies that the Max k-CSP problem is NP-hard to ap-
proximate within 1/ck for some constant c > 1. Samorodnitsky and Trevisan [93]
improved this hardness to 22

√
k/2k, and this was further improved to 2

√
2k/2k by

Engebretsen and Holmerin [31]. Finally, Samorodnitsky and Trevisan [94] proved
that if the Unique Games Conjecture is true, then the Max k-CSP problem is
hard to approximate within 2k/2k. To be more precise, the hardness they obtained
was 2�log2 k+1�/2k (note that the numerator is simply k+1 rounded up to the next
power of two), which is (k + 1)/2k for k = 2r − 1, but can be as large as 2k/2k for
general k. Thus, the current gap between hardness and approximability is a small
constant factor of 2/0.44.

For Max k-CSPq, the random assignment gives a 1/qk-approximation. The
algorithm of Charikar et al. for q = 2 can be used to obtain a 0.44k'log2 q(/qk-
approximation for general q. The best previous inapproximability for the Max

k-CSPq problem is due to Engebretsen [30], who showed that the problem is NP-
hard to approximate within qO(

√
k)/qk.

For a predicate P : [q]k → {0, 1}, the random assignment algorithm achieves a
ratio of m/qk for the Max CSP(P ) problem, where m is the number of satisfying
assignments of P . Surprisingly, it turns out that for certain choices of P , this is the
best possible algorithm. As described in Section 4.6, Håstad [54] proved (among

51



52 CHAPTER 5. CONSTRAINTS ON MANY VARIABLES

other things) that the Max 3-Xor problem is hard to approximate within 1/2+ ε,
whereas a random assignment gives a factor 1/2.

In general, predicates P for which it is hard to approximate the Max CSP(P )
problem better than a random assignment are called approximation resistant. A
very natural and important question in hardness of approximation is to understand
the structure of approximation resistance. For k = 2, it is known that no predic-
ates are resistant [42, 55]. For k = 3 and q = 2, it is known that a predicate is
approximation resistant if and only if it is implied by an Xor of the three variables
[54, 106]. For k = 4 and q = 2, Hast [53] managed to classify most of the predicates
with respect to approximation resistance, but already for this case there does not
appear to be as nice a characterization as in the case k = 3.

A slightly stronger notion is that of hereditary approximation resistance—a pre-
dicate P is hereditarily approximation resistant if all predicates implied by P are
approximation resistant. It turns out that, assuming the Unique Games Conjec-
ture, most predicates are in fact hereditarily approximation resistant. In particular,
Håstad [56] showed that a random predicate on k boolean variables, with ≈ 2k/

√
k

satisfying assignments is hereditarily resistant with probability 1 − o(1) (hence a
random predicate with more than this many satisfying assignments is also resistant
with high probability). Thus, instead of attempting to understand the structure
of approximation resistant predicates (which by the work of [53] seems quite com-
plicated), one might try to understand the possibly easier structure of hereditary
approximation resistant predicates, as the non-hereditarily resistant predicates con-
stitute a negligible fraction of all predicates.

Additionally, approximation resistance is useful for proving inapproximability
results for Max k-CSPq in general—a natural approach for obtaining such inap-
proximability is to search for approximation resistant predicates with very few ac-
cepting inputs. This is indeed how all mentioned hardness results for Max k-CSPq

come about (except the one implied by the PCP Theorem).

In this chapter, we will describe a generic hardness result for objective functions
P : [q]k → [0, 1] on k variables over some domain [q]. Loosely speaking, the strength
of the result will be closely related to whether there exists a pairwise independent
distribution µ : [q]k → [0, 1] which “coincides” with the objective function. Here,
“coincides” means that most of the support of µ is on assignments x where P (x) is
large.

Our result implies a very general sufficient condition for a predicate P : [q]k →
{0, 1} to be hereditarily approximation resistant, and gives sharper hardness for
Max k-CSPq.

In addition, it can be used to obtain very strong bounds on the number of
approximation resistant predicates, significantly improving the previous bounds
[56]. This is discussed in Section 5.3.



5.1. HARDNESS FROM PAIRWISE INDEPENDENCE 53

5.1 Hardness from Pairwise Independence

The main theorem of this chapter is the following.

Theorem 5.1.1. Let P : [q]k → [0, 1] be an objective function, and let µ be a
balanced pairwise independent distribution over [q]k. Then, for every ε > 0, the
Max CSP(P) problem is (s+ ε, c− ε)-UG-hard, with

s = E
x∈([q]k,µU )

[P (x)]

c = E
x∈([q]k,µ)

[P (x)],

where µU denotes the uniform distribution over [q]k.

Before we prove this theorem, let us make some remarks.
Note that, for any instance of Max CSP(P ), a random assignment has expected

value s, and hence we can not hope to improve the s+ ε part of the (s+ ε, c− ε)-
hardness. Furthermore, since µ only shows up in the value of c in the conclusion of
the theorem, the theorem is at its strongest when we choose µ so as to maximize c,
i.e., so as to be as “contained” in P as possible. In other words, the theorem can
be equivalently restated as saying that Max CSP(P ) is (s+ ε, c− ε)-hard where

c = sup
µ balanced

pairwise independent

E
x∈([q]k,µ)

[P (x)].

The main application of this theorem is in the case where P : [q]k → {0, 1} is a
predicate such that P−1(1) ⊇ Supp(µ), i.e., when the set of satisfying assignments
completely contains the support of the pairwise independent distribution µ. In this
setting, we have c = 1, and conclude that Max CSP(P ) is (s + ε, 1− ε)-UG-hard
for every ε > 0. In other words, P is approximation resistant.

Proof of Theorem 5.1.1. As described in Chapter 4, we will, for every ε > 0 con-
struct a PCP verifier for L-Unique Label Cover which uses P as its acceptance
condition, has completeness c− ε and soundness s+ ε.

Let γ := γ(ε, k, q) > 0 be a parameter, which will be chosen as a small enough
function of ε, k, and q.

Given an L-Unique Label Cover instance Ψ = (X,Y,E,Π), a proof that
Opt(Ψ) ≥ 1 − γ consists of functions fw : [q]L → [q] for every w ∈ Y . In a proper
proof, fw = Dict$(w) is simply the dictator function corresponding to the label
of w, for some labeling � such that Val(�) ≥ 1 − γ. Furthermore, the verifier will
assume that each fw is balanced, i.e., that for each a ∈ [q], fw(x) = a for exactly
qn−1 inputs x. As described in Section 4.4, it can be enforced by folding.

Define the probability distribution µ′ on [q]k by µ′ = (1− ε
2 )µ(x) +

ε
2µU (x). A

supposed proof Σ = {fw}w∈Y is verified as follows.



54 CHAPTER 5. CONSTRAINTS ON MANY VARIABLES

Algorithm 1: The verifier V
V(Ψ, Σ = {fw}w∈Y )
(1) Pick a vertex v ∈ X uniformly at random
(2) Let X be a random k × L matrix s.t. the distribution of the

ith column of X is µ′, independently of the other columns
(3) foreach i ∈ [k]
(4) Pick ei = {vi, wi} with permutation πi uniformly at ran-

dom from E(v)
(5) Let ai = fwi(Xi ◦ π−1

i )
(6) Accept with probability P (a1, . . . , ak)

We now need to prove that the completeness and soundness of this PCP verifier
is at least c− ε and at most s+ ε, respectively. Let us begin with the completeness.

Lemma 5.1.2 (Completeness). If Opt(Ψ) ≥ 1−γ, then there exists a proof Σ such
that

Pr[V(Ψ,Σ) accepts] ≥ c− ε,

provided γ ≤ ε/(2k).

Proof. Let � : X ∪ Y → [L] be a labeling of Ψ such that Val(�) ≥ 1− γ, and define
a proof Σ by letting fw = Dict$(v) for every w ∈ Y .

First, assume that all the k edges e1, . . . , ek chosen by V are satisfied by �. For
i ∈ [k], define hi(x) = fwi(x ◦ π−1

i ). Then, for each i,

hi = Dictπ−1
i ($(wi))

= Dict$(v),

the second inequality using the assumption that ei is satisfied by �. This implies
that since ai = hi(Xi), (a1, . . . , ak) is simply the �(v)th column of X , which in turn
has distribution µ′. Hence the probability that V accepts in this case is exactly

Pr
x∈([q]k,µ′)

[P (x)] ≥ (1 − ε/2) Pr
x∈([q]k,µ)

[P (x)] ≥ c− ε/2.

Finally, since Val(�) ≥ 1 − γ, each ei has probability at most γ of not being
satisfied by � and so by a union bound, the probability that all the k edges e1, . . . , ek
are satisfied by � is at least 1− kγ ≥ 1− ε/2. Hence, the overall accept probability
of V(Ψ,Σ) can be lower-bounded by

(1− ε/2)(c− ε/2) ≥ c− ε.

Let us then move to the soundness of V .



5.1. HARDNESS FROM PAIRWISE INDEPENDENCE 55

Lemma 5.1.3 (Soundness). There is a function γ := γ(ε, k, q), such that if Opt(Ψ) ≤
γ, then for every proof Σ,

Pr[V(Ψ,Σ) accepts] ≤ s+ ε,

Proof. For an arbitrary v ∈ X , let pv denote the probability of V(Ψ,Σ) accepting
conditioned on v being the vertex chosen in line (1) of V .

Assume for contradiction that V(Ψ,Σ) accepts with probability larger than s+ε.
Then, there is a set V ⊆ X of relative size at least ε/2 such that for every v ∈ V ,
pv ≥ s+ ε/2.

Consider now an arbitrary v ∈ V . Since

pv =
∑
y∈[q]k

P (y) Pr[a1 = y1 ∧ a2 = y2 . . . ∧ ak = yk|v]

> s+ ε/2 =
∑
y∈[q]k

P (y)
qk

+ ε/2,

and 0 ≤ P (y) ≤ 1 for every y, there must be some y∗ ∈ [q]k such that

Pr[a1 = y∗1 ∧ a2 = y∗2 . . . ∧ ak = y∗k|v] >
1 + ε/2

qk
.

For an edge e = (v, w) ∈ E(v) and z ∈ [q], define the indicator function ge,z :
[q]L → {0, 1} by

ge,z(x) =
{

1 if fw(x ◦ π−1
e ) = z

0 otherwise .

Then,

Pr[a1 = y∗1 ∧ a2 = y∗2 . . . ∧ ak = y∗k|v] = E
X,e1,...,ek

[
k∏
i=1

gei,y∗
i

]

= E
X

[
k∏
i=1

E
e∈E(v)

[ge,y∗
i
(Xi)]

]
,

where we used the independence of e1, . . . , ek. Defining gz : [q]L → [0, 1] by gz(x) =
Ee∈E(v)[ge,z(x)], we thus have

〈
gy∗

1
, . . . , gy∗

k

〉
N

= E
X

[
k∏
i=1

gy∗
i
(Xi)

]
>

1 + ε/2
qk

.

Now, note that, since µ′ is balanced, and fw is balanced for every w ∈ Y , we have
E[gz] = E[ge,z] = 1/q for every e ∈ E(v) and z ∈ [q]. Hence, the equation above
can be reformulated as 〈

gy∗
1
, . . . , gy∗

k

〉
N

>

k∏
i=1

E[gy∗
i
] +

ε

2qk
.



56 CHAPTER 5. CONSTRAINTS ON MANY VARIABLES

It is easily checked that µ′ satisfies the conditions of Theorem 2.5.1, and hence there
exist τ and d depending only on ε, q and k such that, for some i ∈ [k] we have

Inf≤di (gy∗
i
) ≥ τ. (5.1)

Furthermore, since

Inf≤di (gy∗
i
) =

∑
i∈σ
|σ|≤d

ĝy∗
i
(σ)2 =

∑
i∈σ
|σ|≤d

E
e∈E(v)

[ĝe,y∗
i
(σ)]2

≤
∑
i∈σ
|σ|≤d

E
e∈E(v)

[ĝe,y∗
i
(σ)2] = E

e∈E(v)
[Inf≤di (ge,y∗

i
)], (5.2)

we must have that for at least a fraction τ/2 of all e ∈ E(v), Inf≤di (ge,y∗
i
) ≥ τ/2.

Recall that for e = (v, w), the function ge,y∗
i
is the indicator function 1fw=y∗

i
except

that the inputs are permuted according to π−1,

ge,y∗
i
(x) = 1fw=a(x ◦ π−1

i ).

Hence for at least a τ/2 fraction of all edges e = (v, w) ∈ E(v), we have

Inf≤dπ(i)(1fw=y∗
i
) = Inf≤di (ge,y∗

i
) ≥ τ/2. (5.3)

Now we can define small sets of candidate labels for each vertex v ∈ X ∪ Y . For
v ∈ X , set

C(v) = { i ∈ [L] : Inf≤di (gv,a) ≥ τ for some a ∈ [q] },
and for w ∈ Y , set

C(w) = { i ∈ [L] : Inf≤di (1fw=a) ≥ τ/2 for some a ∈ [q] }.

Note that by Proposition 2.3.12 we have that |C(v)| ≤ dq
τ , and that |C(w)| ≤ 2dq

τ .
Now define a random labeling � : X ∪ Y → [L] of Ψ by letting, for each v ∈ X ∪ Y ,
�(v) be a uniformly random element of C(v) (or an arbitrary element of [L] in case
C(v) is empty).

Then, for every v ∈ V , by Equation (5.1), C(v) is non-empty and hence by
Equation (5.3) there is some i ∈ C(v) such that, for at least a τ/2 fraction of all
e = (v, w) ∈ E(v), we also have π(i) ∈ C(w). Any such edge has a probability at
least

(|C(v)| · |C(w)|)−1 ≥ τ2

2d2q2

of being satisfied by �, and these edges constitute a total fraction of ετ
4 of all edges

of Ψ. Thus

E[Val(�)] ≥ ετ3

8d2q2
=: γ(ε, k, q)

(recall that τ and d depend only on ε, k, and q). This concludes the proof of the
soundness lemma.



5.2. IMPLICATIONS FOR MAX K-CSPQ 57

Finally, the proof of Theorem 5.1.1 follows immediately from Lemma 5.1.2 and
Lemma 5.1.3.

5.2 Implications for Max k-CSPq

In light of Theorem 5.1.1, a natural way of trying to obtain strong inapproximability
results for Max k-CSPq is to construct pairwise independent distributions over [q]k
with small support. We have the following easy corollary of Theorem 5.1.1.

Corollary 5.2.1. Let µ be a balanced pairwise independent distribution over [q]k,
and let t = | Supp(µ)|. Then for every ε > 0, the Max k-CSPq problem is (t/qk +
ε, 1− ε)-UG-hard.

In particular the predicate P defined by P−1(1) = Supp(µ) is (t/qk + ε, 1 −
ε)-UG-hard. Using the constructions of pairwise independent distributions from
Section 3.5, this gives the following theorems.

Theorem 5.2.2. For every ε > 0, the Max k-CSP problem is UG-hard to approx-
imate within a factor

k +O(k0.525)
2k

+ ε.

If the Hadamard Conjecture is true, then for every ε > 0 the Max k-CSP problem
is UG-hard to approximate within a factor

4�(k + 1)/4 
2k

+ ε ≤ k + 4
2k

+ ε.

We remark that the predicates of Samorodnitsky and Trevisan [94] can be ob-
tained as a special case of this result when one constructs a pairwise independent
distribution from a Hadamard matrix of dimension 2l × 2l. We would also like to
stress that, while the factor 2 improvement from 2�log2 k+1�/2k to 4�(k + 1)/4 /2k
may not seem huge, it is interesting because of the fact that 4�(k + 1)/4 is al-
most the optimal possible value. In particular, Hast [53] showed that any predicate
with fewer than 2�(k+1)/2 accepting assignments is not approximation resistant.
Hence, for k ≡ 2, 3 (mod 4), our result is exactly tight, and for k ≡ 0, 1 (mod 4),
the number of accepting assignments in our predicates is off by an additive error of
2.

For large q, we first have the following result.

Theorem 5.2.3. For every prime power q and ε > 0, the Max k-CSPq problem
is UG-hard to approximate within a factor

kq(q − 1)
qk

+ ε.



58 CHAPTER 5. CONSTRAINTS ON MANY VARIABLES

If k = (qr − 1)/(q− 1) for some r > 1, then the Max k-CSPq problem is UG-hard
to approximate within a factor

k(q − 1) + 1
qk

+ ε.

By a nice observation due to Yury Makarychev, Theorem 5.2.3 also extends to
the case when q is not a prime power with a very small additional loss.

Theorem 5.2.4. For every q ≥ 2 and ε > 0, the Max k-CSPq problem is UG-hard
to approximate within a factor

kq2(1 + o(1))
qk

+ ε.

See Appendix B of [9] for further details.

5.3 Sharper Bounds for Random Predicates

The characterization of approximation resistance in terms of pairwise independence
is useful not only for deriving stronger hardness for Max k-CSPq—it also gives very
strong estimates on the number of resistant predicates.

In particular, fix a number 0 ≤ t ≤ qk, and consider the set of all predicates
P : [q]k → {0, 1} with exactly t satisfying assignments. How many of these are
approximation resistant? Let us normalize, and instead ask: what is the probability
p(t) that a random predicate with t accepting assignments is UG-approximation
resistant?

In light of approximation resistance almost always being hereditary, it seems
natural to believe that p(t) should be an increasing function: if a large part of the
p(t) fraction of resistant predicates with t accepting assignments are hereditarily
resistant, then these will contribute a lot to p(t+ 1).

For q a prime power, Theorem 5.2.3 shows that there is a constant c := q2

such that if t ≥ c · k, we have p(t) > 0. For q = 2, Theorem 5.2.4 shows that
assuming the Hadamard Conjecture, if t ≥ 4�(k + 1)/4 , we have p(t) > 0. As
mentioned in the previous section, this is close to optimal, as Hast proved that
for t < 2�(k + 1)/2 , p(t) = 0 (strictly speaking, with p(t) defined as above, this
assumes that the Unique Games Conjecture is true, since if it is false it vacuously
implies that every predicate is UG-approximation resistant, i.e., that p(t) = 1).

Let us now ask: how large does t have to be in order to have p(t) > 1 − o(1)?
The first answer to this question was given by Håstad [56], who proved that for
q = 2, it suffices to take t > 2k/kc, where c ∈ [1/2, 1] is a constant the exact
value of which depends on how close k is to a power of 2. Håstad proves that
with high probability, such a predicate is implied by the predicates constructed by
Samorodnitsky and Trevisan [94]. Furthermore, he proves that this bound on t is
essentially optimal in the sense that predicates having fewer satisfying assignments



5.3. SHARPER BOUNDS FOR RANDOM PREDICATES 59

are very unlikely to be implied by the predicates of Samorodnitsky and Trevisan.
As our results for boolean predicates are only up to a factor 2 better than those
of Samorodnitsky and Trevisan, it is very unclear whether they can be used to
improve this bound. However, an immediate corollary of the results of Chapter 8,
in particular of Theorem 8.4.1, we have the following dramatic improvement.

Theorem 5.3.1. For every q there exists a c such that if t > ck2, then

p(t) > 1− exp(−Θ(
√
k)),

where p(t) is the fraction of predicates P : [q]k → {0, 1} with t accepting inputs
which are approximation resistant under the UGC.

Finally, let us ask how large t has to be in order to actually have p(t) = 1. As
far as we are aware, the first such result was given by Hast [53] for the case q = 2,
who proved that it suffices to take t > 2k(1−2−

√
k) (this result is NP-hardness, not

UG-hardness). This was improved by Håstad [56], who proved that one can take
t > 2k

(
1− 1

2k

)
. Again using the results of Chapter 8, this time Corollary 8.3.2,

we improve this and show that a sufficiently large constant fraction of satisfying
assignments suffices.

Theorem 5.3.2. For every q there exists a δ such that if t > (1 − δ)qk, then
p(t) = 1, where p(t) is the fraction of predicates P : [q]k → {0, 1} with t accepting
inputs which are approximation resistant under the UGC.

We remark that the constants c and δ in Theorem 5.3.1 and Theorem 5.3.2 can
both be taken as polynomials in q. In the case of Theorem 5.3.1 this is particularly
interesting, because for q not a prime power we do not know of explicit constructions
achieving this bound.





Chapter 6

Constraints on Two Variables

In this chapter, we describe algorithms and hardness results for Max CSP(P )
problems where P : {−1, 1}2 → [0, 1] is an objective function on two boolean
variables. This class of CSPs contains such fundamental problems as Max Cut

and Max 2-Sat. As opposed to the CSP problems considered in the previous
chapter, these are problems in which there are algorithms achieving approximation
ratios better than the random assignment, and the amount of work needed to obtain
sharp results is significantly greater than in the previous chapter.

For the general Max 2-CSP problem, the random assignment algorithm achieves
an approximation ratio of 1/4. For the special cases of Max Cut and Max 2-Sat,
it achieves ratios of 1/2 and 3/4, respectively. For several decades, no substan-
tial improvements were made over these results until a seminal paper by Goemans
and Williamson [42], where they constructed a 0.7960-approximation algorithm for
Max 2-CSP, and 0.87856-approximation algorithms for Max Cut and Max 2-

Sat. To do so, they relaxed the combinatorial problem at hand to a semidefinite
programming problem, to which an optimal solution can be found with high pre-
cision, and then used a very clever technique to “round” the solution of the semi-
definite programming back to a discrete solution for the original problem. This
approach has since been successfully applied to several other hard combinatorial
optimization problems, yielding significant improvements over existing approxima-
tion algorithms. Examples include coloring graphs using as few colors as possible
[61, 15, 51, 3], Max Bisection [38] and quadratic programming over the boolean
hypercube [22].

Some of the results by Goemans and Williamson were subsequently improved
by Feige and Goemans [33], who strengthened the semidefinite relaxation using
certain triangle inequalities [42]. They obtained a 0.931-approximation for Max

2-Sat, and a 0.859-approximation for Max 2-CSP. These results were further
improved by Matuura and Matsui [76, 77], who obtained a 0.935-approximation
for Max 2-Sat and a 0.863-approximation for Max 2-CSP. Shortly thereafter,
Lewin et al. [71] obtained further improvements, getting a 0.94017-approximation

61



62 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

algorithm for Max 2-Sat and a 0.87401-approximation algorithm for Max 2-CSP,
and these stand as the current best algorithms. It should be pointed out that these
last two ratios arise as the minima of two complex numeric optimization problems,
and it has not yet been proved formally that these are the actual ratios, though
there seems to be very little doubt that this is indeed the case.

When it comes to inapproximability, the best NP-hardness results for these
problems are obtained using Håstad’s famous results for 3-CSPs [54]. The best NP-
hardness results for Max 2-CSP, Max 2-Sat, and Max Cut are 9/10+ε ≈ 0.900,
21/22 + ε ≈ 0.955, and 16/17 + ε ≈ 0.941, respectively [103, 54]. Unfortunately,
getting improved NP-hardness results for these problems seems to be beyond the
reach of current techniques.

However, it again turns out that under the Unique Games Conjecture, one can
prove remarkably strong results. Khot et al. [63] showed that the UGC implies
αGW + ε hardness for Max Cut, where αGW ≈ 0.87856 is the performance ratio
of the original Goemans-Williamson algorithm. Since then, many hardness results
have been obtained with hardness ratio matching, or almost matching, the approx-
imation ratio given by the best algorithms based on semidefinite programming.
This chapter gives such hardness results for 2-CSP problems. Subsequent to our
work, Raghavendra [87] obtained a much more general result applying to k-CSPs
over any domain. We discuss this result in Section 6.8.

