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Chapter 1

Introduction

1.1 Description of the problem

The system that will be controlled in this project is the Pendubot.The control system
should have the following features:

• Swing up the outer link of the Pendubot to upright position:

– when the inner link is pointing downwards : this will be called the ”Down-up”
control

– when the inner link is pointing upwards : this will be called the ”Up-up” control

• Stabilize the links in these configurations, while moving the inner link slowly from
one peripheral position to the other.

• Implement a software safety net, such that when the system enters an unsafe state or
gets disturbed, both links should be controlled to their hanging down position. This
should also be the procedure at a system shut down.

This project will be run in several steps :

- Derivation of the physical model of the system

- Linearization of the non-linear model

- Choice of a control strategy for the up-up and down-up positions

- Choice of a control strategy for the peripheral movement

- Choice of a control strategy for the swing-up movements

- Implementation and validation
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1.2 Description of the Pendubot

The Pendubot is a two-link robot. It consists of a motor which is connected to an
arm (arm 1), to this arm another arm (arm 2) is connected. By applying a voltage to the
motor the motor will give out a torque acting on arm 1. The torque on arm 1 will also via
some non-linear relation affect arm 2.

The system can as shown in 1.1 be described as a 2ndorder mechanical system. As
shown later in this report one can using some control theory achieve impressive perfor-
mance on this system.

Figure 1.1: Scheme of the Pendubot
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Chapter 2

Modelization of the Pendubot

2.1 Modelization’s strategy

In mechanics two approaches are possible:

• The first one, Lagrange’s approach, is based on a energetic description of the system.

• The second one, Newton’s approach, is based on the fundamental principle of dy-
namics.

In this case, Lagrange’s approach seems easier as only the kinetic and potential energies
of the system are necessary to describe it. This theory assumes that one system can entirely
be described with a convenient set of parameters. Here, the knowledge of the angles of the
inner and the upper link is enough to describe completely the system in every positions.

The derivation of the physical model will thus be completed in steps:

1. Derivation of all the physical parameters of the Pendubot

2. Derivation of the nonlinear equations using Lagrange’s theory

3. Linearization of the nonlinear model

2.2 Derivation of the parameters

2.2.1 Inner link

The following parameters are needed for the description of the system:
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Total length of the arm l1 = 0, 21 m

Distance from the axis of rotation to the center of gravity lg1 = 0, 116 m

Width of the link w = 0, 005 m

Weight of the link Minner = 138, 75 g

Total weight of the arm M1 = 482, 5 g

Weight of the wheel MWheel = 51, 9 g

Weight of the sensor MSensor = 291, 85 g

Radius of the wheel RWheel = 0, 015 m

Distance from the axis of rotation to the wheel lWheel = 0, 08 m

The moment of inertia of the inner link can now be calculated. It can be computed
by adding the moments of every parts of the arm:

J1 = JInner + JWheel + JSensor (2.1)

Where:

• JInner = 1
12Minner

(
l21 + w2

)
= 0, 51.10−3 kg.m2

• JWheel = 1
2MWheelR

2
Wheel + MWheell

2
Wheel = 0, 338.10−3 kg.m2

• JSensor = MSensorl
2
Sensor = 7, 19.10−3 kg.m2

The total moment of inertia of the inner link is thus:

J1 = 8, 03.10−3 kg.m2

2.2.2 Outer link

The following parameters are needed for the description of the system:

Total length of the arm l2 = 0, 233 m

Distance from the axis of rotation to the center of gravity lg2 = 0, 134 m

Width of the link w = 0, 005 m

Weight of the link MOuter = 117 g

Total weight of the arm M2 = 220, 8 g

Weight of the wheels MWheel = 51, 9 g

Radius of the wheels RWheel = 0, 015 m

Distance from the axis of rotation to the 1st wheel lWheel1 = 0, 117 m

Distance from the axis of rotation to the 2nd wheel lWheel2 = 0, 221 m
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The moment of inertia of the outer link can now be calculated. It can be computed
by adding the moments of every parts of the arm:

J2 = JOuter + JWheel1 + JWheel2 (2.2)

Where:

• JOuter = 1
12MOuter

(
l22 + w2

)
= 0, 529.10−3 kg.m2

• JWheel1 = 1
2MWheelR

2
Wheel + MWheell

2
Wheel1 = 0, 716.10−3 kg.m2

• JWheel2 = 1
2MWheelR

2
Wheel + MWheell

2
Wheel2 = 0, 567.10−3 kg.m2

The total moment of inertia of the outer link is thus:

J2 = 1, 812.10−3 kg.m2

2.3 Derivation of the Nonlinear Model

2.3.1 Dynamic equations

According to Lagrange’s theory, a system can be totally described by using a conve-
nient set of parameters qi . Then, the studied system will be ruled by the following set of
Lagrange’s equations:

L = Ek − Ep (2.3)
d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
=

∑
Non conservative torques (2.4)

Where L is called the Lagrangian of the system. In this case, a convenient set of pa-
rameters is {θ1; θ2}. Indeed, no more parameter is needed to know exactly the position of
the Pendubot at any time.
It is now necessary to calculate the energy of both arms.