6.1 Our Contribution

We investigate the approximability of the Max CSP(P ) problem and explore
the tight connection between semidefinite programming relaxations and the UGC.
Following the paradigm introduced by Goemans and Williamson, we relax the
Max CSP(P ) problem to a semidefinite programming problem. We then consider
the following approach for rounding the relaxed solution to a boolean solution:
given the SDP solution, we pick the “best” rounding from a certain class of ran-
domized rounding methods (based on skewed random hyperplanes), where “best” is
in the sense of giving a boolean assignment with maximum possible expected value.
Informally, let α(P ) denote the approximation ratio yielded by such an approach.
We then have the following theorem.

Theorem 6.1.1. For any objective function P : {−1, 1}2 → [0, 1] and ε > 0,
Max CSP(P ) problem can be approximated within α(P )− ε in polynomial time.

The reason that we lose an additive ε is that we are not, in general, able to find
the best rounding function, but we can come arbitrarily close.

Then, we turn our attention to hardness of approximation. Here, we are able
to take instances which are hard to round, in the sense that the best rounding (as
described above) is not very good, and translate them into a Unique Games-based
hardness result. There is, however, a caveat: in order for the analysis to work,
the instance needs to satisfy a certain “positivity” condition. Again, informally, let



6.1. OUR CONTRIBUTION 63

β(P ) denote the approximation ratio when restricted to instances satisfying this
condition. We then have:

Theorem 6.1.2. For any objective function P : {−1, 1}2 → [0, 1] and ε > 0, the
Max CSP(P ) problem is UG-hard to approximate within β(P ) + ε.

Both α(P ) and β(P ) are the solutions to a certain numeric minimization prob-
lem. The function being minimized is the same function in both cases, the only
difference is that in α(P ), the minimization is over a larger domain, and thus, we
could potentially have α(P ) < β(P ). However, there are strong indications that
the minimum for α(P ) is in fact obtained within the domain of β(P ), in which case
they would be equal and Theorems 6.1.1 and 6.1.2 would be tight.

Conjecture 6.1.3. For any objective function P : {−1, 1}2 → [0, 1], we have
α(P ) = β(P ).

Because of the difficulty of actually computing the approximation ratios α(P )
and β(P ), it may seem somewhat difficult to compare these results to previous res-
ults. However, previous algorithms and hardness results for Max Cut, Max 2-Sat,
and Max 2-CSP can all be obtained as special cases of Theorems 6.1.1 and 6.1.2.
In particular, for P (x1, x2) = x1 ⊕ x2, the Xor predicate, it can be shown that
α(P ) = β(P ) = αGW .

We are also able to use Theorem 6.1.2 to obtain new inapproximability results
for specific problems. In particular, we obtain improved hardness for the Max

2-Sat and Max 2-And problems. For Max 2-Sat, Khot et al. [63] proved UG-
hardness of ≈ 0.9439, almost matching the ratio αLLZ ≈ 0.94017 of the algorithm
of Lewin et al. Furthermore, their hardness was for balanced Max 2-Sat, which
is the special case when every variable occurs positively and negatively equally
often, and they also proved that for balanced Max 2-Sat their result was tight,
by giving a matching algorithm. It is natural to conjecture, especially considering
these results, that balanced instances should be the hardest (and indeed, Khot et
al. [63] do that). However, as we prove, the algorithm of Lewin et al. is in fact
optimal if the UGC is true.

Theorem 6.1.4. For the predicate P (x1, x2) = x1 ∨ x2, we have β(P ) ≤ αLLZ ≈
0.94017.

For Max 2-And, there was a similar state of affairs. Khot et al. [63] proved
hardness of αGW + ε, where αGW ≈ 0.87865 is the approximation ratio of the
Goemans-Williamson Max Cut algorithm, again for the special case of balanced
Max 2-And and again with a matching algorithm for balanced Max 2-And. This
comes quite close to matching the approximation ratio of 0.87401 of Lewin et al.
We improve the inapproximability for Max 2-And and demonstrate that, assume
the UGC, the algorithm of Lewin et al. is very close to being optimal.

Theorem 6.1.5. For the predicate P (x1, x2) = x1 ∧ x2, we have β(P ) ≤ 0.87435.



64 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

This comes very close to matching the 0.87401-approximation algorithm of
Lewin et al. It also again demonstrates that balanced instances are not the hardest
to approximate.

It also implies improved hardness for the Max 2-CSP problem—as is well-
known, the Max k-CSP problem and the Max k-And problem are equally hard
to approximate for every k (folklore, or see e.g. [101]). This demonstrates that the
Max 2-CSP problem is harder to approximate than Max Cut, i.e., that Max

Cut is not the hardest 2-CSP, which was not known prior to our work. The best
approximation algorithm for Max 2-CSP is the 0.87401-approximation algorithm
for Max 2-And, and the previous best hardness for Max 2-CSP was the hardness
of αGW ≈ 0.87865 of Khot et al. [63].

Finally, as a by-product of our results, we obtain some insight regarding the pos-
sibilities of obtaining improved results by strengthening the semidefinite program
with more constraints. Traditionally, the only constraints which have been useful
in the design of Max 2-CSP algorithms are triangle inequalities of a certain form
(namely, those involving the vector v0, coding the value false). It turns out that,
for very natural reasons, these are exactly the inequalities that need to be satisfied
in order for the hardness result to carry through. In other words, assuming that
Conjecture 6.1.3 is true, it is UG-hard to do better than what can be achieved by
adding only these triangle inequalities, and thus, it is unlikely that improvements
can be made by adding additional inequalities (while still using polynomial time).

6.2 Semidefinite Relaxation

Any P : {−1, 1}2 → [0, 1] can be arithmetized as

P (x1, x2) = P̂0 + P̂1x1 + P̂2x2 + P̂3x1x2,

for some coefficients P̂0, P̂1, P̂2 and P̂3. Throughout the remaining part of this
chapter, we fix some arbitrary objective function P and its corresponding coeffi-
cients P̂0 . . . P̂3. Throughout this section and the next, there will be many inner
products 〈·, ·〉

R
, and we drop the subscript R for ease of presentation.

Hence, the Max CSP(P ) problem can be reformulated as the following integer
quadratic programming problem

Maximize Val(x) =
∑

ψ=(s1xi,s2xj)
wt(ψ)

(
P̂0 + P̂1s1xi + P̂2s2xj + P̂3s1s2xixj

)
Subject to xi ∈ {−1, 1} ∀i.

Here the sum over ψ = (s1xi, s2xj) is the summation over all constraints, and
the signs s1, s2 ∈ {−1, 1} indicates whether the variables xi or xj are negated.

One approach to solving integer quadratic programming problems which has
turned out to be remarkably successful over the years is to relax the original prob-
lem to a semidefinite programming problem. This approach was first used in the



6.2. SEMIDEFINITE RELAXATION 65

seminal paper by Goemans and Williamson [42] where they gave the first approxim-
ation algorithms for Max Cut, Max 2-Sat, and Max Di-Cut with a non-trivial
approximation ratio (ignoring lower order terms).

For solving integer quadratic programming over the hypercube, where each vari-
able is restricted to ±1, the standard approach is to first homogenize the program
by introducing a variable x0 which is supposed to represent the value false and then
replace each term xi by x0xi. We then relax each variable xi ∈ {−1, 1} = S0 to
a vector vi ∈ Sn (i.e. a unit vector in Rn+1), so that each term xixj becomes the
scalar product 〈vi, vj〉.

In addition, we add the following inequality constraints to the program for all
triples of vectors vi, vj , vk.

〈vi, vj〉+ 〈vj , vk〉+ 〈vi, vk〉 ≥ −1 −〈vi, vj〉+ 〈vj , vk〉 − 〈vi, vk〉 ≥ −1 (6.1)
〈vi, vj〉 − 〈vj , vk〉 − 〈vi, vk〉 ≥ −1 −〈vi, vj〉 − 〈vj , vk〉+ 〈vi, vk〉 ≥ −1 (6.2)

These are equivalent to triangle inequalities of the form ||vi − vj ||2 + ||vj − vk||2 ≥
||vi − vk||2, which clearly hold for the case that all vectors lie in a one-dimensional
subspace of Rn (so this is still a relaxation of the original integer program), but is
not necessarily true otherwise. There are of course many other valid inequalities
which could also be added, considering k-tuples of variables rather than just triples.
In particular, adding all valid constraints makes the optimum for the semidefin-
ite program equal the discrete optimum (but there are an exponential number of
constraints to consider).

The process of adding new constraints to LP or SDP relaxations of an integer
programming problem is systematized by so-called hierarchies. The three most well-
known such hierarchies are the Lovász-Schrĳver hierarchy [73], the Sherali-Adams
hierarchy [98], and the Lasserre hierarchy [70]. In general, these share the following
features: the first level of the hierarchy is the “basic” SDP relaxation, and the rth
level of the hierarchy is constructed from the (r − 1)th by adding new constraints
which have to be satisfied by any integral solution, in a certain systematic way.
The SDP at the rth level of the hierarchy can be solved in time nO(r), and any
feasible solution at the nth level of the hierarchy is a convex combination of integral
solutions.

While initially seeming like a powerful method for obtaining better approxim-
ation algorithms, results which make use of the higher levels of these hierarchies
have been scarce, whereas there have been several results exhibiting cases where
they do not help, e.g. [96, 41, 95]. In fact, the only result we are aware of which
goes beyond the third level of any hierarchy is a very recent result by Chlamtac and
Singh [24] for finding independent sets in hypergraphs, using the Lasserre hierarchy.

In particular, the only inequalities which have been used when analyzing the
performance of approximation algorithms for 2-CSP problems are those of the tri-
angle inequalities which involve the vector v0. The results of this chapter shed some
light on why this is the case—these are exactly the inequalities we need in order for
the hardness of approximation to work out. Thus, assuming Conjecture 6.1.3 and



66 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

the Unique Games Conjecture, it is unlikely that adding other valid inequalities
(while still being able to solve the SDP in polynomial time) will help achieve a
better approximation ratio, as that would imply P = NP. This is supported by the
subsequent work of Raghavendra [87]. See Section 6.8 for details.

In general, we cannot find the exact optimum of a semidefinite program. It
is however possible to find the optimum to within an additive error of ε in time
polynomial in log 1/ε [1]. As is standard (see e.g. [42, 83]), we ignore this small
point for notational convenience and assume that we can solve the semidefinite
program exactly.

Given a vector solution {vi}ni=0, the relaxed value of a constraint ψ ∈ Ψ depends
only on the three (possibly negated) scalar products 〈v0, vi〉, 〈v0, vj〉, and vi · vj ,
where xi and xj are the two variables occurring in ψ. Most of the time, we do
not care about the actual vectors, but are only interested in these triples of scalar
products.

Definition 6.2.1. A scalar product configuration θ, or just a configuration for
short, is a triple of real numbers (ξ1, ξ2, ρ) satisfying

ξ1 + ξ2 + ρ ≥ −1
ξ1 − ξ2 − ρ ≥ −1

−ξ1 + ξ2 − ρ ≥ −1
−ξ1 − ξ2 + ρ ≥ −1. (6.3)

A family of configurations Θ is a probability space (X, η), where X = {θ1, . . . , θk}
is a set of configurations and η is a probability distribution over X . We routinely
abuse notation by identifying Θ both with the set X and the probability space
(X, η).

A configuration can be viewed as representing three vectors v0, v1, v2, where
〈v0, vi〉 = ξi, and 〈v1, v2〉 = ρ. Note that the inequalities in Equation (6.3) then cor-
respond exactly to those of the triangle inequalities (6.1) which involve v0. Jumping
ahead of ourselves, the important feature of these inequalities is that they precisely
guarantee that Table 2.2 gives a valid probability distribution, which will be exactly
what is needed in the hardness result in Section 6.4. It can also be shown that these
inequalities ensure the existence of vectors v0, v1, v2 with the corresponding scalar
products.

Definition 6.2.2. The relaxed value of a configuration θ = (ξ1, ξ2, ρ) is given by

Prelax(θ) = Prelax(ξ1, ξ2, ρ) = P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ.

We denote by

v|ψ = (s1 〈v0, vi〉 , s2 〈v0, vj〉 , s1s2 〈vi, vj〉)

the configuration arising from the clause ψ = (s1xi, s2xj) for the vector solution
v = {vi}ni=0. The relaxed value of the clause ψ is then simply given by Prelax(v|ψ).



6.2. SEMIDEFINITE RELAXATION 67

Often we view a solution {vi}ni=0 to the SDP as just the family of configurations
Θ = { v|ψ : ψ ∈ Ψ } with the probability distribution where Prθ∈Θ[θ = v|ψ ] =
wt(ψ). The relaxed value of an assignment of vectors {vi}ni=0 is then given by

SDPValΨ({vi}) =
∑
ψ∈Ψ

wt(ψ)Prelax(v|ψ) = E
θ∈Θ

[Prelax(θ)].

Given a vector solution {vi}, one natural attempt at an approximation algorithm
is to set xi to be true with probability 1−ξi

2 (where ξi = 〈v0, vi〉), independently—
the intuition being that the linear term ξi gives an indication of “how true” xi
should be. This assignment has the same expected value on the linear terms as the
vector solution, and the expected value of a quadratic term xixj is ξiξj . However,
typically there is some correlation between the vectors vi and vj , so that the scalar
product 〈vi, vj〉 contributes more than ξiξj to the objective function. To quantify
this, write the vector vi as

vi = ξiv0 +
√
1− ξ2i ṽi,

where ξi = 〈v0, vi〉, and ṽi is the part of vi orthogonal to v0, normalized to a unit
vector (if ξi = ±1, we define ṽi to be a unit vector orthogonal to all other vectors
vj). Then, we can rewrite the quadratic term 〈vi, vj〉 as

〈vi, vj〉 = ξiξj +
√
1− ξ2i

√
1− ξ2j 〈ṽi, ṽj〉 .

As it turns out, the relevant parameter when analyzing the quadratic terms is the
scalar product 〈ṽi, ṽj〉, i.e. the difference between the value corresponding to xixj
in the SDP compared to the expected value of xixj in the independent round-
ing (scaled by an appropriate factor). Motivated by this, we make the following
definition.

Definition 6.2.3. The inner angle ρ̃(θ) of a configuration θ = (ξ1, ξ2, ρ) is

ρ̃(θ) =
ρ− ξ1ξ2√

1− ξ21
√
1− ξ22

.

In the case that ξ1 = ±1 or ξ2 = ±1, we define ρ̃(θ) = 0.

Note that, in the notation above, the advantage is exactly the scalar product
〈ṽi, ṽj〉. We are now ready to define the “positivity condition”, alluded to in
Section 6.1.

Definition 6.2.4. A configuration θ = (ξ1, ξ2, ρ) is positive if P̂3 · ρ̃(θ) ≥ 0.

Intuitively, positive configurations should be more difficult to handle, since they
are the configurations where we need to do something better than just setting the
variables independently in order to get a good approximation ratio.



68 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

What Goemans and Williamson [42] do to round the vectors back to boolean
variables is to pick a random hyperplane through the origin, and decide the value of
the variables based on whether their vectors are on the same side of the hyperplane
as v0 or not. Feige and Goemans [33] suggested several generalizations of this
approach, using preprocessing (e.g. first rotating the vectors) and/or more elaborate
choices of hyperplanes. In particular, consider a rounding scheme where we pick a
random vector r ∈ Rn+1 and then set the variable xi to true if

〈r, ṽi〉 ≤ T (〈v0, vi〉) (6.4)

for some threshold function T : [−1, 1] → R. This particular scheme (and more gen-
eral ones) was first analyzed by Lewin et al. [71]. A very similar family of schemes,
called RPR2 roundings (short for Random Projection Randomized Rounding), was
earlier analyzed by Feige and Langberg [35]. In an RPR2 rounding, a variable xi
is set to true with probability f(〈r, vi〉) for some function f : R → [0, 1]. In [83],
RPR2 roundings were shown to give optimal results for Max Cut (see Section 6.8
for further details). The crucial difference between RPR2 and the rounding in
Equation (6.4) is that Equation (6.4) gives the direction v0 a special treatment,
quite different from how the other directions are handled, which in turn means
that the linear terms 〈v0, vi〉 are handled very differently from the quadratic terms
〈vi, vj〉. In Max Cut, this is not relevant, as there are no linear terms that need
to be handled, but for a general 2-CSP, the scheme in Equation (6.4) appears more
useful than RPR2. On the flip side, the special treatment of v0 makes it more cum-
bersome to recover the Goemans-Williamson Max Cut algorithm (the rounding
of which can be viewed as a special case of RPR2)—see Section 6.5.1 for details.

To describe the performance ratio yielded by this scheme, we begin by setting
up some notation.

Definition 6.2.5. A rounding is a continuous function R : [−1, 1] → [−1, 1] which
is odd, i.e. satisfies R(ξ) = −R(−ξ). We denote by R the set of all such functions.

A rounding R is in one-to-one correspondence with a threshold function T as
described above by the simple relation R(x) = 1−2Φ(T (x)), where Φ is the normal
distribution function (it will turn out to be more convenient to describe the rounding
in terms of R rather than in terms of T ). The reason that we require a rounding
function to be odd is that a negated literal −xi should be treated the opposite way
as xi.

Definition 6.2.6. The rounded value of a configuration θ with respect to a round-
ing function R ∈ R is

Pround(θ,R) = Prelax

(
R(ξ1), R(ξ2), 4Γρ̃(θ)(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1

)
,

This seemingly arbitrary definition is motivated by the following lemma (which
essentially traces back to Lewin et al. [71], though they never made it explicit).



6.2. SEMIDEFINITE RELAXATION 69

Lemma 6.2.7. There is a polynomial-time algorithm which, given a Max CSP(P )
instance Ψ, a semidefinite solution {vi}ni=0 to Ψ, and a (polynomial-time comput-
able) rounding function R ∈ R, finds an assignment to Ψ with expected value

E
θ∈Θ

[Pround(θ,R)] ,

where Θ is the family of configurations corresponding to {vi}.
Proof. The algorithm works as described above: First, we pick a random normal
vector r ∈ Rn+1 (i.e. each coordinate of r is a standard normal random variable).
Then, we set the variable xi to true if

〈r, ṽi〉 ≤ T (〈v0, vi〉),

where we define the threshold function T as

T (x) = Φ−1

(
1−R(x)

2

)
.

To analyze the performance of this algorithm, we need to analyze the expected
values E[xi] and E[xixj ] (where the expectation is over the choice of random vector
r). Note that, by Fact 2.2.10, 〈ṽi, r〉 and 〈ṽj , r〉 are jointly normal variables with
variance 1 and covariance 〈ṽi, ṽj〉.

This means that xi is set to true with probability 1−R(ξi)
2 . Thus, we have that

the expected value E[xi] = R(ξi).
For the quadratic terms, we analyze the probability that two variables xi and

xj are rounded to the same value. The probability that both 〈r, ṽi〉 ≤ T (〈v0, vi〉)
and 〈r, ṽj〉 ≤ T (〈v0, vj〉) is given by Γρ̃(R(ξi), R(ξj)) where ρ̃ = ṽiṽj . By symmetry,
the probability that both xi and xj are set to false is Γρ̃(−R(ξi),−R(ξj)). Using
Proposition 3.6.1, the expected value of xixj is then given by

E[xixj ] = 2 (Γρ̃ (R(ξi), R(ξj)) + Γρ̃ (−R(ξi),−R(ξj)))− 1
= 4Γρ̃ (R(ξi), R(ξj)) +R(ξi) +R(ξj)− 1,

Thus, the expected value of the solution found (over the random choice of r) is
given by

E
(ξ1,ξ2,ρ)∈Θ

[
P̂0 + P̂1R(ξ1) + P̂2R(ξ2) + P̂3(4Γρ̃(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1)

]
= E

θ∈Θ
[Pround(θ,R)] ,

and we are done.

We remark that the rounding procedure used in the proof of Lemma 6.2.7 is
from the class of roundings Lewin et al. [71] called T HRESH−. The rounding
function R specifies an arbitrary rounding procedure from T HRESH−.1

1In the notation of [71], we have S(x) = T (x)
√

1 − x2, or equivalently, R(x) = 1 −
2Φ(S(x)/

√
1 − x2).



70 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

A statement similar to Lemma 6.2.7 holds for Max CSP
+(P ), the difference

being that, since there are no longer any negated literals, we can change the defin-
ition of a rounding function slightly and not require it to be odd (which could
potentially give us a better algorithm). Motivated by Lemma 6.2.7, we make the
following sequence of definitions

Definition 6.2.8. The approximation ratio of a rounding R for a family of config-
urations Θ is given by

αP (Θ, R) =
Eθ∈Θ [Pround(θ,R)]

Eθ∈Θ [Prelax(θ)]
.

If E[Prelax(θ)] = 0, we let αP (Θ, R) = ∞.

Definition 6.2.9. The approximation ratio of a family of configurations Θ is given
by

αP (Θ) = max
R∈R

αP (Θ, R).

It is not too hard to check that the max is attained by some R, so that the
use of max instead of sup is valid. For a fixed Θ, αP (Θ, R) depends only on the
value of R(ξ) for at most d = 2|Θ| different ξ and we can view supR αP (Θ, R) as
being a supremum over a subset of Rd which is easily verified to be compact and
convex. Furthermore, one can check that αP (Θ, R) is continuous in R and hence
the supremum is attained.

Definition 6.2.10. Recall the definition of positive configurations, Definition 6.2.4.
The approximation ratios of P for families of k configurations and families of k
positive configurations, respectively, are given by

αP (k) = min
|Θ|=k

αP (Θ), βP (k) = min
|Θ|=k

every θ ∈ Θ is positive

αP (Θ). (6.5)

As in Definition 6.2.9, it can be seen that the min is attained so that the use of
min instead of inf is valid: the set of all families of k configurations can be viewed
as a compact convex subset of [−1, 1]4k.

We would like to point out that we do not require that the family of configura-
tions Θ can be derived from an SDP solution to some Max CSP(P ) instanceΨ—we
only require that each configuration in Θ satisfies the inequalities in Equation (6.3).
In other words, we have a lot more freedom when searching for a Θ which makes
αP (k) or βP (k) small, than we would have when searching for Max CSP(P ) in-
stances and corresponding vector solutions. This is in fact the main strength of
our result compared to the in almost all other respects superior subsequent result
of Raghavendra [87]. We elaborate on this in Section 6.8.

Finally, we define

Definition 6.2.11. The α and β ratios of P are

α(P ) = lim
k→∞

αP (k), β(P ) = lim
k→∞

βP (k). (6.6)



6.3. A GENERIC ALGORITHM 71

It is not hard to see that the limits are indeed well-defined, since αP (k) and
βP (k) for increasing k form decreasing sequences in [0, 1]. The inequality αP (k +
1) ≤ αP (k) holds since any family on k configurations can be viewed as a family
on k+ 1 configurations in which we add an additional configuration which is given
probability 0, and similarly for βP (k).

These are the approximation ratios arising in Theorems 6.1.1 and 6.1.2. Ideally,
of course, we would like to prove hardness of approximating Max CSP(P ) within
α(P ) rather than β(P ), getting rid of the requirement that every θ ∈ Θ must be
positive. The reason that we need it shows up when we do the proof of soundness
for the PCP constructed in Section 6.4, and we have not been able to get around
this. However, as we state in Conjecture 6.1.3, we do not believe that this restriction
affects the approximation ratio achieved: by the intuition above, positive configur-
ations seem to be the ones that are hard to round, so restricting our attention to
such configurations ought not be a problem. And indeed, the configurations we use
to obtain our results for Max 2-Sat and Max 2-And are all positive, as are all
configurations which have appeared in previous proofs of hardness for 2-CSPs (e.g.
for Max Cut and the balanced versions of Max 2-Sat and Max 2-And).

6.3 A Generic Algorithm

The approximation algorithm for Max CSP(P ) (Theorem 6.1.1) is based on the
following theorem.

Theorem 6.3.1. For any ε > 0, the value of a Max CSP(P ) instance on k clauses
can be approximated within αP (k)− ε in time polynomial in k.

Note that this theorem immediately implies Theorem 6.1.1 since αP (k) ≥ α(P ).
We remark that the exact value of αP (k) is virtually impossible to compute for
large k, making it somewhat hard to compare Theorem 6.3.1 with existing results.
However, for Max Cut, Max 2-Sat and Max 2-And, it is not hard to prove that
α(P ) is at least the performance ratio of existing algorithms. See Section 6.5 for
details.

Proof. Let Ψ be a Max CSP(P ) instance and {vi}ni=0 be an optimal solution to
the semidefinite relaxation of Ψ. Note that, if we could find an optimal rounding
function R for Ψ, the theorem would follow immediately from Lemma 6.2.7 (and
we wouldn’t need the ε). However, since we can not in general hope to find an
optimal R, we’ll discretize the set of possible angles and find the best rounding for
the modified problem (for which there will be only a constant number of possible
solutions).

We will use the simple facts that we always have

Opt(Ψ) ≥ P̂0 ≥ max(|P̂1|, |P̂2|, |P̂3|)

(to see that the second inequality holds, note that otherwise there would be x1, x2
such that P (x1, x2) < 0).



72 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

Construct a new SDP solution {ui}ni=0 by letting u0 = v0, and, for each 1 ≤ i ≤
n, letting ui be the vector vi rotated towards or away from v0 so that 〈u0, ui〉 is
an integer multiple of ε′ (where ε′ will be chosen small enough). In particular, we
have | 〈u0, ui〉 − 〈v0, vi〉 | ≤ ε′/2. For the quadratic terms, Feige and Goemans [33]
proved that for i, j ≥ 1, we have

〈ui, uj〉 = ζiζj + ρ̃ij ·
√
1− ζ2i

√
1− ζ2j ,

where we define ζi := u0 · ui and ρ̃ij :=
〈vi,vj〉−ξiξj√
1−ξ2i

√
1−ξ2j

. In other words, the rotation

does not affect the value of ρ̃ij . Thus, we have

〈vi, vj〉 − 〈ui, uj〉 = ξiξj − ζiζj + ρ̃ij

(√
1− ξ2i

√
1− ξ2j −

√
1− ζ2i

√
1− ζ2j

)
.

Let us then estimate this difference. First, we have

|ξiξj − ζiζj | = |(ξi − ζi)ξj + ζi(ξj − ζj)| ≤ |(ξi − ζi)ξj |+ |ζi(ξj − ζj)| ≤ ε′. (6.7)

For the
√
· terms, note that for every δ ∈ [0, 1], the difference

√
1− x+ δ−

√
1− x

(for x ∈ [δ, 1]) is maximized by x = 1 and hence bounded by
√
δ. Thus,∣∣∣∣√1− ξ2i −

√
1− ζ2i

∣∣∣∣ ≤ √
|ξ2i − ζ2i | ≤

√
ε′

and hence by the same argument as in Equation (6.7), we have∣∣∣∣ρ̃ij (√1− ξ2i

√
1− ξ2j −

√
1− ζ2i

√
1− ζ2j

)∣∣∣∣ ≤ 2|ρ̃ij |
√
ε′ ≤ 2

√
ε′.

Thus, we get that
| 〈vi, vj〉 − 〈ui, uj〉 | ≤ ε′ + 2

√
ε′.

However, the vectors {ui}ni=0 could possibly violate some of the triangle inequalities.
To remedy this, we adjust it slightly, by again defining a new SDP solution {v′i}ni=0

as follows (ε′′ will be chosen momentarily)

v′i =
√
1− ε′′ui +

√
ε′′wi,

for i ∈ {0, . . . , n}. Here, each wi is a unit vector which is orthogonal to every
other wj , and to all the ui vectors (such a set of wi vectors is trivial to construct
by embedding all vectors in R2(n+1)). These new vectors satisfy

〈
v′i, v

′
j

〉
= (1 −

ε′′) 〈ui, uj〉 for all i �= j. And since the original SDP solution {vi}ni=0 satisfies the
triangle inequalities, we have that

〈ui, uj〉+ 〈uj , uk〉+ 〈uk, ui〉 ≥ −1− 3ε′ − 6
√
ε′



6.3. A GENERIC ALGORITHM 73

and hence 〈
v′i, v

′
j

〉
+
〈
v′j , v

′
k

〉
+ 〈v′k, v′i〉 ≥ −(1 + 3ε′ + 6

√
ε′)(1 − ε′′).

Letting ε′′ = 3ε′+6
√
ε′, the right hand side is at least−1, and this triangle inequality

is satisfied. The other three sign combinations are handled identically. In other
words, {v′i}ni=0 is a feasible SDP solution. Its value can be lower-bounded by

SDPVal({vi})− SDPVal({v′i})
≤ |P̂1|(ε′/2 + ε′′) + |P̂2|(ε′/2 + ε′′) + |P̂3|(ε′ + 2

√
ε′ + ε′′)

≤ |P̂0|(11ε′ + 20
√
ε′′).

Choosing ε′ small enough (e.g. ε′ = (ε/62)2), this is bounded by ε
2 Opt(Ψ).

Now, consider an optimal rounding function R for {v′i}, and construct a new
rounding function R′ by letting R′(ξ) be the nearest integer multiple of ε/8 to
R(ξ) (so that |R(ξ)− R′(ξ)| ≤ ε/16 for all ξ). We then have for any configuration
θ′ = (ξ′1, ξ

′
2, ρ

′)

Pround(θ′, R)− Pround(θ′, R′) ≤ |P̂1|ε/16 + |P̂2|ε/16 + |P̂3|(4ε/16 + ε/16 + ε/16)

≤ ε

2
Opt(Ψ).

To see this, we refer to Corollary 3.6.4, which implies that

|Γρ̃(R(ξ′1), R(ξ′2))− Γρ̃(R′(ξ′1), R
′(ξ′2))| ≤ ε/16.

Note that we only need to define R′ for values of ξ which are integer multiples
of ε′. Since, for each of the ≈ 2/ε′ such values of ξ, there are only ≈ 16/ε possible
values for R′(ξ), the number of possible R′ is constant, (1/ε)Θ(1/ε′). Thus, we can
find a rounding which is at least as good as R′ in polynomial time by simply trying
all possible choices of R′, evaluating each one, and picking the best function found.
Using Lemma 6.2.7, this means that we can find a solution to Ψ with expected
value at least

E
θ′∈Θ′

[Pround(θ′, R′)] ≥ E
θ′∈Θ′

[Pround(θ′, R)]−
ε

2
Opt(Ψ)

= αP (Θ′)SDPVal({v′i})−
ε

2
Opt(Ψ)

≥ αP (Θ′)SDPVal({vi})− εOpt(Ψ)
≥ (αP (k)− ε)Opt(Ψ),

where Θ′ denotes the set of configurations arising from the SDP solution {v′i}ni=0.



74 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

6.4 A Generic Hardness Result

Theorem 6.1.2 immediately follows from the following Theorem 6.4.1 below. Taking
k large enough so that βP (k) ≤ β(P )+ε and invoking Theorem 6.4.1 gives hardness
of approximating Max CSP(P ) within β(P ) + 2ε.

Theorem 6.4.1. It is UG-hard to approximate Max CSP(P ) within βP (k)+ ε for
any ε > 0 and k ∈ N.

As in previous chapters, we prove Theorem 6.4.1 by constructing a PCP verifier
which checks a supposed dictatorship encoding of a good assignment to a Unique

Label Cover instance, and decides whether to accept or reject based on the
evaluation of the objective function P . The verifier is parameterized by a family
of k positive configurations Θ = {θ1, . . . , θk} and a probability distribution on
Θ. Again, we point out that the requirement that the configurations of Θ are
positive is by necessity rather than by choice, and if we could get rid of it, the
hardness of approximation yielded would exactly match the approximation ratio
from Theorem 6.1.1. The set Θ corresponds to a set of vector configurations for
the semidefinite relaxation of Max CSP(P ). When proving soundness, i.e., in the
case that there is no good assignment to the Unique Label Cover instance, we
prove that the best strategy for the prover corresponds to choosing a good rounding
function R for the family of configurationsΘ. Choosing a set of configurations which
are hard to round, we obtain the desired result.

Since we can negate variables freely, we will use folding and assume that the
purported dictatorships are balanced, as described in Section 4.4. This is what
is going to ensure that the prover’s rounding function is odd, i.e. that R(ξ) =
−R(−ξ). The verifier is given in Algorithm 2, below. Note that, because θ is a
configuration, Equation (6.3) guarantees that we can choose x1 and x2 with the
desired distribution in step (4).

Algorithm 2: The verifier V
V(Ψ, Σ = {fv}v∈Y )
(1) Pick a random configuration θ = (ξ1, ξ2, ρ) ∈ Θ according to

the distribution on Θ.
(2) Pick a random v ∈ X .
(3) Pick e1 = {v, w1} and e2 = {v, w2} randomly from E(v).
(4) Pick x1, x2 ∈ {−1, 1}L such that each bit of xi is picked inde-

pendently with expected value ξi and that the j:th bits of x1
and x2 are ρ-correlated for j = 1, . . . , L.

(5) For i = 1, 2, let bi = fwi(xi ◦ π−1
ei

) (folded over true).
(6) Accept with probability P (b1, b2).

Let us now study the completeness of V .



6.4. A GENERIC HARDNESS RESULT 75

Lemma 6.4.2 (Completeness). If Opt(Ψ) ≥ 1 − η, then there is a proof Σ such
that

Pr[V(Ψ,Σ) accepts] ≥ (1 − 2η) E
θ∈Θ

[Prelax(θ)].

Proof. Fix a labelling � of the vertices of Ψ such that the fraction of satisfied edges
is at least 1− η, and let fv : {−1, 1}L → {−1, 1} be fv = Dict$(v). Note that for a
satisfied edge {v, w} and an arbitrary string x ∈ {−1, 1}L, fw(x ◦ π−1

e ) equals the
value of the �(v):th bit of x.

Fix a choice of θ = (ξ1, ξ2, ρ). By the union bound, the probability that either
of the two edges e1, e2 chosen by V are not satisfied is at most 2η. For a choice of
edges that are satisfied, the expected value of fwi(xi ◦ π−1

ei
) is the expected value

of the �(v):th bit of xi, i.e. ξi, and the expected value of fw1(x1 ◦π−1
e1 )fw2(x2 ◦π−1

e2 )
is the expected value of the �(v):th bit of x1x2, i.e. ρ.

Thus, the probability that V accepts is at least

E
θ∈Θ

[
(1 − 2η)(P̂0 + P̂1ξ1 + P̂2ξ2 + P̂3ρ)

]
= (1− 2η) E

θ∈Θ
[Prelax(θ)],

and the proof is complete.

Next, we turn to the soundness of V .

Lemma 6.4.3 (Soundness). For every ε > 0 there is a γ > 0 such that if Val(X) ≤
γ, then for any proof Σ, we have

Pr[V(X,Σ) accepts] ≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε.

Proof. Arithmetizing the acceptance predicate, we find that the acceptance prob-
ability of V can be written as

E
θ∈Θ

[
E

v,e1,e2,x1,x2

[
P̂0 + P̂1fw1(x1 ◦ π−1

e1 ) + P̂2fw2(x2 ◦ π−1
e2 ) +

+ P̂3fw1(x1 ◦ π−1
e1 )fw2(x2 ◦ π−1

e1 ) | θ
]]
.

For ξ ∈ [−1, 1] and v ∈ V , define gξv ∈ L2({−1, 1}n, µ⊗n
ξ ) by

gξv(x) = E
e={v,w}∈E(v)

[
fw(x ◦ π−1

e )
]
,

for x ∈ {−1, 1}n, where µξ is the distribution on {−1, 1} which assigns probability
1+ξ
2 to 1, and probability 1−ξ

2 to −1. Define the function Rv(ξ) := E
[
gξv
]
. Note

that since the purported dictatorships are balanced, we have that both gξv and Rv

are odd functions, and in particular that Rv ∈ R. We remark that for a fixed v
and different values of ξ, the functions gξv are the same function, but as random
variables they are different.



76 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

We can now write V ’s acceptance probability as

Pr[V accepts] = E
θ

[
E

v,x1,x2

[
P̂0 + P̂1g

ξ1
v (x1) + P̂2g

ξ2
v (x2) + P̂3g

ξ1
v (x1)gξ2v (x2) | θ

]]
= E

θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) + P̂3

〈
gξ1v , gξ2v

〉
N

]
. (6.8)

Assume (for contradiction) that

Pr[V accepts] ≥ E
θ,v

[Pround(θ,Rv)] + ε

= E
θ,v

[
P̂0 + P̂1Rv(ξ1) + P̂2Rv(ξ2) +

+ P̂3(4Γρ̃(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1)
]
+ ε. (6.9)

Combining this with Equation (6.8), this implies that there exists a θ = (ξ1, ξ2, ρ) ∈
Θ such that

E
v

[
P̂3 ·

(〈
gξ1v , gξ2v

〉
N

− 4Γρ̃(θ)(Rv(ξ1), Rv(ξ2))−Rv(ξ1)−Rv(ξ2) + 1
)]

≥ ε. (6.10)

Using the fact that the absolute value of the expression inside the expectation is
bounded by 2|P̂3|, this implies that for at least a fraction ε′ := ε

3|P̂3| of all v ∈ X ,
we have

P̂3 ·
〈
gξ1v , gξ2v

〉
N

≥ P̂3

(
4Γρ̃(θ)(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1

)
+ ε′.

Let V be the set of all such v. Using that θ is a positive configuration (i.e. P̂3ρ̃(θ) ≥
0), we then get that for v ∈ V ,〈

gξ1v , gξ2v
〉
N

≥ 4Γ|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1 + ε′/|P̂3|

if P̂3 > 0, or〈
gξ1v , gξ2v

〉
N

≤ 4Γ−|ρ̃(θ)|(Rv(ξ1), Rv(ξ2)) +Rv(ξ1) +Rv(ξ2)− 1− ε′/|P̂3|

if P̂3 < 0 (note that if P̂3 = 0, we would have a contradiction in Equation (6.10)
and so could jump directly to Equation (6.11) below). In either case, Theorem 2.5.2
(combined with Proposition 2.2.8) implies that there are constants τ and d (depend-
ing only on ε, θ, and P ) such that for any v ∈ Vgood we have Inf≤di (gξ1v ) ≥ τ (and
also that Inf≤di (gξ2v ) ≥ τ , though we will not use that). Fixing θ and dropping the
bias parameter ξ1 for the remainder of the proof, we have that for any v ∈ V ,

τ ≤ Inf≤di (gv) ≤ E
e={v,w}

[
Inf≤dπe(i)

(fw)
]
,



6.5. RESULTS FOR SPECIFIC PREDICATES 77

where the second inequality is the same argument as Equation (5.2). The rest of the
proof now follows the proof of Lemma 5.1.3 from Equation (5.2) and onwards: we
can construct small sets of candidate labels C(v) for every v ∈ X and w ∈ Y based
on the influential coordinates of gv and fw, and use these to define a random labeling
�, which in expectation satisfies a fraction ε′τ3

4d2 of all edges. Making sure that
γ < ε′τ3

4d2 , we get a contradiction to the assumption of the acceptance probability
(Equation (6.9)), implying that the soundness is at most

Pr[V accepts Σ] ≤ E
θ,v

[Pround(θ,Rv)] + ε (6.11)

≤ max
R∈R

E
θ∈Θ

[Pround(θ,R)] + ε,

and we are done.

Combining Lemma 6.4.2 and Lemma 6.4.3, and picking γ small enough, we get
that, for every ε > 0, Max CSP(P ) is (s+ ε, c− ε)-UG-hard, where

s = max
R∈R

E
θ∈Θ

[Pround(θ,R)]

c = E
θ∈Θ

[Prelax(θ)]

Picking a Θ with |Θ| = k that minimizes αP (Θ), we obtain Theorem 6.4.1.

6.5 Results for Specific Predicates

In the remaining part of this chapter, we study the implications of the generic res-
ults Theorem 6.1.1 and Theorem 6.1.2 on specific 2-CSP problems. In particular,
we look at Max Cut, Max 2-Sat, and Max 2-And. On the algorithmic side,
we show that the approximation guarantee of Theorem 6.1.1 matches the previous
best algorithms for these problems. On the hardness side, we show that for Max

Cut we recover the result of Khot et al. [63] that it is UG-hard to approximate
Max Cut better than αGW ≈ 0.87856. For both Max 2-Sat and Max 2-And, we
improve upon existing hardness results. For Max 2-Sat, we obtain an inapprox-
imability of αLLZ ≈ 0.94017, exactly matching the believed approximation ratio of
the algorithm by Lewin et. al [71]. For Max 2-And, we obtain an inapproximab-
ility of ≈ 0.87435, which almost matches the ratio of 0.87401 of the algorithm by
Lewin et. al [71].

In general, given a family Θ, the very problem of computing αP (Θ) is a difficult
numeric optimization problem. However, for the Θ we use, the number of distinct ξ-
values used is small, so that computing αP (Θ) in this case is a numeric optimization
problem in only 1 or 2 variables, which we are able to handle.

6.5.1 Max Cut

As a warm-up, let us show how our general results can be used to derive previous
bounds for the Max Cut problem.



78 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

Rather than Max Cut, we will start with the slightly more general case of
Max 2-Xor (of course, an algorithm for Max 2-Xor is also an algorithm for Max

Cut). The classic Goemans-Williamson rounding algorithm works as follows: pick
a standard normal random vector r, and then set xi = −1 true if r · vi ≤ 0. In
our framework, using the representation vi = ξiv0 +

√
1− ξ2i ṽi, this rounding can

equivalently be formulated as follows: pick a standard normal variable r0 ∈ R, and
a standard normal vector r, and then set xi = −1 if

r · ṽi ≤
−ξir0√
1− ξ2i

,

(if |ξi| = 1, the right hand side of the above expression is defined to be +∞ or
−∞ according to the sign of −ξir0). Hence the Goemans-Williamson rounding
algorithm can be interpreted as an algorithm in which we pick a threshold function
T at random according to a certain distribution over threshold functions, and then
apply threshold rounding using T . Clearly, the ratio obtained by such an approach is
no better than the ratio obtained by picking the best threshold function, and hence
the approximation ratio αGW of the Goemans-Williamson algorithm is bounded by
α(⊕2).

Let us then move to hardness, and again we will first consider the Max 2-

Xor problem. To prove hardness for Max 2-Xor, it suffices to consider the single
configuration θ = (0, 0, ρ), for some ρ ∈ [−1, 1]. A computation of α⊕({θ}, R) then
gives

α⊕2({θ}, R) =
2− 2R(0)− 4Γρ(R(0), R(0))

1− ρ
=

2− 4Γρ(0, 0)
1− ρ

,

where the second equality uses that R(0) = 0 for any rounding R. Recall that
Γρ(0, 0) is the probability that two jointly gaussian random variables X and Y
with covariance ρ are both smaller than Φ−1(1/2) = 0, which equals (see e.g. [79],
Theorem B.1)

Γρ(0, 0) =
1
2
− 1

2π
arccosρ.

Hence
α⊕2({θ}, R) =

2 arccosρ
π(1− ρ)

.

The minimum value of this expression over ρ ∈ [−1, 1] is, by definition, exactly
αGW .

Now, Max Cut, as opposed to Max 2-Xor, is a Max CSP
+ problem rather

than a Max CSP problem, so it does not quite make sense to talk about hardness
for Max Cut being a special case of Theorem 6.1.2. However, while we have
only mentioned Max CSP

+ problems in passing, analogues of Theorem 6.1.1 and
Theorem 6.1.2 are true for Max CSP

+ problems. The crucial difference is that one
can no longer assume that a rounding is odd, an in particular one can not assume
that R(0) = 0, which we used for the Max 2-Xor hardness. This means that in



6.6. MAX 2-SAT 79

this case, the hardness we get for the configuration above is given by

max
R(0)∈[−1,1]

2− 2R(0)− 4Γρ(R(0), R(0))
1− ρ

. (6.12)

Fortunately, it is easy to prove that the expression x+2Γρ(x, x) is indeed minimized
by x = 0 (see Corollary 3.6.3 for the derivative of Γρ). Hence, Equation (6.12) is at
most 2 arccos ρ

π(1−ρ) and by choosing an appropriate ρ we again get a hardness of αGW .

6.6 Max 2-Sat

In this section, we look at Max 2-Sat. Throughout this section, let P : {−1, 1}2 →
{0, 1} be the Or predicate, i.e., the predicate which is 1 if at least one of its inputs
equals −1.

The best existing algorithm for Max 2-Sat is the LLZ algorithm by Lewin,
Livnat and Zwick [71]. This algorithm works by using a certain well-chosen fixed
rounding. In their original paper, Lewin et al. used a somewhat complicated round-
ing function of the form

R0(x) = 2Φ(2 cot(f(arccosx))) − 1

where f(x) ≈ 0.58831458θ+0.64667394. However, as communicated to us by Zwick
[108], a slightly better, and in particular much simpler choice of rounding function
is

R(x) = γx,

where γ = αLLZ ≈ 0.94016567 is the approximation ratio of the algorithm. We
will return to the difference between these two functions later in this section, but
first we will analyze the performance ratio of the algorithm.

Already at this point, it is clear that this algorithm can be no better than
the one in Theorem 6.1.1, as the latter always uses the best possible R which in
particular is at least as good as the fixed R used by the LLZ algorithm.

6.6.1 The Definition of αLLZ

In order to prove hardness for Max 2-Sat which exactly matches the approxim-
ation ratio of the algorithm, we will need to analyze the algorithm carefully. The
approximation ratio of this algorithm is at least the worst approximation ratio of
R on any configuration θ, i.e., at least

min
θ

αP ({θ}, R).

Let us then compute the rounded and relaxed values of a configuration θ. Arith-
metizing P , we have

P (x1, x2) =
3− x1 − x2 − x1x2

4
.



80 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

We then get for a configuration θ = (ξ1, ξ2, ρ),

Pround(θ,R) =
3−R(ξ1)−R(ξ2)−

(
4Γρ̃(θ)(R(ξ1), R(ξ2)) +R(ξ1) +R(ξ2)− 1

)
4

=
4− 2γξ1 − 2γξ2 − 4Γρ̃(θ)(γξ1, γξ2)

4
(6.13)

Prelax(θ) =
3− ξ1 − ξ2 − ρ

4
.

As R is completely determined by the scaling factor γ ∈ [0, 1], we will from here on
write αP ({θ}, γ) rather than αP ({θ}, R). We then get

αP ({θ}, γ) =
4− 2γξ1 − 2γξ2 − 4Γρ̃(θ)(γξ1, γξ2)

3− ξ1 − ξ2 − ρ
.

There is no known way to analytically compute the minimum of this expression
over all configurations θ. Hence, one has to resort to numerical computations.
Extensive numerical computations, both our own and those of Lewin et al., show
that αP ({θ}, γ) is minimized at two different configurations θ1, θ2, where

θ1 = (ξ, ξ,−1 + 2ξ) θ2 = (−ξ,−ξ,−1 + 2ξ), (6.14)

for some ξ.2 For now, let us ignore the numeric value of ξ and instead consider the
implications of the worst configurations having this very specific form. We refer to a
configuration of the form (ξ, ξ,−1+2|ξ|) as a simple configuration ξ. Let us denote
by α(ξ, γ) the approximation ratio of the LLZ algorithm on a simple configuration
ξ, i.e.,

α(ξ, γ) = αP ({(ξ, ξ,−1 + 2|ξ|)}, γ) =
2− 2γξ − 2Γρ̃(ξ)(γξ, γξ)

2− ξ − |ξ| ,

where we define

ρ̃(ξ) = ρ̃(ξ, ξ,−1 + 2|ξ|) = −1 + 2|ξ| − ξ2

1− ξ2
=

|ξ| − 1
|ξ|+ 1

.

Finally, we define αLLZ as the minimum value of α(ξ, γ) over all ξ, assuming that
γ is chosen so as to maximize this quantity. I.e.,

αLLZ = max
γ∈[0,1]

min
ξ∈[−1,1]

α(ξ, γ). (6.15)

This is the quantity which we refer to as the approximation ratio of the LLZ al-
gorithm. Its value is approximately 0.94017 (we discuss this further in Section 6.6.3).
Note however that there is no formal proof that this is indeed the approximation

2Of course, numeric computations can not formally prove that the worst configurations have
this specific form, only that they approximately have this form, up to some tiny error.



6.6. MAX 2-SAT 81

ratio of the algorithm. In particular, the only evidence that the worst case config-
urations for the algorithm are indeed simple configurations is by numerical compu-
tations. If this part could be proved formally, then one would have a formal proof
that αLLZ is indeed a lower bound on the approximation ratio of the algorithm,
but as of now, there is only numerical evidence (albeit strong numerical evidence).

In the following sections, we will continue to analyze this quantity, in order to
prove that β(P ) ≤ αLLZ (which we can indeed prove formally without having to
resort to numerical computations!). The first step towards proving this is to prove
that γ = αLLZ is indeed a maximizer of Equation (6.15) (i.e., that the optimal
choice of γ is γ = αLLZ), and that if ξ is such that α(ξ, αLLZ) is minimum, then
so is −ξ (i.e., if ξ is a worst-case configuration, then so is −ξ). Using this we
will then be able to construct a probability distribution on the two worst-case
configurations in Equation (6.14) such that the resulting family of configurations
Θ satisfies αP (Θ) = αLLZ , implying that β(P ) ≤ αLLZ .

Following this, we will briefly discuss the actual numeric value of αLLZ , and
finally, as promised in the beginning of this section, we will discuss the difference
between the rounding function used here compared to the one originally used by
Lewin et al.

6.6.2 Analyzing αLLZ

Throughout this section, let Γρ̃(x) := Γρ̃(x, x), and let Γ′
ρ̃(x) be the derivative of

Γρ̃(x) with respect to x.
First, we show that:

Proposition 6.6.1. The function α(ξ, γ) satisfies the following two properties:

1. minξ∈[−1,1] α(ξ, αLLZ) = αLLZ . In other words, Equation (6.15) is maxim-
ized by setting γ = αLLZ.

2. If ξ satisfies α(ξ, αLLZ) = αLLZ then so does −ξ. In other words, if ξ is a
worst-case configuration for γ = αLLZ, then so is −ξ.

Proof. Define

gain(ξ, γ) = Pround(ξ, ξ,−1 + 2|ξ|), γ)− αLLZPrelax(ξ, ξ,−1 + 2|ξ|)

= (1− γξ − Γρ̃(γξ))− αLLZ ·
(
1− ξ

2
− |ξ|

2

)
(6.16)

=
αLLZ − γ

2
ξ +

2− Γρ̃(γξ)− Γρ̃(−γξ)
2

− αLLZ
2− |ξ|

2
(6.17)

to be the “advantage” over αLLZ when rounding the configuration (ξ, ξ,−1+ 2|ξ|)
using a particular value of γ (where we used Proposition 3.6.1 to get Equation (6.17)).
The first part of the proposition amounts to showing that

gain(ξ, αLLZ) ≥ 0



82 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

for all ξ ∈ [−1, 1]. Let γ∗ be such that minξ∈[−1,1] α(ξ, γ∗) = αLLZ, i.e. an optimal
choice of γ. By definition, we have that gain(ξ, γ∗) ≥ 0 for all simple configurations
ξ.

The intuition behind the remainder of the proof is as follows: it is not hard
to see that gain(ξ, αLLZ) = gain(−ξ, αLLZ). Furthermore, we will see that the
sign of the derivative of gain(ξ, γ) with respect to γ depends only on the sign of ξ.
Hence, to prove that gain(ξ, αLLZ) ≥ 0, we make sure that the derivative of gain is
negative from αLLZ to γ∗, by potentially switching the sign of ξ. This then implies
that gain(ξ, αLLZ) ≥ gain(±ξ, γ∗) ≥ 0.

Formally, let

gainγ(ξ, γ) =
∂gain
∂γ

(ξ, γ) = −ξ
(
1 + Γ′

ρ̃(γξ)
)

be the derivative of gain (in the form of Equation (6.16)) with respect to γ. Note
that by Corollary 3.6.3 we have 1 + Γ′

ρ̃(γξ) ∈ [0, 1]. In particular, the sign of the
derivative depends only on the sign of ξ.

Consider an arbitrary configuration ξ. Define a new configuration ξ′ by

ξ′ =
{

ξ if (γ∗ − αLLZ)ξ ≥ 0
−ξ otherwise.

It might help to think of ξ′ the following way: if ξ has the right sign for the function
gain(ξ, ·) to be increasing from γ∗ to αLLZ , we are happy, but otherwise we flip ξ,
thereby also flipping the sign of gainγ .

By the Mean Value Theorem, there is then a γ′ between γ∗ and αLLZ such that

gain(ξ′, αLLZ) = gain(ξ′, γ∗) + (αLLZ − γ∗)gainγ(ξ
′, γ′)

≥ (γ∗ − αLLZ)ξ′
(
1 + Γ′

ρ̃(γ
′ξ′)

)
≥ 0.

Now, from Equation (6.17) we see that gain(−ξ, γ)− gain(ξ, γ) = (γ − αLLZ)ξ for
every γ and ξ. In particular, since ξ′ = ±ξ, this implies that gain(ξ, αLLZ) =
gain(ξ′, αLLZ) ≥ 0, which proves the first part of the proposition.

The second part of the proposition follows from gain(ξ, αLLZ) = gain(−ξ, αLLZ).
In particular, if ξ is a worst case configuration, they both equal 0.

Analyzing this a bit further will (unsurprisingly) show that γ = αLLZ is indeed
the only maximum of the Equation (6.15), though we will not need this fact. In
order to show this, it suffices to realize that ξ = 0 can never be a worst-case
configuration.

We are now finally ready to prove the matching hardness β(P ) ≤ αLLZ claimed
in Theorem 6.1.4.

Theorem 6.6.2. For P (x1, x2) = 3−x1−x2−x1x2
4 , we have

β(P ) ≤ αLLZ .



6.6. MAX 2-SAT 83

Proof. Let ξ,∆ ∈ [−1, 1] be parameters to be determined later. Consider the family
of configurations Θ = {θ1, θ2}, where

θ1 = (ξ, ξ,−1 + 2ξ) θ2 = (−ξ,−ξ,−1 + 2ξ), (6.18)

the probability of θ1 is (1+∆)/2, and the probability of θ2 is (1−∆)/2. Then both
θ1 and θ2 are positive configurations (since ρ̃(θ1) = ρ̃(θ2) =

|ξ|−1
|ξ|+1 < 0 has the same

sign as P̂3). Hence β(P ) ≤ αP (Θ) = maxR∈R αP (Θ, R), so it remains to bound
this quantity. By definition,

αP (Θ, R) =
Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ,R)]

.

Similarly to the proof of Proposition 6.6.1, let

gain(R) = E
θ∈Θ

[Pround(θ,R)]− αLLZ E
θ∈Θ

[Prelax(θ)]

=
2− (1 + ∆)R(ξ)− 2Γρ̃(R(ξ))

2
− αLLZ · 2−∆ξ − |ξ|

2

be the advantage over αLLZ when rounding Θ using a particular rounding R (where
the second equality used Equation (6.13)).

We need to prove that, with an appropriate choice of ξ and∆, we have gain(R) ≤
0 for every rounding R. Note that gain(R) depends only on the rounded value
r = R(ξ) of ξ, hence we think of gain as a function gain(r) from [−1, 1] to R.

Now, let γ∗ = αLLZ, and let ξ be a worst simple configuration, i.e. such that
α(ξ, γ∗) = αLLZ. By Proposition 6.6.1, we also have α(−ξ, γ∗) = αLLZ . This
implies that gain(γ∗ξ) = 0. Computing the derivative of gain(r), we have

gain′(r) = −1 + ∆
2

− Γ′
ρ̃(r).

Solving gain′(γ∗ξ) = 0 for ∆ gives

∆ = −2Γ′
ρ̃(γ

∗ξ)− 1 = 2Φ

(√
1− ρ̃

1 + ρ̃
t(γ∗ξ)

)
= 2Φ

(
Φ−1

(
1− γ∗ξ

2

)
/
√

|ξ|
)

− 1.

It is clear that ∆ ∈ [−1, 1]. Furthermore, gain′′(r) = −Γ′′
ρ̃(r) < 0, implying that

gain is concave, so that when ∆ is chosen as above, gain attains a global maximum
at r = γ∗ξ, where it takes the value 0. Hence gain(r) ≤ 0 for every r ∈ [−1, 1].

6.6.3 The Numeric Value of αLLZ

Wewill now (briefly) discuss the actual numeric value of αLLZ . LetB = 0.9401656724.
To give a feel for α(ξ, B), Figure 6.1 gives a plot of this function in the interval



84 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.94

0.95

0.96

0.97

0.98

0.99

1

Figure 6.1: α(ξ, 0.94016567248)

ξ ∈ [−1, 1], along with the line y = B (dashed). The one-dimensional optimization
problem

min
ξ∈[−1,1]

α(ξ, B)

can be solved numerically to a high level of precision. This gives a lower bound
αLLZ ≥ 0.9401656724. The two minima seen in Figure 6.1 turn out to be roughly
ξ1 = −0.1624783294 and ξ2 = 0.1624783251 (had we plugged in B = αLLZ ,
Proposition 6.6.1 implies that we would have had ξ1 = ξ2, but since B differs
slightly from αLLZ , we get slightly different values). In order to obtain an upper
bound on αLLZ, we can then solve the one-dimensional optimization problem

max
γ∈[−1,1]

min (α(ξ1, γ), α(ξ2, γ))

numerically to a high level of precision. This results in an upper bound of αLLZ ≤
0.9401656725. In conclusion, we have |αLLZ − 0.94016567245| ≤ 5 · 10−11.

Our worst configurations ξ ≈ ±0.1625 differ slightly from the worst configura-
tions ξ ≈ ±0.169 found by Lewin et al. This is because of the small difference in
behavior of the two rounding functions (see Section 6.6.4); the approximation ratio
is marginally worse when using the original function of [71] rather than the one
used in this paper [108].



6.7. MAX 2-AND 85

We can also compute the amount of imbalance in the worst-case instances, by
using the formula for ∆ given in the end of the proof of Theorem 6.6.2. Plugging
ξ = 0.1625 into this expression gives ∆ = 0.3673. This implies that in the in-
stances produced by applying Theorem 6.1.2 to the configurations constructed in
Theorem 6.6.2, the total weight on positive (resp. negative) occurrences of a vari-
able is roughly 0.68 (resp. 0.32). We find it remarkable that so greatly imbalanced
instances should be the hardest to approximate.

6.6.4 The Tale of the Two Rounding Functions

The rounding function of the LLZ algorithm used in this thesis, communicated to
us by Zwick [108], differs from the rounding function used by Lewin et al. [71]. The
rounding function used in this thesis is R(x) = γ ·x, where γ = αLLZ ≈ 0.94016567.
The rounding function used in [71] is R0(x) = 1−2Φ(S(x)/

√
1− x2). Here, S(x) =

−2 cot(f(arccosx))
√
1− x2 where f is the linear rotation function given by

f(θ) ≈ 0.58831458θ+ 0.64667394.

R0(x) can be simplified to

R0(x) = 1− 2Φ(−2 cot(f(arccosx))) = 2Φ(2 cot(f(arccosx)))− 1.

Figure 6.2 gives plots of the functions R(x) and R0(x) for the interval x ∈ [0, 1]
(since both functions are odd we restrict our attention to positive x). As can be
seen, the functions are fairly close to each other. Most importantly, the functions
behave almost the same in the critical interval x ∈ [0.1, 0.2]. Nevertheless, there
is a small difference between the functions in this interval as well, and as noted in
Section 6.6.3, this causes the worst configuration when using R0(x) to be slightly
different from the worst configuration when using R(x). This small difference in
fact causes the (apparent) approximation ratio when using R(x) to be marginally
better than when using R0(x).

For large x, the functions R(x) and R0(x) differ noticeably, but using the best
rounding does not matter there; these are configurations that are in some sense easy
to round, and any function with a reasonable behavior suffices to get a decently
good approximation ratio.

6.7 Max 2-And

In this section, we obtain an upper bound of β(P ) ≤ 0.87435 for the case when
P (x1, x2) = x1 ∧ x2, i.e., the Max 2-And problem, establishing Theorem 6.1.5.
We do this by exhibiting a set Θ of k = 4 (positive) configurations on 2 distinct
non-zero ξ-values (and a probability distribution on the elements of Θ), such that
αP (Θ) < 0.87435.



86 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a1(x)
a2(x)

Figure 6.2: R0(x) vs. R(x)

6.7.1 An Easier Bound

Before giving our strongest bound, let us start with an even smaller set of config-
urations, sufficient to give an inapproximability of 0.87451, only marginally worse
than 0.87435. In particular, this bound is strong enough to demonstrate that
Max 2-And is harder to approximate than Max Cut and balanced Max 2-And.
This set of configurations Θ = {θ1, θ2} contains only one non-zero ξ-value, and is
given by

θ1 = (0,−ξ, 1− ξ) with probability 0.64612
θ2 = (0, ξ, 1− ξ) with probability 0.35388,

where ξ = 0.33633.
To compute the hardness factor given by this set of configurations, we must

compute

αP (Θ) = max
R∈R

Eθ∈Θ[Pround(θ,R)]
Eθ∈Θ[Prelax(θ)]

. (6.19)

Since P (x1, x2) = 1−x1−x2+x1x2
4 we have that for an arbitrary configuration θ =



6.7. MAX 2-AND 87

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Figure 6.3: Approximation ratio as a function of R

(ξ1, ξ2, ρ),

Prelax(θ) =
1− ξ1 − ξ2 + ρ

4

Pround(θ,R) =
1−R(ξ1)−R(ξ2) + 4Γρ̃(θ)(R(ξ1), R(ξ2)) + R(ξ1) +R(ξ2)− 1

4
= Γρ̃(θ)(R(ξ1), R(ξ2)).

In our case, using the two configurations given above, R is completely specified
by its value on the angle ξ (since R(0) = 0 and R(−ξ) = −R(ξ)). Figure 6.3 gives a
plot of the right-hand side of Equation (6.19), as a function of the value ofR(ξ). The
maximum turns out to occur at R(ξ) ≈ 0.29412, and gives a ratio of approximately
0.87450517. Thus, we see that αP (Θ) ≤ 0.87451. We remark that it is not very
difficult to make this computation rigorous—it can be proven analytically that the
curve of Figure 6.3 is indeed convex (as in the proof of Theorem 6.6.2), and so the
only maximum can be computed to within high precision (using easy bounds on
the derivative) using a simple golden section search.



88 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

6.7.2 The Stronger Bound

Let us now turn to the larger set of configurations, based on four configurations,
mentioned earlier. This set of configurations Θ = {θ1, θ2, θ3, θ4} is as follows:

θ1 = (0,−ξA, 1− ξA) with probability 0.52850
θ2 = (0, ξA, 1− ξA) with probability 0.05928
θ3 = (ξA,−ξB, 1− ξA − ξB) with probability 0.29085
θ4 = (−ξA, ξB, 1− ξA − ξB) with probability 0.12137,

where ξA = 0.31988 and ξB = 0.04876.
As before, to compute the approximation ratio given by Θ, we need to find the

best R for Θ, and again, such an R is completely specified by its values on the
non-zero ξ-values. In other words, we now need to specify the values of R on the
two angles ξA and ξB . Figure 6.4(a) gives a contour plot of approximation ratio, as
a function of the values of R(ξA) and R(ξB). There are now two local maxima, one
around the point (R(ξA), R(ξB)) ≈ (0.27846, 0.044376), and one around the point
(1,−1). Figure 6.4(b) gives a contour plot of the area around the first point. This
maximum turns out to be approximately 0.87434075. At the point (1,−1) (which is
indeed the other maximum), the approximation ratio is approximately 0.87434007.
Thus, we have αP (Θ) ≤ 0.87435.

It seems likely that additional improvements can be made by using more and
more ξ-values, though these improvements will be quite small. Indeed, using larger
Θ we are able to improve upon Theorem 6.1.5, but the improvements we have been
able to make are minute (of order 10−5), and it becomes a lot more difficult to
verify them. Note that θ1 and θ2 used in the larger set of configurations are very
similar to the first set of configurations—they are of the same form, and the ξ-value
used is only slightly different. It appears that it is useful to follow this pattern when
adding even more configurations: the values of ξA and ξB are adjusted slightly, and
we add two configurations of the form (±ξB,∓ξC , 1 − ξB − ξC). Essentially this
type of sequence of configurations has appeared before, see e.g. the analysis of lower
bounds for certain Max Di-Cut algorithms in [107].

6.8 Subsequent Work

Subsequent to our result [8], there have been two very closely related results. In
order to discuss them, it will be useful to define the notion of an integrality gap.
An (s, c)-integrality gap for an SDP relaxation of a constraint satisfaction problem
P is an instance Ψ of P such that Opt(Ψ) ≤ s and SDPOpt(Ψ) ≥ c.

An integrality gap can be viewed as a type of unconditional hardness results,
in that they state that a very specific computational model (semidefinite program-
ming) can not solve a certain problem. In particular, they indicate that the SDP
relaxation for which the integrality gap was proved can not distinguish between
Opt ≤ s and Opt ≥ c.



6.8. SUBSEQUENT WORK 89

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0.5

0.5

0.75

0.75

0.75

0.75

0.75

0.8

0.8

0.8

0.8

0.8

0.85

0.85

0.85

0.85

0.85

0.85

0.87

0.87

0.87

0.87

0.87

0.874

(a) The entire range of R

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4
−0.05

0

0.05

0.1

0.15

0.87

0.87

0.873

0.873

0.873

0.873

0.873

0.874

0.874

0.874

0.874

0.874

0.874

0.8743

0.8743

0.8743

0.87434

(b) Restricted to the critical area

Figure 6.4: Approximation ratio as a function of R



90 CHAPTER 6. CONSTRAINTS ON TWO VARIABLES

6.8.1 The Approximability Curve for Max Cut

In an “orthogonal” work to the results of this chapter, O’Donnell and Wu [83] ana-
lyzed the entire “approximability curve” of the Max Cut problem. In particular,
they considered a certain function s : [1/2, 1] → [1/2, 1], and constructed:

• A polynomial-time (s − ε)-approximation algorithm for Max Cut. To be
more specific, they gave an algorithm A which, for every constant ε > 0, on
input a Max Cut instance Ψ, finds a cut of value at least s(Opt(Ψ))− ε.

• A (s(c) + ε, c − ε)-UG-hardness result for Max Cut for every ε > 0 and
c ∈ [1/2, 1].

• An (s(c) + ε, c − ε)-integrality gap for the standard SDP relaxation of Max

Cut (with triangle inequalities), for every ε > 0 and c ∈ [1/2, 1].

The main difference which makes Max Cut more amenable to analysis than
general CSPs is the absence of the linear coefficients P̂1 and P̂2. In particular,
as we saw in Section 6.5.1, determining the approximability ratio for Max Cut

is, because of the lack of linear terms, a fairly straight-forward task, whereas for
general predicates, we can not even prove that α(P ) = β(P ). Determining the
entire approximability curve for Max Cut is significantly more involved than just
finding the worst ratio: in the language of this chapter, for certain ranges of c it
does not suffice to look at a single configuration.

The rounding scheme used by the algorithm of [83] uses the RPR2 rounding
scheme of Feige and Langberg [35] mentioned in Section 6.2, in which every variable
xi is set to true with probability f(〈r, vi〉) for some function f , where r is a standard
normal random vector. By the same argument as in Section 6.5.1, it is not hard to
see that the approximation ratio obtained by an RPR2 rounding in which f(x) ∈
{0, 1} is at most α(P ). However, the general family of RPR2 rounding schemes is
not immediately comparable to the family of rounding schemes we use. Hence, it
could be the case that our algorithm is not an (s− ε)-approximation algorithm.

Finally, we note that it is straightforward to adapt our algorithm and hardness
results to yield approximability curves rather than just ratios. Whether these curves
match would depend on the truth of a conjecture analogous to Conjecture 6.1.3,
that for every c, the quantities

inf
Eθ∈Θ[Prelax(θ)]=c

αP (Θ) inf
Eθ∈Θ[Prelax(θ)]=c

every θ ∈ Θ positive

αP (Θ)

are equal. It is quite possible that this is true, though we do not have as strong
faith in it as in Conjecture 6.1.3.

6.8.2 UG-Hardness from Integrality Gaps

In a remarkable result, Raghavendra [87] essentially proved the following the-
orem: let P : [q]k → [−1, 1], and suppose a certain natural SDP relaxation for



6.8. SUBSEQUENT WORK 91

Max CSP(P ) has an (s, c)-integrality gap. Then, Max CSP(P ) is (s + ε, c − ε)-
UG-hard. In other words, assuming the UGC, if semidefinite programming can
not approximate Max CSP(P ) to within some factor α, then no polynomial time
algorithm can.

For the special case of objective functions P : {−1, 1}2 → [0, 1], i.e., the setting
we have considered in this chapter, the SDP relaxation used is exactly the standard
SDP relaxation used in this chapter, with those of the triangle inequalities that
involve v0. In other words, the results of [87] verify the indication given by the
results of this chapter, that these inequalities are the only ones which help.

If our Conjecture 6.1.3 is true, the results of this chapter are as strong as the
results of [87] for P : {−1, 1}2 → [0, 1], since any integrality gap instance can be
viewed as a family of configurations with a gap between Pround and Prelax.

The main advantage of our results is that [87] requires an actual integrality gap
instance in order to be able to derive a hardness result. Integrality gaps which
satisfy the triangle inequalities can be quite difficult to construct, and hence, for
many problems we do not know the exact approximation ratio of the associated
SDP relaxation. Our result, on the other hand, only needs to start with a family of
configurations, which is a much simpler object to construct. One can view a family
of configurations as a “recipe” for an integrality gap, in the sense that it specifies
that the inner products involved should take certain values for a certain fraction
of constraints. In particular, if one wants to compute explicit inapproximability
ratios for different problems, it can be much easier to find an appropriate family
of configurations instead of a complete integrality gap instance. For instance, we
do not know of any integrality gap instances for Max 2-And with gap larger than
αGW , the Max Cut constant. On the other hand, it is not too complicated to find
a family of configurations with a larger gap, as we did in Section 6.7.





Part III

Some Limited Independence
Results



They called me mad, and I called them mad,
and damn them, they outvoted me.

Nathaniel Lee



Chapter 7

Preliminaries

In this section, we give some background material necessary for the results of
Chapter 8 and Chapter 9. Most of this material is about properties of the Fourier
representation of functions, or rather, about properties of functions whose Fourier
representation is a low-degree polynomial.

7.1 Hypercontractivity

For a random variable f and 1 ≤ p ≤ q ≤ ∞, we always have ||f ||p ≤ ||f ||q. In
short, hypercontractivity is the phenomenon when a weak form of the converse
inequality is also true. Formally, we define

Definition 7.1.1. Let (Ω, µ) be a probability space and 0 < η < 1. A random
variable f : Ωn → R is said to be (p, q, η)-hypercontractive if for every a ∈ R

||a+ f ||p ≥ ||a+ ηf ||q.

It is also common to define hypercontractivity in terms of the norms of f under
a certain “noise operator”. However, as we will only use hypercontractivity as a
tool to bound large norms in terms of small norms, Definition 7.1.1 is more suitable
for our purposes.

Hypercontractivity is of great importance in many areas of analysis. In com-
puter science, there are many important applications in the analysis of boolean
functions, where it was first introduced by Kahn, Kalai and Linial [60], in a famous
result which states that in every balanced boolean function f : {−1, 1}n → {−1, 1},
there is a variable with influence (w.r.t. the uniform distribution on {−1, 1}n) at
least Ω

(
logn
n

)
.

The perhaps most famous hypercontractivity result is a theorem which in the
computer science literature is sometimes called the Hypercontractivity Theorem,
but more often referred to as the Bonami-Beckner Theorem, referring to the work
of Bonami [17, 18] and later work by Beckner [11]. However, many variations of it

95



96 CHAPTER 7. PRELIMINARIES

in different settings were discovered independently at around the same time, e.g. in
the work by Nelson [80] and Gross [49].

We will use the following recent result of Wolff [105], establishing essentially
optimal hypercontractivity estimates for any finite probability space.

Theorem 7.1.2 ([105]). Let (Ω, µ) be a finite probability space in which the min-
imum non-zero probability is α(µ) ≤ 1/2. Then for p ≥ 2, every random variable
f ∈ L2(Ω, µ) with E[f ] = 0 is (2, p, ηp(α))-hypercontractive with

ηp(α) =

√
A1/p −A−1/p

A1/p′ −A−1/p′

where A = (1 − α)/α and 1/p+ 1/p′ = 1. The value at α = 1/2 is taken to be the
limit of the above expression as α → 1/2, i.e., ηp(1/2) = 1/

√
p− 1.

As the ηq(α) quantity in Theorem 7.1.2 is somewhat ungainly to work with, we
will instead use the following bounds which are sufficient for our purposes.

Corollary 7.1.3. Let (Ω, µ) be a finite probability space in which the minimum
non-zero probability is α ≤ 1/2. Then every random variable f ∈ L2(Ω, µ) with
E[f ] = 0 is (2, 3, (α/8)1/6)-hypercontractive.

Proof. We have

η3(α)2 =
A1/3 −A−1/3

A2/3 −A−2/3
=

1
A1/3 −A−1/3

≥ 1
2A1/3

≥ α1/3

2
,

which gives the desired bound.

Corollary 7.1.4. Let (Ω, µ) be a finite probability space in which the minimum non-
zero probability is α ≤ 1/2. Then for p ≥ 2, every random variable f ∈ L2(Ω, µ)
with E[f ] = 0 is (2, p, τp(α))-hypercontractive with

τp(α) =
√
2α/p.

We remark that a sharper bound for α ≤ 1/e is
√
2α ln(1/α)/(p− 1), and an

even sharper bound can be found in e.g. [26]. As the log factor will not have any
impact for our applications, we sacrifice it for the sake of the very simple bound of
Corollary 7.1.4.

Proof. It suffices to prove that ηp(α) in Theorem 7.1.2 is lower-bounded by τp(α).
It will be more convenient to view τp and ηp as functions of A = 1−α

α rather than
of α. At α = 1/2, the statement is clearly true, so let α < 1/2, implying A > 1.

We need to show that for every A > 1 and p ≥ 2,

A1/p −A−1/p

A1/p′ −A−1/p′ ≥ 2
(1 +A)p

.



7.1. HYPERCONTRACTIVITY 97

Multiplying numerator and denominator by A−1/p, the left hand side is clearly
equal to

A1/p −A−1/p

A1/p′ −A−1/p′ =
A2/p − 1

A−A−1+2/p
.

We will now bound the numerator and denominator of this expression. For the
numerator, we have

A2/p − 1 = e
2
p lnA − 1 ≥ 2

p
lnA,

since ex > 1 + x for every x > 0. For the denominator, we claim that

A−A−1+2/p ≤ (1 +A) lnA. (7.1)

To see this, first note that the inequality holds at A = 1. Furthermore, the deriv-
atives of the left and right hand sides of the inequality with respect to A are

∂

∂A
(A−A−1+2/p) = 1 + (1 − 2/p)A−2+2/p

∂

∂A
((1 +A) lnA) = 1 +A−1 + ln(A).

It is easy to see that for A ≥ 1, 1+A−1 + ln(A) ≥ 1+ (1− 2/p)A−2+2/p and hence
Equation (7.1) holds for every A ≥ 1.

Combining the two bounds, we obtain

η2q =
A1/p −A−1/p

A1/p′ −A−1/p′ ≥
2
p lnA

(1 +A) lnA
=

2
p(1 +A)

= τ2q ,

for every A > 1.

It is well-known that if (Ω, µ) is hypercontractive, then low-degree polynomials
over (Ωn, µ⊗n) are hypercontractive, see e.g. [79] and [58].

Theorem 7.1.5. If every mean-zero function f ∈ L2(Ω, µ) is (2, p, η)-hypercontractive,
then every mean-zero degree-d polynomial g ∈ L2(Ωn, µ⊗n) is (2, p, ηd)-hypercontractive.

As a simple corollary of Corollary 7.1.4 and Theorem 7.1.5, we have

Theorem 7.1.6. Every degree-d polynomial f ∈ L2(Ωn, µ⊗n) satisfies

||f ||2 ≥
(
2α
p

)d/2
||f ||p.

The proof follows by writing f = f=0+f>0, noting that ||f ||2 ≥ ||ηf=0+f>0||2
(for every 0 ≤ η ≤ 1), and then appealing to the hypercontractivity of f>0. See
also [58], Theorem 5.10.

For the application in Chapter 8, we will need that the �1 and �2 norms are
comparable, rather than �2 and �p for p > 2. The former follows from the latter by
a classic application of Hölder’s inequality. Let us just state the special case when
p = 3, as this will be sufficient for our purposes.



98 CHAPTER 7. PRELIMINARIES

Theorem 7.1.7. If f satisfies ||f ||2 ≥ η||f ||3, then ||f ||1 ≥ η3||f ||2.

Proof. Applying Cauchy-Schwarz to the functions g(x) = |f(x)|1/2 and h(x) =
|f(x)|3/2, we have

||f ||22 = 〈g, h〉 ≤ ||g||2||h||2 = E[|f(x)|]1/2 E[|f(x)|3]1/2 = ||f ||1/21 ||f ||3/23 .

By the relation between the �2 and �3 norms of f we can bound ||f ||3/23 ≤ η−3/2||f ||3/22 .
Dividing both sides by ||f ||3/22 and squaring, we conclude that

||f ||2 ≤ η−3||f ||1,

as desired.

For future reference, we note that combining Corollary 7.1.3, Theorem 7.1.5,
and Theorem 7.1.7 gives:

Theorem 7.1.8. Let (Ωn, µ⊗n) be a finite product space. Then any degree-d poly-
nomial f ∈ L2(Ωn, µ⊗n) satisfies

||f ||1 ≥
(
α(µ)
8

)d/2
||f ||2.

When we use Theorem 7.1.6 and Theorem 7.1.8, we sometimes refer to them as
“hypercontractivity”, even though they are formally not hypercontractivity estim-
ates. For Theorem 7.1.6, the only reason that we do not state it as a hypercon-
tractivity estimate is that this would require adding the condition E[f ] = 0 (a ne-
cessary condition for f to be hypercontractive is that E[f ] = 0). For Theorem 7.1.8,
adding the condition E[f ] = 0 is not sufficient to obtain hypercontractivity (it is
an easy exercise to check that if E[f ] �= 0, then for all 0 < η < 1 there is an a such
that ||a+ f ||1 < ||a+ ηf ||2).

7.2 Concentration Bounds

It is known that hypercontractivity implies good concentration bounds for low-
degree polynomials (see e.g. [26]).

Theorem 7.2.1. Let (Ωn, µ⊗n) be a finite product space. Then, for any degree-d
polynomial f ∈ L2(Ωn, µ⊗n) with ||f ||2 = 1 and any t > ed/2,

Pr[|f | > t] ≤ exp(−ct2/d),

where c := d·α(µ)
e .



7.2. CONCENTRATION BOUNDS 99

Proof. Set p = t2/d · 2α
e . By Markov’s inequality, we have

Pr[|f | > t] = Pr[|f |p > tp] ≤
||f ||pp
tp

. (7.2)

Now, since t > ed/2, p is at least 2α. This implies that

||f ||p ≤
√
p/(2α)

d
||f ||2 = t/ed/2.

If p > 2, this follows from Theorem 7.1.6, whereas if 2α ≤ p ≤ 2, it follows from
the monotonicity of �p norms.

Plugging this into Equation (7.2) we get

Pr[|f | > t] ≤
(
t/ed/2

t

)p
= exp

(
−dα

e
t2/d

)
.

For quadratic polynomials, hypercontractivity combined with the standard “Chernoff
method” for concentration inequalities give the following strong bound (it also fol-
lows from Theorem 7.2.1). The fact that sums of independent random variables
with sufficiently “nice” moments are concentrated is sometimes also called Bern-
stein’s inequality.

Theorem 7.2.2. Let (Ωn, µ⊗n) be a finite product space. Then for every ε > 0
there is a δ > 0 depending only on ε and α(µ) such that the following holds. Let
f ∈ L2(Ωn, µ⊗n) be a degree-2 polynomial. Let x1, . . . , xm be i.i.d. samples from
(Ωn, µ⊗n). Then

Pr

[∣∣∣∣∣
m∑
i=1

|f(xi)| −mE[|f |]
∣∣∣∣∣ > εm

]
≤ 2 exp(−δm)

Proof. Let λ > 0 be a parameter to be determined later, and let µ = E[|f |] and
X =

∑m
i=1 |f(xi)|. By Markov’s inequality and the independence of the xi:s,

Pr [X ≥ (µ+ ε)m] ≤ E[exp(λX)]
exp(λ(µ + ε)m)

=
(

E[exp(λ|f |)]
exp(λ(µ+ ε))

)m
:= βm.

Hence it suffices to prove that for an appropriately chosen λ, we have β < 1.
Let c be such that ||f ||p ≤ cp||f ||2 for every p ≥ 2 (by Theorem 7.1.6 we can

take c = 1
2α(µ) ). By the Taylor expansion exp(x) =

∑∞
k=0 x

k/k!, we have

E[exp(λ|f |)] =
∞∑
k=0

E
[
(λ|f |)k

]
k!

≤ 1 + λµ+
∞∑
k=2

(λck)k

k!

≤ 1 + λµ+
∞∑
k=2

(λck)k

(k/e)k
= 1 + λµ+

∞∑
k=2

(λce)k

= 1 + λµ+
(λce)2

1− λce
≤ 1 + λ(µ + ε/2) ≤ exp(λ(µ + ε/2)),



100 CHAPTER 7. PRELIMINARIES

where the last line assumes that λ is small enough so that λce < 1, and that
λ (ce)2

1−λce ≤ ε/2. Hence, β ≤ exp(−λε/2), which with δ := λε/2 = Θ(ε2/c2) proves
that

Pr [X −mµ > εm] ≤ exp(−δm).

The lower bound on X follows by either applying the same argument to the random
variable −X , or by noting that since −X is upper bounded by 0 one can do an
even easier argument.

7.3 Nets

For the Theorem 8.4.1 in Chapter 8, we will use the following result on the existence
of small ε-nets of the unit sphere in Rn.

Theorem 7.3.1. For every n and 0 < ε < 1/3, there exists a set S of at most
(5/ε)n unit vectors in Rn, such that, for any unit vector u ∈ Rn, there is a v ∈ S
satisfying

〈u, v〉
R
≥ 1− ε.

The following construction is due to Kochol [68]. The proof we sketch here is
from Brieden et al. [19].

Proof sketch. Define R =
√
n/ε, and let W = Zn ∩B(R), where B(R) ⊆ Rn is ball

of radius R (in �2 norm). Let the net be V = {w/||w||2 : w ∈ W}, the vectors of
W normalized to unit length.

For any unit vector v, define z = 'R ·v( (i.e., the vector u in which ui = 'R ·vi().
Then z/||z||2 ∈ V , and

〈v, z/||z||2〉R
=

1
||z||2

∑
i

vi'Rvi( ≥ 1
R

∑
i

Rv2i − vi = 1− ||v||1/R ≥ 1− ε.

For the size |V |, it is not hard to verify that |V | ≤ Vol(B((1 + ε/2)R)), by
considering all unit cubes centered at the points of W , and noting that each such
cube lies inside B((1+ ε/2)R). Letting γ = (1+ ε/2)/ε, we get |V | ≤ Vol(B(γ

√
n)).

Assuming for convenience that n is even, we have

Vol(B(γ
√
n)) =

πn/2(γ
√
n)n

(n/2)!
≤ γnπn/2nn/2(

n
2e

)n/2 =
(
γ
√
2πe

)n
.

Finally, for ε < 1/3, the expression γ
√
2πe is bounded by 5/ε.



Chapter 8

Randomly Supported
Independence

In this chapter, we study questions which, somewhat informally, can be described
as follows: given a random set X of m points from Ωn, for some finite set Ω, what
is the probability p that there exists a k-wise independent distribution η over Ωn
such that Supp(η) ⊆ X? In particular, we will be interested in how p increases as
m increases.

If we ask how large m needs to be in order for p > 0, we are simply asking
about the minimum size of the support of a k-wise independent distribution over
Ωn. This is a question which has been explored a lot in the past, and there is a
rich literature of results (see Section 3.5).

Here, we will focus on the “high end” of the scale, and ask, how large does
m have to be in order to have p ≥ 1 − o(1) (where we think of both m and p as
functions of n and in particular, the o(1) refers to something which tends to 0 as
n → ∞), or even p = 1?

Apart from being interesting mathematical questions by themselves, these ques-
tions are motivated by the connection between pairwise independence and approx-
imation resistance, given in Chapter 5. Given that k-wise independence is of fun-
damental importance in many areas of computer science, we hope that these results
may find further applications in the future.

The main theorem of this chapter is Theorem 8.4.1, which says that with high
probability, c(q)n2 random points in [q]n can support a pairwise independent dis-
tribution. For higher independence, we prove the somewhat weaker Theorem 8.5.1,
which says that with high probability (c(q) · n)k log(nk) random points in [q]n can
support a k-wise independent distribution. We also give a lower bound, stating
that with high probability, fewer than Ω

(
nk

qk2kk

)
random points do not support a

balanced k-wise independent distribution. For k = 2 this matches Theorem 8.4.1 up
to a constant, and for k = O(1) it matches Theorem 8.5.1 up to a factor Θ(logn).
It would be interesting to understand the dependency on k better.

101



102 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

For the question of when a subset of [q]n certainly supports a k-wise independent
distribution, we prove that every subset of [q]n with size at least qn(1 − c(q)−k)
support a k-wise independent distribution.

As we show in Theorem 8.2.2, the question of randomly supported independence
can be viewed as a question about random polytopes, in particular, whether a
certain random polytope contains the origin. In this setting, Füredi [39] proved
that, for the special case of the uniform distribution on the boolean hypercube
{−1, 1}n, the threshold for a set of m random points to be likely to support a “1-
wise independent” distribution, i.e., a distribution in which each bit is uniform, is
exactly m = 2n. Unfortunately, Füredi’s very elegant proof can not be adapted to
k-wise independence for k ≥ 2.

8.1 Definitions

Throughout this chapter, we fix some finite product space (Ωn, µ⊗n), with a Fourier
basis {χσ}σ∈Zn

q
. As we will frequently use the set of multi-indices σ with cardinality

1 ≤ |σ| ≤ k, we let
Dk = { σ ∈ Z

n
q | 1 ≤ |σ| ≤ k }.

Note that |Dk| =
∑k

i=1(q − 1)i
(
n
i

)
≤ (qn)k.

Definition 8.1.1. Given a vector x ∈ Ωn, we define x:≤k: as

x:≤k: :=
⊕
σ∈Dk

χσ(x) ∈ R
Dk ,

Here, ⊕ denotes the direct sum, e.g., a⊕ b⊕ c = (a, b, c). In other words, x:≤k:
is the vector obtained by writing down the values of all non-constant monomials of
degree at most k, evaluated at x. For a set X ⊆ Ωn, we use X :≤k: ⊆ RDk to denote
the set { x:≤k: |x ∈ X }.

Note that every v ∈ RDk corresponds to a degree-k polynomial fv ∈ L2(Ωn, µ⊗n)
with E[fv] = 0, defined by fv(x) =

〈
v, x:≤k:

〉
R
for every x ∈ Ωn (i.e., we simply

interpret v as the Fourier coefficients of fv).
Given a set X ⊆ Rn, conv(X) denotes the convex hull of X , defined as the

minimum convex set containing X . For X = {x1, . . . , xm} finite, conv(X) is simply
the set of all points which are convex combinations of x1, . . . , xm,

conv(X) = {
m∑
i=1

αixi : αi ≥ 0,
m∑
i=1

αi = 1 }.

8.2 Limited Independence and Low-Degree Polynomials

First, we characterize the sets X ⊆ Ωn which support k-wise independent distribu-
tions, in terms of degree-k polynomials over Ωn. We begin with the following easy
proposition.



8.2. LIMITED INDEPENDENCE AND LOW-DEGREE POLYNOMIALS 103

Proposition 8.2.1. Let (Ωn, µ⊗n) be a finite product space with Fourier basis
{χσ}σ∈Zk

q
, and let (Ωn, η) be an arbitrary probability space. Then µ⊗n = η if and

only if
E

x′∈(Ωn,η)
[χσ(x′)] = 0

for every σ ∈ Zkq with |σ| > 0.

Proof. Define f : Ωn → R by f(x) = η(x)/µ⊗n(x). Note that η = µ⊗n iff f is a
constant, i.e., iff Var[f ] = 0, which happens iff f̂(σ) = 0 for every σ �= 0. Let us
then compute f̂ . We have

f̂(σ) = 〈χσ, f〉 = E
x∈(Ωn,µ⊗n)

[χσ(x)η(x)/µ⊗n(x)]

=
∑
x∈Ωn

µ⊗n(x)χσ(x)η(x)/µ⊗n(x) = E
x∈(Ωn,η)

[χσ(x)].

Thus, η = µ⊗n if and only if

E
x∈(Ωn,η)

[χσ(x)] = 0

for all σ �= 0, as desired.

We now state the characterization of the subsets of Ωn that support k-wise
independent distributions.

Theorem 8.2.2. Let X ⊆ Ωn be a set of vectors. Then, the following conditions
are equivalent:

(1) There exists a k-wise independent distribution η over Ωn with marginals µ
such that Supp(η) ⊆ X

(2) 0 ∈ conv(X :≤k:)

(3) There is no degree k polynomial f ∈ L2(Ωn, µ⊗n) such that f(x) > E[f ] for
every x ∈ X.

This characterization is likely already known, but as we have not been able to
find it in the literature, we give a proof here.

Proof. (1) ⇔ (2). We view conv(X :≤k:) as the set of probability distributions
over Ωn supported on X . Any convex combination

∑
x∈X αx · x:≤k: ∈ conv(X :≤k:)

corresponds to the probability distribution ηα over Ωn in which

ηα(x) =
{

αx if x ∈ X
0 otherwise .

Thus, it suffices to prove that, for every convex combination {αx}x∈X , the corres-
ponding distribution ηα has all k-dimensional marginals equal to µ⊗k if and only



104 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

if
∑

αxx
:≤k: = 0. This in turn is an immediate consequence of Proposition 8.2.1.

Formally, fix an arbitrary convex combination {αx}. For a subset S = {i1, . . . , ik} ⊆
[n], we write ηS for the marginal distribution ηα|S .

If
∑

x∈X αxx
:≤k: = 0, then in particular for every S with |S| = k and every

0 �= σ ⊆ S, the σ:th coefficient of
∑

x∈X αxx
:≤k: is 0. In other words, for every

such S and σ,
E

xS∈(ΩS ,ηS)
[χσ(x)] = 0, (8.1)

which by Proposition 8.2.1 implies that for every S it holds that ηS = µ⊗k (up to
an appropriate identification of the indices).

Conversely, if ηS = µ⊗k, then Proposition 8.2.1 implies that Equation (8.1)
holds for every 0 �= σ ⊆ S and hence the σ:th coordinate of

∑
x∈X αxx

:≤k: is 0 for
all such σ. This implies that if ηS = µ⊗k for every S with |S| = k, every coordinate
of
∑

αxx
:≤k: is 0 and hence

∑
αxx

:≤k: = 0.
(2) ⇔ (3). Without loss of generality, we can restrict our attention to f such

that E[f ] = 0. Now, 0 is not in the convex hull of X :≤k: if and only if there
exists a separating hyperplane v ∈ RDk such that

〈
v, x:≤k:

〉
R
> 0 for every x ∈ X .

The equivalence now follows by the correspondence between v ∈ RDk and degree-k
polynomials f with E[f ] = 0.

8.3 Polynomials Are Balanced

In this section we prove that low-degree polynomials must exceed their expectation
by a constant amount on a constant fraction of inputs.

Theorem 8.3.1. For every probability space (Ω, µ) there is a c = poly(α(µ)) such
that for any degree-d polynomial f ∈ L2(Ωn, µ⊗n) with E[f ] = 0 and Var[f ] = 1,

Pr[f > cd] > cd.

A similar statement can be found in [26]. They lower bound Pr[f > 0] rather
than Pr[f > cd] and only consider Ω = {−1, 1}, but these differences are superficial,
and their proof (which is quite different from the one below) could be adapted to a
proof of Theorem 8.3.1 as well.

Proof. Let δ = poly(α(µ)) > 0 be the constant from Theorem 7.1.8 (so that ||f ||1 ≥
δ||f ||2), and let c = (δ/4)2.

Define g ∈ L2(Ωn, µ⊗n) by

g(x) = 1[f>cd](x) · f(x) =
{

f(x) if f(x) > cd

0 otherwise .

We will lowerbound Pr[f > cd] = Pr[g > 0] by the second moment:

Pr[g > 0] ≥ E[g]2

E[g2]
> ||g||21,



8.4. PAIRWISE INDEPENDENCE 105

where the last inequality follows from E[g2] < E[f2] = 1. For ||g||1, note that, since
E[f ] = 0, we have E[1[f>0] · f ] = 1

2 ||f ||1, implying that

||g||1 = E[g] =
1
2
||f ||1 − E[1[0<f≤cd]f ] ≥

1
2
||f ||1 − cd,

which, by hypercontractivity, is lower-bounded by

1
2
δd||f ||2 − cd ≥

√
c
d

so that Pr[g > 0] > cd, as desired.

As an easy corollary, we see that for every k, any set X ⊆ Ωn of sufficiently
large constant density supports a k-wise independent distribution.

Corollary 8.3.2. For every probability space (Ω, µ) there exists a c = poly(α(µ))
such that every set X ⊆ Ωn of total measure µ⊗n(X) ≥ 1 − ck supports a k-wise
independent distribution with marginals µ.

The proof is just a direct consequence of Theorems 8.2.2 and 8.3.1. While the
corollary only needs the weaker bound Pr[f > 0] ≥ ck rather than Pr[f > ck] ≥
ck as Theorem 8.3.1 gives, the stronger form will be necessary for the proof of
Theorem 8.5.1 in Section 8.5.

We note that the exponential dependence on the degree/independence in both
Theorem 8.3.1 and Corollary 8.3.2 is tight, which can be seen by looking at the
function f : {−1, 1}n → R defined by

f(x) =
d∏
i=1

(1− xi)− 1,

which is a degree-d polynomial under the uniform distribution on {−1, 1}n, which
has value 2d − 1 with probability 2−d, and value −1 with probability 1− 2−d.

8.4 Pairwise Independence

In this section, we prove the following theorem.

Theorem 8.4.1. For every (Ω, µ) there are constants c, δ > 0 such that the fol-
lowing holds. Let x1, . . . , xm ∈ Ωn be a sequence of m independent samples from
(Ωn, µ⊗n). Then, if m > cn2, the probability that X = {x1, . . . , xm} contains a
pairwise independent distribution with marginals µ is at least 1− exp(−δ

√
n)

Before proceeding with the proof of Theorem 8.4.1, let us briefly describe the
intuition behind it. The idea is to look at the convex hull K of the set of all ±1
combinations of x:≤2:

1 , . . . , x:≤2:
m , and compare this to the sum x = x:≤2:

1 + . . .+x:≤2:
m .

By a simple application of Theorem 8.2.2, it suffices to prove that the latter sum



106 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

lies inside K with high probability. Intuitively, since x is a sum of m independent
vectors with expected value 0 and length about

√
|D2|, the total length of x should

be around
√
m|D2|. On the other hand, K consists of all [−1, 1]-valued linear

combinations of x:≤2:
1 , . . . , x:≤2:

m and as an easy consequence of hypercontractivity
it will turn out that, in every direction v, each x:≤2:

i contributes a constant to the
expected width of K in direction v. Thus one can hope that the size of K grows
linearly in m so that if m is a sufficiently large multiple of |D2|, K is a lot larger
than ||x|| ≈

√
m|D2|. It turns out that this is indeed the case, but in order to be

able to show that the size of K grows linearly in every direction, we need to use the
concentration inequality Theorem 7.2.2 for quadratic polynomials. It is this part
which breaks down when one tries to repeat the same proof for k-wise independence
in general—the analogue of Theorem 7.2.2 is simply not true any more. We feel that
this limitation to pairwise independence is a limitation of our proof rather than an
inherent limitation in the problem, and that the analogue of Theorem 8.4.1 (where
we require m > (cn)k) should be true also for higher independence.

Finally, we remark that it can be seen that the constant c in Theorem 8.4.1 can
be chosen as poly(1/α(µ)). Being careful, one can take c to be Θ(1/α4 log 1/α). It
would be interesting to determine exactly how small c can be—a reasonable guess
seems to be c′/α(µ)2 for some universal constant c′, though the present proof does
not reach this bound. The main bottleneck in the current proof turns out to be
an application of Theorem 7.2.2, and in particular the fact that the value of δ in
Theorem 7.2.2 will be of order Θ(ε2α2).

Proof of Theorem 8.4.1. Let m > c0|D2|, where c0 is a constant that will be chosen
sufficiently large. We will prove that, with probability at least 1− exp(−δ

√
n), for

some δ > 0, we have 0 ∈ conv(X :≤2:). By Theorem 8.2.2 this implies that X
contains a pairwise independent distribution. This then implies Theorem 8.4.1
with c := c0q

2, since |D2| = (q − 1)n+ (q − 1)2
(
n
2

)
≤ q2n2.

Let

K =

{
m∑
i=1

aix
:≤2:
i : |ai| ≤ 1

}
,

and define

x =
m∑
i=1

x:≤2:
i ∈ R

D2 .

Then, it suffices to prove that x lies in the interior of K, since if x =
∑

i aix
:≤2:

with not all ai = 1, we can rearrange and write 0 as the convex combination

0 =
m∑
i=1

1− ai∑
j(1− aj)

x:≤2:
i ∈ conv(X :≤2:).

For a unit vector v ∈ R
Dk , let

width(K, v) = sup
x∈K

{〈x, v〉
R
}



8.4. PAIRWISE INDEPENDENCE 107

be the width of K in the direction v.
We will prove that, with high probability, the minimum width of K is larger

than ||x|| (where || · || denotes the standard Euclidean norm in RDk). In particular,
we have the following two lemmas.

Lemma 8.4.2. There are constants c1 ∈ R, c2 > 0 and δ1 > 0 such that, if
m > c1|D2|, the probability that

inf
v
width(K, v) < c2m (8.2)

is at most exp(−δ1m).

Lemma 8.4.3. There is a constant δ2 > 0 such that if m ≥ |D2|, the probability
that

||x|| > 2
√
m|D2| (8.3)

is at most exp(−δ2
√
n).

Before proving the lemmas, let us see how they suffice to finish the proof of
Theorem 8.4.1. Let c0 = max(c1, (2/c2)2), and m > c0|D2|. Then by a union
bound there is a δ such that with probability at least 1 − exp(−δ

√
n), neither

Equation (8.2) nor Equation (8.3) hold, and we have

inf
v
width(K, v) ≥ c2m > 2

√
m|D| ≥ ||x||.

This implies that x lies strictly inside K, as desired. Hence, if m > cq2n2 ≥ c0|D2|,
the probability that 0 ∈ conv(X :≤2:) is at least 1−exp(−δ

√
n), and we are done.

It remains to prove the two lemmas. We begin with Lemma 8.4.3 as this is the
easier of the two.

Proof of Lemma 8.4.3. Let

l = ||x||2 =
∑
σ∈D2

(
m∑
i=1

χσ(xi)

)2

be the squared length of x. We can then view l as a degree 4 polynomial over
L2(Ωnm, µ⊗mn). Our goal is to apply the concentration bound Theorem 7.2.1 to
l. To be successful in this, we need that the variance Var[l] is of a lower order
than E[l]2. The expectation of l is easily seen to be E[l] = |D2|m. To compute the
variance of l, we compute

l2 =
∑
σ1,σ2

(
m∑
i=1

χσ1(xi)

)2( m∑
i=1

χσ2(xi)

)2

=
∑
σ1,σ2

∑
i1,i2,i3,i4∈[m]

χσ1(xi1 )χσ1(xi2 )χσ2(xi3 )χσ2(xi4 ).



108 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

Define
S(σ1, σ2) =

∑
i1,i2,i3,i4∈[m]

χσ1(xi1)χσ1 (xi2 )χσ2(xi3 )χσ2(xi4 ),

and let us analyze E[S(σ1, σ2)]. If σ1 �= σ2, the expected value of

χσ1(xi1 )χσ1(xi2 )χσ2(xi3 )χσ2(xi4 )

is 0 unless i2 = i1 and i4 = i3. Hence for σ1 �= σ2, we have

E[S(σ1, σ2)] =
∑
i1,i3

E[χσ1(xi1)
2χσ2(xi3 )

2].

The terms where i1 �= i3 contribute 1 to this sum, and the terms where i1 = i3
contribute at most 1/α2 by Fact 2.3.4. Hence we have for σ1 �= σ2

E[S(σ1, σ2)] ≤ m2 +m/α2.

Now let σ1 = σ2 := σ, and consider the expected value of

χσ(xi1)χσ(xi2 )χσ(xi3 )χσ(xi4).

If for any j ∈ [m] it is the case that only one of the ik:s equal j, this expectation
is 0. Thus the only tuples (i1, i2, i3, i4) for which the expectation is not 0 are those
where the values are paired up in the sense that i = j and k = l, or i = k and
j = l, or i = l and j = k. There are exactly 3m(m− 1) +m ≤ 3m2 ways to choose
i1, i2, i3, i4 in such a paired way and hence in this case

E[S(σ, σ)] ≤ 3m2/α2,

where we again used Fact 2.3.4. After these lengthy computations we thus find that

E[l2] =
∑
σ1,σ2

E[S(σ1, σ2)] ≤ |D2|2m2 + |D2|2m/α2 + 3|D2|m2/α2,

so that
Var[l] ≤ |D2|2m/α2 + 3|D2|m2/α2 ≤ 4|D2|m2/α2,

where the last inequality assumed that m ≥ |D2|. Applying Theorem 7.2.1 to the
polynomial (L − E[L])/

√
Var[L], we have

Pr[||x|| > 2
√

|D2|m] = Pr[L− E[L] > 3|D2|m]

≤ exp(−c(3|D2|m/
√
Var[L])1/2) ≤ exp(−c′|D2|1/4),

for c′ = c
√
3α/2. Since |D2| ≥ q2n2, the lemma follows.



8.4. PAIRWISE INDEPENDENCE 109

We now move on to the proof of Lemma 8.4.2, which is a bit more involved.
We will lower bound the minimum width of K by first proving that the width of
K in any direction is sharply concentrated around its expected value, then using
this to prove that the maximum width of K is bounded, which together with the
concentration result also gives that the minimum width is bounded.

We begin with stating and proving the concentration result.

Lemma 8.4.4. There is a constant c3 := poly(α(µ)) and τ > 0 such that the
following holds: for every v ∈ R

D with ||v|| = 1, the probability that

c3m ≤ width(K, v) ≤ (1 + c3)m

is at least 1− exp(−τm).

Proof. Set 2c3 := (α(µ)/8), the constant from Theorem 7.1.8 for d = 2.
For v ∈ RD with ||v|| = 1, let fv ∈ L2(Ωn, µ⊗n) be the corresponding degree-2

polynomial such that fv(x) =
〈
v, x:≤2:

〉
.

By definition, width(K, v) = maxa∈[−1,1]m
∑m

i=1 ai

〈
v, x:≤2:

i

〉
R

. The maximum

is clearly attained by setting ai = sgn
(〈

v, x:≤2:
i

〉)
so that

width(K, v) =
m∑
i=1

∣∣∣〈v, x:≤2:
i

〉∣∣∣ = m∑
i=1

|fv(xi)|.

By Theorem 7.2.2 the probability that
∑

i |fv(xi)| deviates by more than c3m from
its expectation is at most exp(−τm) for some constant τ depending only on µ and
c3. But the expectation of

∑
i |fv(xi)| equals ||f ||1 · m, which is trivially upper

bounded by ||f ||2 ·m = m, and by Theorem 7.1.8 lower bounded by 2c3||f ||2 ·m =
2c3m.

Hence, with probability at least 1− exp(−τm), we have

(||f ||1 − c3)m ≤ width(K, v) ≤ (||f ||1 + c3)m
c3m ≤ width(K, v) ≤ (1 + c3)m.

We now prove the lower bound on the minimum width of K.

Proof of Lemma 8.4.2. Let V = {v1, . . . , vL} be an ε-net of the unit sphere in RD2 ,
i.e., a set of vectors such that, for every v ∈ RD2 with ||v|| = 1, there is a vector
vi ∈ V such that 〈v, vi〉R

≥ 1 − ε. Such a set can be constructed of size at most
L = (5/ε)|D2| (Theorem 7.3.1).

For any vi ∈ V , Lemma 8.4.4 tells us that

c3m ≤ width(K, vi) ≤ (1 + c3)m



110 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

except with probability at most exp(−τm). By a union bound, these inequalities
then hold for every vi ∈ V except with probability

L exp(−τm) = exp(−τm+ ln(5/ε)|D2|) = exp(−τm/2),

provided m is a sufficiently large multiple of |D2|.
Let Wmax = sup||v||=1width(K, v). We now prove that Wmax is small.
For any w ∈ RD with ||w|| = 1, we can write w = (1 − ε)vi +

√
2εw′ for some

vi ∈ V and vector w′ with ||w′|| ≤ 1. We then have for any u ∈ K

〈u,w〉 = (1− ε) 〈u, vi〉+
√
2ε 〈u,w′〉

≤ (1− ε)width(K, vi) +
√
2εwidth(K,w′)

≤ (1− ε)(1 + c3)m+
√
2εWmax.

Taking the supremum over all u ∈ K and unit vectors w ∈ RD, we obtain

Wmax ≤ (1 − ε)(1 + c3)m+
√
2εWmax

Wmax ≤ (1− ε)(1 + c3)
1−

√
2ε

≤ (1 + 2c3)m,

provided ε is chosen sufficiently small compared to c3.
But then, we have, again for any w = (1 − ε)vi +

√
2εw′ and u ∈ K,

〈u,w〉 = (1− ε) 〈u, vi〉+
√
2ε 〈u,w′〉

≥ (1− ε)c3m−
√
2εwidth(K,w′)

≥ ((1− ε)c3 −
√
2ε(1 + c3))m ≥ c3/2m,

again provided ε is sufficiently small compared to c3.
Hence, with probability at least 1− exp(−δm), we have inf ||v||=1width(K, v) ≥

c3/2m := c2m, provided that m is a sufficiently large multiple c1|D2| of |D2|.

8.5 k-wise Independence

In this section, we prove a result similar to Theorem 8.4.1 for k-wise independence.
Unfortunately, the bounds we get are not as strong as for pairwise independence,
in the sense that we get an extra factor log(nk) in the number of random points
needed.

Theorem 8.5.1. For every (Ω, µ) there are constants c, δ > 0 such that the fol-
lowing holds. Let x1, . . . , xm ∈ Ωn be a sequence of m independent samples from
(Ωn, µ⊗n). Then, if m > (cn)kk logn, the probability that X = {x1, . . . , xm} con-
tains a pairwise independent distribution with marginals µ is at least 1−exp(−δnk)



8.5. K-WISE INDEPENDENCE 111

Proof. By Theorem 8.2.2, x1, . . . , xm does not support a k-wise independent dis-
tribution with marginals µ if and only if, there is a degree-k polynomial f ∈
L2(Ωn, µ⊗n), such that f(xi) < 0 for every xi.

For any fixed f , Theorem 8.3.1 gives that the probability that f(xi) < τk for
every xi is at most (1 − τk)m ≤ exp(−τkm), where τ = poly(α(µ)). Thus, it is
clear that any fixed f has a very small probability of witnessing that x1, . . . , xm
does not support a k-wise independent distribution.

To bound the probability that any f witnesses that x1, . . . , xm supports a k-wise
independent distribution, we construct a net of degree-k polynomials as follows: let
Fδ denote the set of degree-k polynomials f ∈ L2(Ωn, µ⊗n) such that E[f ] = 0,
Var[f ] ≤ 2 and every Fourier coefficient of f is an integer multiple of δ.

We then have that |Fδ| ≤ (1/δ)O(|Dk|) = exp(c1qknk log 1/δ) for some universal
constant c1. Then Theorem 8.3.1 and a union bound gives that the probability that
there exists an f ∈ Fδ such that f(xi) < τk for every xi, is bounded by

|Fδ|(1 − τk)m ≤ exp(c1qknk log(1/δ)− τkm) ≤ exp(−τkm/2),

provided m ≥ 2c1(nq/τ)k log(1/δ).
Now, given a degree-k polynomial f with E[f ] = 0, denote by f̃ the polynomial

in Fδ which is closes to f in �∞ norm. Then, if ||f − f̃ ||∞ ≤ τk for every degree-k
polynomial f , we would be done, since the existence of f ∈ L2(Ωn, µ⊗n) such that
f(xi) < 0 for every xi then implies that f̃(xi) ≤ f(xi)+ |f̃(xi)− f(xi)| < τk, which
happens with probability at most exp(−τkm/2) := exp(−δm).

We have the following easy bound on the distance ||f − f̃ ||∞.

Claim 8.5.2. For every f with ||f ||2 = 1,

||f − f̃ ||∞ ≤ δ

(
nq√
α(µ)

)k

,

provided this quantity is smaller than 1.

Proof. Let f ′ be the result of rounding every Fourier coefficient of f to its nearest
multiple of δ. Then, for any x ∈ Ωn,

|f(x)− f ′(x)| =
∣∣∣∣∣ ∑
σ∈Dk

(f̂(σ)− f̂ ′(σ))χσ(x)

∣∣∣∣∣ ≤ δ
∑
σ∈Dk

||χσ||∞ ≤ δ

(
nq√
α(µ)

)k

,

where the last step used Fact 2.3.4 and |Dk| ≤ (nq)k. It remains to show that
f ′ ∈ Fδ, i.e., that Var[f ′] ≤ 2. But this follows immediately since

Var[f ′] = ||f ′||2 ≤ ||f ||2 + ||f − f ′||2 ≤ 1 + ||f − f ′||∞ ≤ 2

provided the bound on ||f − f ′||∞ ≤ 1.



112 CHAPTER 8. RANDOMLY SUPPORTED INDEPENDENCE

To finish the proof of Theorem 8.5.1, we thus conclude that in order to have
||f − f̃ ||∞ ≤ τk, it suffices to take

δ =
(√

ατ

nq

)k
,

giving the bound

m ≥ 2c1(nq/τ)k log(1/δ) = (cn)kk logn

for c depending only on α, q and τ , which in turn depend only on (Ω, µ).

8.6 A Lower Bound

In this section we give give a lower bound on the number of random points of Ωn
needed to get a set supporting a balanced k-wise independent distribution.

Theorem 8.6.1. Let µU be the uniform distribution over Ω, and let x1, . . . , xm
be a sequence of m independent samples from (Ωn, µ⊗n

U ). Then, if m < nk

2qk2k2k
,

the probability that x1, . . . , xm can support a k-wise independent distribution with
marginals µU (i.e., a balanced k-wise independent distribution) is at most

exp(−Θ(nk/qk)).

Proof. Let x1, . . . , xm be a set of m independent samples of (Ωn, µ⊗n
U ). We will

prove that, if m < nk

2qk2k2k
, then with high probability x:≤k:1 , . . . , x:≤k:m are lin-

early independent. In particular, this implies that any convex combination of
x:≤k:1 , . . . , x:≤k:m is non-zero, so that, by Theorem 8.2.2, x:≤k:1 , . . . , x:≤k:m does not
support a k-wise independent distribution.

The main component of the proof is the following lemma.

Lemma 8.6.2. Let m ≤ nk

2qk2k2k
, and let y1, . . . , ym ∈ RDk be m arbitrary points.

Then, the probability that a uniformly random point x ∈ Ωn has x:≤k: lying in the
space spanned by y1, . . . , ym is at most exp(−Θ(nk/qk)).

Letm = nk

2qk2k2k
, and let x1, . . . , xm bem uniformly random points of Ωn. Using

Lemma 8.6.2, we conclude that the probability that x:≤k:1 , . . . , x:≤k:m are linearly
independent is at least

1−m exp
(
− nk

kqk

)
= 1− exp(−Θ(nk/qk)),

which proves Theorem 8.6.1.

Next, we turn to the proof of the lemma.



8.6. A LOWER BOUND 113

Proof of Lemma 8.6.2. Let S ⊆ RDk be the space spanned by the vectors y1, . . . , ym.
Then S has dimension at most m and hence is determined by at least |Dk|−m lin-
early independent equations v1, . . . , v|Dk|−m ∈ RDk such that y ∈ S iff 〈vi, y〉R = 0
for every i ∈ [|Dk|−m]. Equivalently, for x ∈ Ωn, we have x:≤k: ∈ S iff vi(x) = 0 for
every i, where we again interpret vi as a degree-k polynomial. We will prove that
only an exponentially small fraction of all points x ∈ Ωn satisfy these conditions.

In what follows, we define

d(n) :=
k∑
i=1

(q − 1)i
(
n

i

)
≥
(
(q − 1)n

k

)k
,

i.e., the size of the set Dk of indices, for a given value of n. Let T (n,m) be the
maximum possible number of solutions x ∈ Ωn to a system of at least d(n) − m
linearly independent degree-k polynomials v1, . . . , vd(n)−m. We will prove that

T (n,m) ≤ (qk − 1)n/k · exp(km1/k). (8.4)

If d(n) ≤ m so that n ≤ m1/kk/(q − 1), we have the trivial bound T (n,m) ≤
qn ≤ exp(km1/k), so let d(n) > m and assume inductively that Equation (8.4)
holds for all n′ < n. Assume that there is a vi which has degree exactly k (if
all vi have degree at most k − 1, we would get an even better bound). Without
loss of generality, we can take v1 to have degree exactly k, and having a non-zero
coefficient σ with active set S(σ) = [k].

Next, eliminate (by standard Gaussian elimination) all coordinates σ′ with σ′ ⊆
[k]. As there are exactly d(n)− d(n− k) such values of σ′, the resulting system has
at least (d(n)−m)− (d(n)− d(n− k)) = d(n− k)−m equations, and hence has at
most T (n − k,m) solutions. Let us, for each such solution x∗ ∈ Ω[n]−[k], consider
the number of ways of extending it to a solution for the original system. Plugging
in x∗ in the equation v1(x) = 0, this equation becomes an equation of the form

p(x[k]) = 0,

for some function p : Ωk → R. Furthermore, the function p is not identically zero,
since p̂(σ) �= 0. This implies that the number of ways of extending x∗ is at most
qk − 1, and hence we have

T (n,m) ≤ (qk − 1) · T (n− k,m) ≤ (qk − 1)n/k · exp(km1/k).

Thus, the probability that x:≤k: lies inside S for a uniformly random point
x ∈ Ωn is at most

(qk − 1)n/k exp(km1/k)/qn = (1− q−k)n/k exp(km1/k) ≤ exp
(
− n

kqk
+ km1/k

)
.

Plugging in m ≤ nk

2qk2k2k
, the lemma follows.





Chapter 9

Noise Correlation Bounds for
Uniform Functions

This chapter reports on work attempting to achieve good noise correlation bounds
for more general classes of functions than those of Section 2.5. In particular, we are
interested in obtaining correlation bounds under pairwise independent distributions
for functions with no large Fourier coefficients. Functions in which all Fourier
coefficients are bounded by δ are sometimes called δ-uniform, hence the title of this
chapter. The search for such bounds is motivated by their potential applicability
to hardness of approximation, derandomization, and additive combinatorics (see
Section 9.4).

Unfortunately, we do not quite reach the goal of achieving such general bounds.
In particular, the main result Theorem 9.1.1 gives good bounds on 〈f1, . . . , fk〉N
only in the case when the degrees of the functions are small.

We remark that earlier noise correlation bounds such as Theorem 2.5.1 are
proved this way, and then extended to arbitrary functions by (sometimes complic-
ated) truncation arguments. Such truncation arguments appear a lot more difficult
to achieve in our setting. Some discussion on this appears in Section 9.3.

9.1 Main Theorem

Theorem 9.1.1. Let (Ω, µ) be a pairwise independent product space Ω = Ω1× . . .×
Ωk. There is a constant C depending only on µ such that the following holds.

Let f1, . . . , fk be functions fi ∈ L2(Ωni , (µ|i)⊗n). Denote by δ := maxσ∈Zn
q
|f̂1(σ)|

the size of the largest Fourier coefficient of f1, and let D := deg−2(f1, . . . , fk) de-
note the sum of the k − 2 smallest degrees of f1, . . . , fk. Then,

〈f1, . . . , fk〉N ≤ CDδ

k∏
i=2

||fi||2.

115



116
CHAPTER 9. NOISE CORRELATION BOUNDS FOR UNIFORM

FUNCTIONS

Furthermore, one can always take C =
(
k
√

q−1
α(µ)

)3
. If µ is balanced, i.e., if all

marginals µ|i are uniform, then there is a choice of Fourier basis such that one can
take C = (k

√
q − 1)3.

We remark that, while Theorem 9.1.1 is very limited because of its requirement
on the degrees of the fi:s, the lack of any other assumptions is nice. In particular, we
do not need to assume that the fi:s are bounded, nor do we need any assumptions
on µ beyond the pairwise independence condition.

Proof. We prove this by induction over n. If n = 0, the statement is easily verified
(either D = −∞, or D = 0, depending on whether one of the functions is 0 or
not).1

Write fi = gi + hi, where

gi =
∑
1	∈σ

f̂(σ)χσ

hi =
∑
1∈σ

f̂(σ)χσ ,

i.e., gi is the part of fi which does not depend on x1, and hi is the part which
depends on x1. Then

〈f1, . . . , fk〉N = E

[∏
fi(Xi)

]
=

∑
T⊆[k]

E
X

∏
i	∈T

gi(Xi)
∏
i∈T

hi(Xi)

 .

For T ⊆ [k], define

E(T ) = E
X

∏
i	∈T

gi(Xi)
∏
i∈T

hi(Xi)

 .

The key ingredient will be the following Lemma, bounding E(T ).

Lemma 9.1.2. Let ∅ ⊆ T ⊆ [k]. Then:

• If T = ∅, we have

E(T ) ≤ CDδ

k∏
i=2

||gi||2.

• If 1 ≤ |T | ≤ 2, we have
E(T ) = 0.

1We point out that fi ∈ L2(Ω0
i , (µ|i)⊗0) does not formally make sense. However in this case,

the appropriate way to view fi is as an element of L2(ΩN
i , (µ|i)⊗N ) which only depends on the n

first coordinates. In particular, for the case n = 0 we have that fi is a constant.



9.1. MAIN THEOREM 117

• If |T | ≥ 3, we have

E(T ) ≤ CD+2

(√
(q − 1)/α

C

)|T |
δ
∏
i	∈T
i	=1

||gi||2
∏
i∈T
i	=1

||hi||2.

Before proving the Lemma, let us see how to use it to finish the proof of
Theorem 9.1.1.

Write ||hi||2 = τi||fi||2 for some τi ∈ [0, 1], so that ||gi||2 =
√
1− τ2i ||fi||2 (by

orthogonality of the Fourier decomposition). By plugging in the different cases of
Lemma 9.1.2, we can then bound 〈f1, . . . , fk〉N by

〈f1, . . . , fk〉N

≤ CDδ

k∏
i=2

||gi||2 +
∑
|T |≥3

CD+2

(√
(q − 1)/α

C

)|T |
δ
∏
i	∈T
i	=1

||gi||2
∏
i∈T
i	=1

||hi||2

= CDδ

k∏
i=2

||fi||2

(
k∏
i=2

√
1− τ2i +

+
∑
|T |≥3

C2

(√
(q − 1)/α

C

)|T | ∏
i	∈T
i	=1

√
1− τ2i

∏
i∈T
i	=1

τi

)
.

Hence, it suffices to bound the “error factor” inside the large parenthesis by 1 in
order to complete the proof of Theorem 9.1.1.

Let τ = maxi≥2 τi. The error factor can then be bounded by

√
1− τ2 + τ2

k∑
i=3

(
k

i

)(
((q − 1)/α)3/2

C

)i/3
,

where we assumed that C > 1 and then used that, for i ≥ 3, C2−i ≤ C−i/3. To
bound this, we use the following simple lemma:

Lemma 9.1.3. For every k ≥ 3,

k∑
i=3

(
k

i

)
1
ki

≤ 1/2.

Proof. Since
(
k
i

)
≤ ki/i! we have

k∑
i=3

(
k

i

)
1
ki

≤
k∑
i=3

1
i!

≤ e− 5/2 ≤ 1/2,

where the second inequality is by the Taylor expansion e =
∑∞

i=0
1
i! ≤

∑k
i=0

1
i! .



118
CHAPTER 9. NOISE CORRELATION BOUNDS FOR UNIFORM

FUNCTIONS

Hence, if C ≥
(
k
√

q−1
α

)3

, the error factor is bounded by

√
1− τ2 + τ2/2 ≤ 1.

This concludes the proof of Theorem 9.1.1. We have not yet addressed the claim
that if the marginals µ|i are uniform, there is a Fourier basis such that C can be
chosen as (k

√
q − 1)3. See the comment after the proof of Lemma 9.1.2.

We now prove the lemma used in the previous proof.

Proof of Lemma 9.1.2. The case T = ∅ is a direct application of the induction
hypothesis, since the functions gi depend on at most n − 1 variables (and have
deg−2(g1, . . . , gk) ≤ D).

Write

hi(x) =
q−1∑
j=1

χj(x1)hi,j(x2, . . . , xn)

for a Fourier basis χ0 = 1, χ1, . . . , χq−1 of L2(Ωi, µ|i). Denoting by Xj the jth
column of X , we can write E(T ) as

E(T ) = E
X2,...,Xn

∏
i	∈T

gi(Xi) E
X1

[∏
i∈T

hi(Xi)

]
= E

X2,...,Xn

H(T,X) ·
∏
i	∈T

gi(Xi)

 ,

where

H(T,X) = E
X1

[∏
i∈T

hi(Xi)

]

=
∑

J∈[q−1]T

E
X1

[∏
i∈T

χJi(X
1
i )

]∏
i∈T

hi,Ji(Xi).

Now for 1 ≤ |T | ≤ 2, the pairwise independence of µ gives that for any J ∈ [q−1]T ,

E
X1

[∏
i∈T

χJi(X
1
i )

]
=
∏
i∈T

E[χJi ] = 0,

hence in this case H(T,X) = 0 and by extension E(T ) = 0.



9.2. COROLLARIES 119

Thus, only the case |T | ≥ 3 remains. By the repeated Hölder’s inequality, we
can bound

E
X1

[∏
i∈T

χJi(X
1
i )

]
≤
∏
i∈T

||χJi |||T |.

By Fact 2.3.4, this can be bounded by (1/α)|T |/2 Plugging this into E(T ) gives

E(T ) ≤ (1/α)|T |/2
E

X2,...,Xn

 ∑
σ∈[q−1]T

∏
i∈T

hi,σi(Xi)
∏
i	∈T

gi(Xi)

 .

For J ∈ [q − 1]T , let DJ be the sum of the k − 2 smallest degrees of the
polynomials {gi : i �∈ T } ∪ {hi,Ji : i ∈ T }. Since gi and hi,Ji are functions of n− 1
variables, we can use the induction hypothesis to get a bound of

E(T ) ≤ (1/α)|T |/2 ∑
J∈[q−1]T

CDJ δ
∏
i∈T
i	=1

||hi,Ji ||2
∏
i	∈T
i	=1

||gi||2.

But since the hi,Ji :s have strictly smaller degrees than the corresponding fi:s, DJ

is bounded by D − |T |+ 2, and hence we have that

E(T ) ≤ CD−|T |+2
∑

J∈[q−1]T

δ
∏
i∈T
i	=1

||hi,Ji ||2
∏
i	∈T
i	=1

||gi||2

≤ CD+2

(√
(q − 1)/α

C

)|T |
δ
∏
i∈T
i	=1

||hi||2
∏
i	∈T
i	=1

||gi||2,

where we used the fact that
∑

j∈[q−1] ||hi,j ||2 ≤
√
q − 1||hi||2 (by Cauchy-Schwarz

and orthogonality of the functions hi,j).
This concludes the proof of Lemma 9.1.2.

In the case when the marginal distributions µ|i are uniform, one can take as
basis of (Ω, µ) the complex basis χj(x) = e2πi

j·x
q (where we identify the elements x

of Ω with Zq). For this basis, ||χj ||∞ = 1 and hence Equation (9.1) can be bounded
by 1 rather than 1/

√
α, which propagates to give that, for this basis, we can choose

C = (k
√
q − 1)3.

9.2 Corollaries

Let us note some easy corollaries of Theorem 9.1.1. The first is a statement more
in the spirit of Theorem 2.5.1, saying that, if all non-zero Fourier coefficients of f1
are small, then the noisy inner product is close to the products of expectation.



120
CHAPTER 9. NOISE CORRELATION BOUNDS FOR UNIFORM

FUNCTIONS

Corollary 9.2.1. Assume the setting of Theorem 9.1.1, but with

δ := max
i∈[k]

max
σ 	=0

|f̂i(σ)|

being the largest non-zero Fourier coefficient in any of the functions. Assume also
that ||fi||2 ≤ F ≤ 1 for all i. Then,∣∣∣∣∣〈f1, . . . , fk〉N −

k∏
i=1

E[fi]

∣∣∣∣∣ ≤ δ2kCDF 2,

where C is the constant from Theorem 9.1.1.

Proof. Let gi(x) = fi(x)− E[fi]. Then,

〈f1, . . . , fk〉N =
∑
S⊆[k]

∏
i	∈S

E[fi] · E

[∏
i∈S

gi

]
=

k∏
i=1

E[fi] +
∑
|S|>0

∏
i	∈S

E[fi] · E

[∏
i∈S

gi

]
.

By Theorem 9.1.1, for |S| ≥ 3,

E

[∏
i∈S

gi

]
≤ CDδF |S|−1 ≤ CDδF 2,

whereas for 1 ≤ |S| ≤ 2 the expected value vanishes because of the pairwise inde-
pendence. Hence, we have

〈f1, . . . , fk〉N ≤
k∏
i=1

E[fi] + 2kCDδF 2.

The lower bound follows by replacing f1 by −f1 and applying the upper bound.

The second corollary uses a standard “iteration argument” (more about these
in Section 9.4) to show that, if the noisy inner product deviates from the product of
expectations, not only can we find a large Fourier coefficient in each of the functions,
we can actually find three functions with large intersecting coefficients. This type
of result is often useful in applications to hardness of approximation, though the
limitation of our current statement to low-degree functions seems to prevent such
applications.

Corollary 9.2.2. Assume the setting of Theorem 9.1.1, and further assume that
ρ(µ) < 1. Then for every ε > 0 there exist d and δ (depending only on ε and µ)
such that the following holds. Let E[fi] = 0 and ||fi||2 ≤ 1 for every i. Then if∣∣∣∣∣〈f1, . . . , fk〉N −

k∏
i=1

E[fi]

∣∣∣∣∣ > ε,

there exist three distinct indices i1, i2, i3 ∈ [k], and multi-indices σ1, σ2, σ3 satisfy-
ing:



9.2. COROLLARIES 121

• |S(σj)| ≤ d for 1 ≤ j ≤ 3.

• σ1, σ2, σ3 intersect in the sense that S(σ1) ∩ S(σ2) ∩ S(σ3) �= ∅.

• |f̂ij (σj)| ≥ δ
CD for 1 ≤ j ≤ 3, where C is the constant from Theorem 9.1.1.

Proof. Let τ, d be the constants given by Theorem 2.5.1 with parameter ε/2, and
define δ := τε

2k . Then Theorem 2.5.1 implies that there exist three indices i1, i2, i3 ∈
[k] and j ∈ [n] such that

Inf≤dj (fi1), Inf
≤d
j (fi2), Inf

≤d
j (fi3) ≥ τ.

Write fi = gi + hi, where hi is the low-degree part of the part of fi that depends
on the jth coordinate, i.e.,

hi =
∑
j∈σ
|σ|≤d

f̂iχσ.

If hi1 , hi2 , and hi3 each have some Fourier coefficient larger than δ/CD, we are
done, since every non-zero Fourier coefficient of hi contains j, and has size at most
d. Otherwise, if the largest Fourier coefficient of, say, hi1 is smaller than δ/CD, we
can write

〈f1, . . . , fk〉N = 〈f1, . . . , gi1 , . . . , fk〉N + 〈f1, . . . , hi1 , . . . , fk〉N .

By Theorem 9.1.1, the second term is bounded by δ, and the functions in the first
term have the same expected values as the fi:s.∣∣∣∣∣∣〈f1, . . . , gi1 , . . . , fk〉N − E[gi1 ] ·

∏
i	=i1

E[fi]

∣∣∣∣∣∣ ≥ ε− δ.

We now repeat this argument many times. If at any point we find three large
Fourier coefficients, we are done. Assume for contradiction that this does not
happen. Then, the process will stop when we arrive at k functions f ′

1, f
′
2, . . . , f

′
k

such that ∣∣∣∣∣〈f ′
1, . . . , f

′
k〉N −

k∏
i=1

E[f ′
i ]

∣∣∣∣∣ < ε/2.

Since the difference decreases by at most δ in every step, this means that it will take
more than ε

2δ = k/τ iterations for this to happen. However, in each iteration, the
�22 mass of one of the functions is decreased by at least τ (since there was that much
influence in the removed part). Hence, after more than k/τ iterations, the total
mass has decreased by more than k, which since the initial mass

∑k
i=1 ||fi||22 ≤ k is

a contradiction.



122
CHAPTER 9. NOISE CORRELATION BOUNDS FOR UNIFORM

FUNCTIONS

9.3 Is Low Degree Necessary?

Because of the degree restriction in Theorem 9.1.1, it is quite limited in its possible
applications. Thus, one would like to extend Theorem 9.1.1 to arbitrary functions
by some sort of “truncation” argument.

The standard approach to dealing with f which is not low-degree is to apply
noise to it. Specifically, for ρ ∈ [0, 1], define an operator Tρ on L2(Ωn, µ⊗n) by

Tρf(x) = E
y
[f(y)],

where y is distributed as follows: for each j ∈ [n], independently, set yj = xj with
probability ρ, and yj a uniformly random element of Ω with probability 1− ρ. It is
well known that the effect of Tρ on the Fourier decomposition is to “dampen” the
high-degree part of f . In particular, it is not hard to prove that

Tρf =
∑
σ∈Zn

q

ρ|σ|f̂(σ)χσ.

In other words, Tρf is similar to being low-degree in the sense that the �2 norm of
the high-degree part is small, ||Tρf≥d||2 ≤ ρd||f ||2.

It is known that if ρ̃(Ω1, . . . ,Ωk, µ) := ρ̃ < 1, then for small γ > 0, adding Tρ
does not change 〈f1, . . . , fk〉N by much. In particular, if each fi is bounded by 1,
then, by [78] Lemma 6.2, in order for∣∣〈f1, . . . , fk〉N − 〈T1−γf1, . . . , T1−γfk〉N

∣∣ ≤ ε (9.1)

to hold it suffices to take γ = Ω((1 − ρ̃)ε/ log 1/ε). Hence, for µ where ρ̃ < 1, if
one can prove an analogue Theorem 9.1.1 for functions with exponentially decaying
Fourier tails, one has a theorem for arbitrary bounded functions.

Unfortunately, as communicated to us by Hamed Hatami, Shachar Lovett, Alex
Samorodnitsky and Julia Wolf, the direct analogue of Theorem 9.1.1 for arbitrary
bounded functions is false. In particular, consider a pairwise independent distribu-
tion µ on {0, 1}k in which the first ≈ log k bits are chosen uniformly at random,
and the remaining bits are sums of different subsets of the first log k bits. This
distribution does not have ρ̃ < 1, but that can be easily arranged by adding a small
amount of noise to µ, which will not have any significant impact on the calculations
which follow. Let f : {0, 1}n → {0, 1} be the function which returns 1 on the
all-zeros string, and 0 otherwise. Then, one has that

〈f, . . . , f〉N = Pr[X1 = . . . = Xk = 0] ≈ 2−n log k,

whereas δ ≤ ||f ||2 ≈ 2−n/2 and hence the product δ ·
∏k

i=2 ||f ||2 is bounded by

δ ·
k∏
i=2

||f ||2 ≤ 2−nk/2 2 〈f, . . . , f〉N .



9.4. NOISY ARITHMETIC PROGRESSIONS 123

One could argue that the reason that the analogue of Theorem 9.1.1 fails is
that the �2 norms of f2, . . . , fk are the wrong things to look at. Note that the
trivial bound on 〈f1, . . . , fk〉N obtained by simply using Hölder’s inequality is
〈f1, . . . , fk〉N ≤

∏k
i=1 ||fi||k. Hence, if one wants to get a statement to the ef-

fect that if f1 has all Fourier coefficients smaller than δ then 〈f1, . . . , fk〉N is also
small, a more reasonable type of bound would be a bound where we exchange the
�k norm of f1 by its largest Fourier coefficient, i.e.,

〈f1, . . . , fk〉N ≤ O
(
δ

k∏
i=2

||fi||k

)
.

Note that the counterexample f used above has ||f ||k ≈ 2−n/k and thus does not
constitute a counterexample for the possibility of obtaining this type of bound. We
do not know whether this type of bound is possible, but let us be bold and state it
as a conjecture.

Conjecture 9.3.1. Let (Ω1 × . . . × Ωk, µ) be a product space. Then for every
γ > 0 and ε > 0, there exists a constant δ := δ(γ, ε) > 0 such that if f1, . . . , fk are
functions fi ∈ L2(Ωni , (µ|i)⊗n) satisfying

• For every i ∈ [k], ||fi||∞ ≤ 1.

• For every d ∈ [n], ||f≥d
i ||22 ≤ (1− γ)d.

• For every σ ∈ Znq , |f̂1(σ)| ≤ δ.

Then

〈f1, . . . , fk〉N ≤ ε

k∏
i=2

||fi||k.

Ideally, one would like a bound of the form δ = ε/Cγ,µ for some constant Cγ,µ
depending only on γ and µ, but even a weaker relation between δ and ε would be
interesting.

By Equation (9.1), it follows that Conjecture 9.3.1 could be used to deduce an
analogue of Theorem 9.1.1 and analogues of Corollaries 9.2.1 and 9.2.2 for arbitrary
functions, in the setting when ρ̃(Ω1, . . . ,Ωk, µ) < 1.

9.4 Noisy Arithmetic Progressions

In this section, we discuss an intended application of the work in this chapter, had
it been more successful.

A very deep and very powerful result in additive combinatorics, called Szemer-
édi’s Theorem, states the following. For every positive integer k, define a function
rk : N → N by letting rk(n) be the size of the largest subset of [n] which does not
contain any arithmetic progressions of length k. Then, Szemerédi’s Theorem [100]



124
CHAPTER 9. NOISE CORRELATION BOUNDS FOR UNIFORM

FUNCTIONS

states that rk(n) = o(n). Put differently, for every δ > 0, there is an n0 such that
rk(n) ≤ δn for every n ≥ n0. A very famous extension of this is a theorem of Green
and Tao [48] which resolved an old conjecture in number theory, asserting that for
every k, there exists arithmetic progressions of length k in the set of primes.2

In general, understanding the exact growth rate of the function rk(n) is a very
challenging and important problem. The best known upper bound on rk(n) is

rk(n) ≤ n · (log2 log2 n)−2−(k+9)
,

due to Gowers [44].
In many cases, understanding arithmetic progressions is easier in a setting which

is closer to the material of this thesis, namely in vector spaces of the form Fnq for
some prime q (a sequence x1, . . . , xk ∈ Fnq is an arithmetic progression if there is
some y ∈ Fnq such that xi+1 = xi + y for every 1 ≤ i < k). This is generally
referred to as the “finite field model”. Often, results in the finite field model
can be translated to results for the integers, though this translation can be quite
complicated. See [45] for a survey of the finite field model and its relation to
arithmetic progressions in the integers.

How do arithmetic progressions in Fnq relate to what we have been doing in
this chapter? One of the many ways of proving Szemerédi’s Theorem is by Four-
ier analysis, using what is known as an iteration argument, or energy argument.
This type of argument was first used by Roth [92] in a Fourier-analytic proof of
Szemerédi’s Theorem for the case k = 3 (several decades before Szemerédi’s proof
of the general case). Roth’s proof was later extended to arbitrary k by Gowers
[43, 44], who introduced the Gowers norm briefly mentioned in Section 2.4. Let
us, somewhat informally, give an example of this type of proof (the proofs of Roth
and Gowers do not follow the exact argument outlined below, but the spirit of the
arguments remain the same). Let (Fkq , µ) be the probability space over Fkq in which
µ is the uniform distribution over all arithmetic progressions in Fq (including the
trivial progressions in which the increment is 0). Furthermore, let A : Fnq → {0, 1}
be the indicator function of a subset A of Fnq . Then, the total number of arithmetic
progressions of length k contained in A is exactly given by

| Supp(µ)|n 〈A,A, . . . , A〉N .

Of these, qn are the trivial progressions in which the increment in every coordinate
is 0. Furthermore, it is easily checked that | Supp(µ)| = q2. Hence if

〈A, . . . , A〉N > q−n,

it must be the case that A contains a non-trivial arithmetic progression. Now,
suppose that one could conclude thatA has a large Efron-Stein component ||AS ||2 ≥

2Which is far from being an immediate consequence of Szemerédi’s Theorem since the primes
are not dense enough.



9.4. NOISY ARITHMETIC PROGRESSIONS 125

δ for some |S| ≤ d. Then, there exists a way to fix the variables xS ∈ FSp such that
the resulting subset A′ : F

[n]−S
p → {0, 1} has density at least E[A′] ≥ E[A] + δ. We

then repeat this many times. If the increment δ is sufficiently large compared to
the number d of variables “lost” in every step, we will eventually end up with a set
A′′ of density larger than 1, which is of course a contradiction, implying that at
some step along the way, we find a non-trivial arithmetic progression (which can
then easily be lifted back to a non-trivial arithmetic progression in A).

The only problem then, is, how do we find a large Efron-Stein component AS ,
with |S| reasonably small? It is easy to see that, if q ≥ k, then µ is in fact pairwise
independent. Hence if A is low-degree, Corollary 9.2.1 tells us that we can find
such a component. However, this works only for low-degree sets, which are not
very interesting (they depend only on a few coordinates).

Now we will, rather than arithmetic progressions, consider noisy arithmetic
progressions. A sequence x1, . . . , xk ∈ Fq is a noisy arithmetic progression, if there
exists a y ∈ Fq such that, for every 1 ≤ i < n we have either xi+1 = xi + y, or
xi+1 = xi+y+1. In other words, we allow the increments between different steps to
differ by 1. We again consider the space (Fkq , µ), this time with µ being the uniform
distribution over all noisy arithmetic progressions in Fq. This time, we have that
| Supp(µ)| = q2(2k − 1), and hence a set A contains a non-trivial noisy arithmetic
progression if

〈A, . . . , A〉N > (q(2k − 1))−n.

Again one can verify that A is pairwise independent if q ≥ k. More interestingly, it
is also the case that ρ(Ω, µ) < 1, so that one can apply noise to any set A without
significantly changing 〈A, . . . , A〉N . Hence if Conjecture 9.3.1 is true one can pull
off an iteration argument to prove that all sufficiently dense subsets of Fnq contain
noisy arithmetic sequences. If the relation between δ, γ and ε is “reasonable”, one
can hope that the value for “sufficiently dense” can be taken significantly smaller
than corresponding bounds for arithmetic sequences. Furthermore, depending on
the level of difficulty of a potential proof of Conjecture 9.3.1, the proof that dense
subsets of Fnq contain noisy arithmetic sequences might be significantly easier than
the corresponding proof for true arithmetic sequences.





Part IV

Conclusions



Fram hinner du aldrig, men mycket i livet
måste vara lek för att levas.

Harry Martinson – Leken



Chapter 10

Some Open Problems

Rather than further discussing the results to which the past 27 pages were devoted,
let us in this concluding chapter look into the future, and at some of the many
problems that remain to be solved. Here, I will list some open problems related to
this thesis which I find particularly interesting. Some of these I have worked on
and failed to solve, some of them I want to work on (and hopefully not fail).

Unique Games on the Boolean Hypercube How hard is it to solve Unique
Games when the constraint graph is the boolean hypercube? How hard is it
in the case when the label set is {0, 1}l and every constraint is linear over the
group Fl2, i.e., when every constraint is of the form π(�(x)) = �(y) ⊕ T for
some T ∈ {0, 1}l, where ⊕ denotes bit-wise Xor? We are not aware of any
better algorithm than the general algorithm by Charikar et al. [20].

Hardness Without Unique Games Can any Unique Games-based hardness res-
ult be proved under a weaker assumption, such as the d-to-1 conjecture [62],
or even just P �= NP?

k-ary Unique Games Consider the L-Unique Label Cover problem on a k-
uniform hypergraph, where each constraint now asserts that π1(�(v1)) =
π2(�(v2)) = . . . = πk(�(vk)) for some permutations π1, . . . , πk on [L] and
vertices v1, . . . , vk. How hard is this problem? It is known that for constant
k, (γ, 1 − γ)-hardness is equivalent to the UGC [65, 9], whereas for large
k = Ω(n), the problem is in P. Is (γ, 1 − γ)-hardness still equivalent to the
UGC for, say, k = log logn?

Characterize Hereditary Approximation Resistance Is the sufficient condi-
tion for hereditary resistance from Chapter 5 also necessary? I.e., does pair-
wise independence completely characterize hereditarily resistant predicates?

The α = β Conjecture Prove or disprove Conjecture 6.1.3.

129



130 CHAPTER 10. SOME OPEN PROBLEMS

The Approximability of Max Di-Cut How hard is it to approximate the Max

Di-Cut problem? The current best algorithm is the 0.87401-approximation
for Max 2-And [71], and the current best hardness is the αGW ≈ 0.87856-
UG-hardness for balanced Max 2-And [63]. In particular, is Max Di-Cut

harder to approximate than Max Cut? Is it as hard as Max 2-And? We
believe that the answer to the first question is yes, and that the methods of
Chapter 6 can be used to prove it, though we have so far not succeeded in
our efforts of proving this.

The Approximability of Graph Coloring What is the minimum number of
colors c(n) such that a 3-colorable graph can be colored using c(n) colors
in polynomial time? Is it the case that for every δ > 0, c(n) ≤ O(nδ) (the
current record is O(n0.2072) [23])? Is it the case that c(n) > log logn (the
current record is c(n) = ω(1) under a certain variant of the Unique Games
Conjecture [28])?

The Approximability of TSP What is the best possible approximation ratio
for TSP with triangle inequalities? For asymmetric TSP, the gap is huge,
with the best current approximation algorithm having ratio 2

3 log2 n [37], and
the best current inapproximability being 117/116− ε [86].

The Threshold for Randomly Supported Independence Howmany random
points from Ωn are needed in order to be able to support a k-wise independ-
ent distribution with high probability? The results of Chapter 8 show that
(poly(q)n)k log(nk) points suffice, and that Ω

(
nk

qk2kk

)
points are necessary.

1. Can the log(nk) factor in the upper bound be removed? We believe the
answer is yes.

2. Assuming the threshold is c(k, q) · nk, how does c(k, q) behave for large
k (say, k = logn). Does it tend to 0 or infinity?

Noise Correlation Bounds for Uniform Functions Is Conjecture 9.3.1 true?
If not, is something similar true?



Bibliography

[1] Farid Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM Journal on Optimization,
5:13–51, 1995. [66]

[2] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel
algorithm for the maximal independent set problem. Journal of Algorithms,
7(4):567–583, 1986. ISSN 0196-6774. [15]

[3] Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New Approximation
Guarantee for Chromatic Number. In ACM Symposium on Theory of Com-
puting (STOC), pages 205–214, 2006. ISBN 1-59593-134-1. [61]

[4] Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur
Tulsiani, and Nisheeth K. Vishnoi. Unique games on expanding constraint
graphs are easy. In ACM Symposium on Theory of Computing (STOC), pages
21–28, 2008. [34]

[5] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof Verification and the Hardness of Approximation Problems.
Journal of the ACM, 45(3):501–555, 1998. [31]

[6] Sanjeev Arora and Shmuel Safra. Probabilistic Checking of Proofs: A New
Characterization of NP. Journal of the ACM, 45(1):70–122, 1998. [31]

[7] Per Austrin. Balanced Max 2-Sat Might Not be the Hardest. In ACM Sym-
posium on Theory of Computing (STOC), pages 189–197, 2007. [7, 33]

[8] Per Austrin. Towards Sharp Inapproximability For Any 2-CSP. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 307–317,
2007. [7, 22, 23, 33, 88]

[9] Per Austrin and Elchanan Mossel. Approximation Resistant Predicates From
Pairwise Independence. In IEEE Conference on Computational Complexity
(CCC), 2008. [7, 21, 33, 58, 129]

131



132 BIBLIOGRAPHY

[10] R. C. Baker, G. Harman, and J. Pintz. The Difference Between Consecutive
Primes, II. Proceedings of the London Mathematical Society, 83(3):532–562,
2001. [37]

[11] William Beckner. Inequalities in Fourier analysis. Annals of Mathematics,
102(1):159–182, 1975. [95]

[12] Mihir Bellare, Don Coppersmith, Johan Håstad, Marcos A. Kiwi, and Madhu
Sudan. Linearity testing in characteristic two. IEEE Transactions on Inform-
ation Theory, 42(6):1781–1795, 1996. [46]

[13] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free Bits, PCPs, and
Nonapproximability–Towards Tight Results. SIAM Journal on Computing,
27(3):804–915, 1998. [42]

[14] Itai Benjamini, Gil Kalai, and Oded Schramm. Noise sensitivity of boolean
functions and applications to percolation. Inst. Hautes Études Sci. Publ.
Math, 90:5–43, 1999. [21]

[15] Avrim Blum and David Karger. An Õ(n3/14)-coloring algorithm for 3-
colorable graphs. Information Processing Letters, 61(1):49–53, 1997. [61]

[16] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting
with applications to numerical problems. Journal of Computer Systems and
Sciences, 47(3):549–595, 1993. [46]

[17] Aline Bonami. Ensembles Γ(p) dans le dual de D∞. Ann. Inst. Fourier, 18
(2):193–204, 1968. [95]

[18] Aline Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Ann.
Inst. Fourier, 20:335–402, 1970. [95]

[19] Andreas Brieden, Peter Gritzmann, Ravi Kannan, Victor Klee, László Lovász,
and Miklós Simonovits. Approximation of diameters: randomization doesn’t
help. In IEEE Symposium on Foundations of Computer Science (FOCS),
pages 244–251, 1998. [100]

[20] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-
optimal algorithms for unique games. In ACM Symposium on Theory of
Computing (STOC), pages 205–214, 2006. ISBN 1-59593-134-1. [34, 129]

[21] Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-
Optimal Algorithms for Maximum Constraint Satisfaction Problems. In
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 62–68, 2007.
[51]

[22] Moses Charikar and Anthony Wirth. Maximizing Quadratic Programs: Ex-
tending Grothendieck’s Inequality. In IEEE Symposium on Foundations of
Computer Science (FOCS), pages 54–60, 2004. [30, 61]



133

[23] Eden Chlamtac. Approximation Algorithms Using Hierarchies of Semidefinite
Programming Relaxations. In IEEE Symposium on Foundations of Computer
Science (FOCS), pages 691–701, 2007. [130]

[24] Eden Chlamtac and Gyanit Singh. Improved Approximation Guarantees
through Higher Levels of SDP Hierarchies. In APPROX-RANDOM, pages
49–62, 2008. [65]

[25] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Report 388, Graduate School of Indus-
trial Administration, CMU, 1976. [29]

[26] Irit Dinur, Ehud Friedgut, Guy Kindler, and Ryan O’Donnell. On the Fourier
tails of bounded functions over the discrete cube. In ACM Symposium on
Theory of Computing (STOC), pages 437–446, 2006. [96, 98, 104]

[27] Irit Dinur, Ehud Friedgut, and Oded Regev. Independent sets in graph powers
are almost contained in juntas. Geometric and Functional Analysis, 18(1):
77–97, 2008. [22]

[28] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for
approximate coloring. In ACM Symposium on Theory of Computing (STOC),
pages 344–353, 2006. [22, 33, 130]

[29] Bradley Efron and Charles Stein. The Jackknife Estimate of Variance. Annals
of Statistics, 9:586–596, 1981. [18]

[30] Lars Engebretsen. The nonapproximability of non-boolean predicates. SIAM
Journal on Discrete Mathematics, 18(1):114–129, 2004. [51]

[31] Lars Engebretsen and Jonas Holmerin. More Efficient Queries in PCPs for
NP and Improved Approximation Hardness of Maximum CSP. In Symposium
on Theoretical Aspects of Computer Science (STACS), pages 194–205, 2005.
[51]

[32] Uriel Feige. Approximating Maximum Clique by Removing Subgraphs. SIAM
J. Discrete Math., 18(2):219–225, 2004. [30]

[33] Uriel Feige and Michel Goemans. Aproximating the Value of Two Prover
Proof Systems, With Applications to MAX 2SAT and MAX DICUT. In
Israel Symposium on Theory of Computing Systems (ISTCS), pages 182–189,
1995. ISBN 0-8186-6915-2. [61, 68, 72]

[34] Uriel Feige, Guy Kindler, and Ryan O’Donnell. Understanding Parallel Repe-
tition Requires Understanding Foams. In IEEE Conference on Computational
Complexity (CCC), pages 179–192, 2007. [35]



134 BIBLIOGRAPHY

[35] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semi-
definite programs. Journal of Algorithms, 60(1):1–23, 2006. [68, 90]

[36] Uriel Feige and Daniel Reichman. On Systems of Linear Equations with Two
Variables per Equation. In APPROX-RANDOM, pages 117–127, 2004. [34]

[37] Uriel Feige and Mohit Singh. Improved approximation ratios for traveling
salesperson tours and paths in directed graphs. Manuscript, 2006. [130]

[38] Alan M. Frieze and Mark Jerrum. Improved Approximation Algorithms for
MAX k-CUT and MAX BISECTION. Algorithmica, 18(1):67–81, 1997. [61]

[39] Zoltán Füredi. Random Polytopes in the d-Dimensional Cube. Discrete Com-
put. Geom., 1:315–319, 1986. [102]

[40] Christophe Garban, Gábor Pete, and Oded Schramm. The Fourier Spectrum
of Critical Percolation. arXiv Report math.PR/0803.3750, 2008. [21]

[41] Konstantinos Georgiou, Avner Magen, Toniann Pitassi, and Iannis Tourlakis.
Integrality gaps of 2−o(1) for Vertex Cover SDPs in the Lovász-Schrĳver Hier-
archy. In IEEE Symposium on Foundations of Computer Science (FOCS),
pages 702–712, 2007. [65]

[42] Michel X. Goemans and David P. Williamson. Improved Approximation Al-
gorithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming. Journal of the ACM, 42:1115–1145, 1995. [30, 50, 52, 61, 65,
66, 68]

[43] Tim Gowers. A new proof of Szemerédi’s theorem for arithmetic progressions
of length four. Geometric and Functional Analysis, 8:529–551, 1998. [124]

[44] Tim Gowers. A new proof of Szemerédi’s theorem. Geometric and Functional
Analysis, 11:465–588, 2001. [21, 124]

[45] Ben Green. Finite field models in additive combinatorics. In Surveys in
Combinatorics, pages 1–27, 2005. [124]

[46] Ben Green and Terence Tao. An inverse theorem for the Gowers U3(G)
norm. arXiv Report math.NT/0503014v3, to appear in Proc. Edin. Math.
Soc., 2006. [22]

[47] Ben Green and Terence Tao. The distribution of polynomials over finite fields,
with applications to the Gowers norms. arXiv Report math.CO/0711.3191,
2007. [22]

[48] Ben Green and Terence Tao. The primes contain arbitrarily long arithmetic
progressions. Annals of Mathematics, 167:481–547, 2008. [124]



135

[49] Leonard Gross. Logarithmic Sobolev Inequalities. American Journal of Math-
ematics, 97:1061–1083, 1975. [96]

[50] Jacques Hadamard. Résolution d’une question relative aux déterminants.
Bulletin des sciences math., 2(17):240–248, 1893. [37]

[51] Eran Halperin, Ram Nathaniel, and Uri Zwick. Coloring k-colorable graphs
using relatively small palettes. Journal of Algorithms, 45(1):72–90, 2002. [61]

[52] Gustav Hast. Approximating Max kCSP – Outperforming a Random Assign-
ment with Almost a Linear Factor. In International Colloquium on Automata,
Languages and Programming (ICALP), pages 956–968, 2005. [51]

[53] Gustav Hast. Beating a Random Assignment – Approximating Constraint
Satisfaction Problems. PhD thesis, KTH – Royal Institute of Technology,
2005. [52, 57, 59]

[54] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001. [47, 48, 51, 52, 62]

[55] Johan Håstad. Every 2-CSP Allows Nontrivial Approximation. In ACM
Symposium on Theory of Computation (STOC), pages 740–746, 2005. [52]

[56] Johan Håstad. On the approximation resistance of a random predicate. In
APPROX-RANDOM, pages 149–163, 2007. [33, 52, 58, 59]

[57] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling
case. In ACM Symposium on Theory of Computing (STOC), pages 411–419,
2007. [35]

[58] Svante Janson. Gaussian Hilbert Spaces. Cambridge University Press, 1997.
[97]

[59] Anatole Joffe. On a Set of Almost Deterministic k-Independent Random
Variables. Annals of Probability, 2(1):161–162, 1974. [15]

[60] Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of Variables on
Boolean Functions. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 68–80, 1988. [95]

[61] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph
coloring by semidefinite programming. Journal of the ACM, 45(2):246–265,
1998. [61]

[62] Subhash Khot. On the power of unique 2-prover 1-round games. In ACM
Symposium on Theory of Computing (STOC), pages 767–775, 2002. ISBN
1-58113-495-9. [34, 129]



136 BIBLIOGRAPHY

[63] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Op-
timal inapproximability results for max-cut and other 2-variable csps? Siam
Journal on Computing, 37:319–357, 2007. [21, 22, 33, 34, 35, 62, 63, 64, 77,
130]

[64] Subhash Khot and Ryan O’Donnell. SDP gaps and UGC-hardness for
MAXCUTGAIN. In IEEE Symposium on Foundations of Computer Science
(FOCS), pages 217–226, 2006. [30, 33]

[65] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate
to within 2 − ε. Journal of Computer and System Sciences, 74(3):335–349,
2008. [33, 129]

[66] Subhash Khot and Nisheeth K. Vishnoi. The Unique Games Conjecture, In-
tegrality Gap for Cut Problems and Embeddability of Negative Type Metrics
into �1. In IEEE Symposium on Foundations of Computer Science (FOCS),
pages 53–62, 2005. [33]

[67] Guy Kindler, Assaf Naor, and Gideon Schechtman. The UGC hardness
threshold of the �p Grothendieck problem. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 64–73, 2008. [33]

[68] M. Kochol. Constructive approximation of a ball by polytopes. Math. Slovaca,
44(1):99–105, 1994. [100]

[69] Henry Oliver Lancaster. Pairwise Statistical Independence. Annals of Math-
ematical Statistics, 36(4):1313–1317, 1965. [15]

[70] Jean B. Lasserre. An Explicit Exact SDP Relaxation for Nonlinear 0-1 Pro-
grams. In Integer Programming & Combinatorial Optimization (IPCO), pages
293–303, 2001. [65]

[71] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques
for the MAX 2-SAT and MAX DI-CUT problems. In Integer Programming &
Combinatorial Optimization (IPCO), volume 2337 of Lecture Notes in Com-
puter Science, pages 67–82, 2002. [61, 68, 69, 77, 79, 84, 85, 130]

[72] Shachar Lovett, Roy Meshulam, and Alex Samorodnitsky. Inverse conjecture
for the gowers norm is false. In ACM Symposium on Theory of Computing
(STOC), pages 547–556, 2008. [22]

[73] László Lovász and Alexander Schrĳver. Cones of Matrices and Setfunctions,
and 0-1 Optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.
[65]

[74] Michael Luby and Avi Wigderson. Pairwise Independence and Derandomiza-
tion. Foundation and Trends in Theoretical Computer Science, 1(4):237–301,
2005. [15]



137

[75] Rajsekar Manokaran, Joseph Naor, Prasad Raghavendra, and Roy Schwartz.
SDP gaps and UGC Hardness for Multiway Cut, 0-Extension, and Metric
Labeling. In ACM Symposium on Theory of Computing (STOC), pages 11–
20, 2008. [33]

[76] Shiro Matuura and Tomomi Matsui. 0.863-Approximation Algorithm for
MAX DICUT. In RANDOM-APPROX, pages 138–146, 2001. [61]

[77] Shiro Matuura and Tomomi Matsui. 0.935-Approximation Randomized Al-
gorithm for MAX 2SAT and Its Derandomization. Technical Report METR
2001-03, Department of Mathematical Engineering and Information Physics,
the University of Tokyo, Japan, 2001. [61]

[78] Elchanan Mossel. Gaussian bounds for noise correlation of functions. arXiv
Report math/0703683v3, 2007. [13, 18, 21, 22, 23, 24, 122]

[79] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stabil-
ity of functions with low influences: invariance and optimality. To appear in
Annals of Mathematics, 2008. [21, 22, 23, 78, 97]

[80] Edgar Nelson. Construction of quantum fields from Markoff fields. Journal
of Functional Analysis, 12:97–112, 1973. [96]

[81] G. L. O’Brien. Pairwise Independent Random Variables. Annals of Probab-
ility, 8(1):170–175, 1980. [15, 36]

[82] Ryan O’Donnell. Computational applications of noise sensitivity. PhD thesis,
Massachusetts Institute of Technology, 2003. [21]

[83] Ryan O’Donnell and Yi Wu. An optimal SDP algorithm for Max-Cut, and
equally optimal Long Code tests. In ACM Symposium on Theory of Comput-
ing (STOC), pages 335–344, 2008. [30, 33, 66, 68, 90]

[84] Raymond E. A. C. Paley. On orthogonal matrices. Journal of Mathematics
and Physics, 12:311–320, 1933. [37]

[85] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimiza-
tion: Algorithms and Complexity. Dover Publications, Inc., 1998. [27]

[86] Christos H. Papadimitriou and Santosh Vempala. On the Approximabil-
ity of the Traveling Salesman Problem. http://www.cs.berkeley.edu/
~christos/tsp.ps. [130]

[87] Prasad Raghavendra. Optimal Algorithms and Inapproximability Results For
Every CSP? In ACM Symposium on Theory of Computing (STOC), 2008.
[21, 22, 30, 33, 62, 66, 70, 90, 91]

[88] Anup Rao. Parallel Repetition in Projection Games and a Concentration
Bound. In ACM Symposium on Theory of Computing (STOC), 2008. [35]



138 BIBLIOGRAPHY

[89] Ran Raz. A Parallel Repetition Theorem. SIAM Journal on Computing, 27
(3):763–803, 1998. [33, 34]

[90] Ran Raz. A Counterexample to Strong Parallel Repetition. In IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 369–373, 2008.
[35]

[91] Vladimir I. Rotar. Limit theorems for polylinear forms. J. Multivariate Anal.,
9(4):511–530, 1979. [24]

[92] Klaus F. Roth. On certain sets of integers. J. London Math. Soc., 28:245–252,
1953. [124]

[93] Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with
optimal amortized query complexity. In ACM Symposium on Theory of Com-
puting (STOC), pages 191–199, 2000. [48, 51]

[94] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of vari-
ables, and PCPs. In ACM Symposium on Theory of Computing (STOC),
pages 11–20, 2006. ISBN 1-59593-134-1. [33, 51, 57, 58]

[95] Grant Schoenebeck. Linear Level Lasserre Lower Bounds for Certain k-CSPs.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages
593–602, 2008. [34, 65]

[96] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality
gaps for Lovasz-Schrĳver LP relaxations of vertex cover and max cut. In ACM
Symposium on Theory of Computing (STOC), pages 302–310, 2007. [65]

[97] Oded Schramm and Jeffrey E. Steif. Quantitative noise sensitivity and ex-
ceptional times for percolation. To appear in Annals of Mathematics, 2007.
[21]

[98] Hanif D. Sherali and Warren P. Adams. A Hierarchy of Relaxations Between
the Continuous and Convex Hull Representations for Zero-One Programming
Problems. SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990. [65]

[99] J. Sylvester. Thoughts on Orthogonal Matrices, Simultaneous Sign-
Successions, and Tessellated Pavements in Two or More Colours, with Applic-
ations to Newton’s Rule, Ornamental Tile-Work, and the Theory of Numbers.
Philosophical Magazine, (34):461–475, 1867. [37]

[100] Endre Szemerédi. On sets of integers containing no k elements in arithmetic
progression. Acta Arith., 27:299–345, 1975. [21, 123]

[101] Luca Trevisan. Parallel Approximation Algorithms by Positive Linear Pro-
gramming. Algorithmica, 21:72–88, 1998. [51, 64]



139

[102] Luca Trevisan. Approximation algorithms for unique games. In IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 197–205, 2005.
[34]

[103] Luca Trevisan, Gregory B. Sorkin, Madhu Sudan, and David P. William-
son. Gadgets, Approximation, and Linear Programming. SIAM Journal on
Computing, 29(6):2074–2097, 2000. [62]

[104] Avi Wigderson. P, NP and Mathematics - a computational complexity per-
spective. International Congress of Mathematicians (ICM 2006), pages 665–
712, 2007. [5]

[105] Pawel Wolff. Hypercontractivity of Simple Random Variables. Studia Math.,
180:219–236, 2007. [96]

[106] Uri Zwick. Approximation Algorithms for Constraint Satisfaction Problems
Involving at Most Three Variables Per Constraint. In ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1998. [52]

[107] Uri Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation
algorithms of Feige and Goemans. Manuscript, 2000. [88]

[108] Uri Zwick. Personal communication, 2005. [79, 84, 85]