Kinetic energy of the inner link

The inner link only has a movement of rotation around one axis. Its moment of inertia
can thus be simply computed as follows:

Ek1 =
1
2
J1θ̇1

2
(2.5)

Where θ̇1 is the angular velocity of the inner link.
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Kinetic energy of the outer link

The movement of the outer link is composed by one movement of rotation and one
movement of translation. Thus, in order to calculate its total kinetic energy the energy
from both movements must be added. Koenig’s relation thus has to be applied as follows :

Ek2 =
1
2
J2θ̇2

2
+

1
2
M2VG2

2 (2.6)

Where θ̇2 is the angular velocity of the link and VG2 is the velocity of its center of
gravity. It can be calculated using the classical laws of kinematics and the geometry of the
system :

~VG2 =
d ~OG2

dt
(2.7)

with ~OG2 = (l1cos(θ1) + lG2cos(θ2)) ~x + (l1sin(θ1) + lG2sin(θ2)) ~y

This leads to the following result:

~VG2 =
(
−θ̇1l1sin(θ1)− θ̇2lG2sin(θ2)

)
~x +

(
θ̇1l1cos(θ1) + θ̇2lG2sin(θ2)

)
~y (2.8)

Finally, the kinetic energy of the outer link is :

EK2 =
1
2
J2θ̇

2
2 +

1
2
M2

(
θ̇2
1l

2
1 + θ̇2

2l
2
G2 + +2l1l2 cos(θ1 − θ2)θ̇1θ̇2

)
(2.9)

Potential energy

The potential energy of the systems only comes from the action of the gravity. It can be
easily calculated using the geometry of the system:

EP1 = M1lG1gsinθ1 (2.10)

EP2 = M2g (l1 sin θ1 + lG2 sin θ2) (2.11)

Where g = 9, 81 m.s−2 is the constant of gravity.

Derivation of the equations

Now that all the energies are known it is possible to calculate the Lagrangian of the
system as follows:

L = Ek − Ep

= θ̇2
1

[
1
2
J1 +

1
2
M2l

2
1

]
+ θ̇2

2

[
1
2
J2 +

1
2
m2l

2
G2

]
+ M2l1lG2 cos (θ1 − θ2) θ̇1θ̇2

− (M1lG1 + M2l1) g sin θ1 −M2glG2 sin θ2

(2.12)
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Then, all the necessary calculations are made in several steps :

• Partial derivative with respect to the angular velocities :
∂L

∂θ̇1

= θ̇1

[
J1 + M2l

2
1

]
+ M2l1lG2 cos (θ1 − θ2) θ̇2 = A

(
θ1, θ2, θ̇1, θ̇2

)
(2.13)

∂L

∂θ̇2

= θ̇2

[
J2 + l2G2M2

]
+ M2l1lG2 cos (θ1 − θ2) θ̇1 = B

(
θ1, θ2, θ̇1, θ̇2

)
(2.14)

• Partial derivative of the previous equations with respect to the time :
d

dt

(
A

(
θ1, θ2, θ̇1, θ̇2

))
=

∂A

∂θ1
θ̇1 +

∂A

∂θ2
θ̇2 +

∂A

∂θ̇1

θ̈1 +
∂A

∂θ̇2

θ̈2

=−M2l1lG2 sin (θ1 − θ2) θ̇1θ̇2 + M2l1lG2θ̇
2
2 sin (θ1 − θ2)

+ θ̈1

(
J1 + M2l

2
1

)
+ θ̈2M2l1lG2 cos (θ1 − θ2)

(2.15)

d

dt

(
B

(
θ1, θ2, θ̇1, θ̇2

))
=

∂B

∂θ1
θ̇1 +

∂B

∂θ2
θ̇2 +

∂B

∂θ̇1

θ̈1 +
∂B

∂θ̇2

θ̈2

=− θ̇2
1M2l1lG2 sin (θ1 − θ2) + θ̇1θ̇2M2l1lG2 sin (θ1 − θ2)

+ θ̈1M2l1lG2 cos (θ1 − θ2) + θ̈2

(
J2 + M2l

2
G2

)
(2.16)

• Partial derivative with respect to the angles:
∂L

∂θ1
= −M2l1lG2 sin (θ1 − θ2) θ̇1θ̇2 − [lG1M1 + M2l1] g cos θ1 (2.17)

∂L

∂θ2
= −M2l1lG2 sin (θ1 − θ2) θ̇1θ̇2 −M2lG2g cos θ2 (2.18)

The final relations of the model can then be derived:

Torque =
d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
(2.19)

0 =
d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
(2.20)

‘ Which gives :

Torque = θ̈1

(
J1 + M2l

2
1

)
+ θ̈2M2l1lG2 cos(θ1 − θ2) + M2l1lG2θ̇

2
2 sin(θ1 − θ2)

+ (M1lG1 + M2l1) g cos θ1

(2.21)

0 =θ̈1M2l1lG2 cos(θ1 − θ2) + θ̈2

(
J2 + M2l

2
G2

)
−M2l1lG2θ̇

2
1 sin(θ1 − θ2)

+ M2glG2 cos θ2

(2.22)
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2.3.2 State space equations

The previous equations are the general relations that describe the model. To simplify
them, new constants will be introduced as follows :

A1 = J1 + l2G1M1 + m2l
2
1

A2 = M2l1lG2

A3 = M2l1lG2

A4 = (M1lG1 + M2l1) g


B1 = M2l1lG2

B2 = J2 + M2l
2
G2

B3 = M2l1lG2

B4 = M2glG2

The input torque will be noted τ .

The two variables θ̈1 and θ̈2 must now be decoupled. Thanks to the second equation,
θ̈2 can be expressed as a function of all the other variables:

θ̈2 =
1

B2

[
−B1θ̈1 cos(θ1 − θ2) + B3θ̇

2
1 sin(θ1 − θ2)−B4 cos θ2

]
(2.23)

Then, this relation can be plugged into the first equation :

τ =θ1A1 +
A2

B2
cos(θ1 − θ2)

[
−B1θ̈1 cos(θ1 − θ2) + B3θ̇

2
1 sin(θ1 − θ2)−B4 cos θ2

]
+ A3 sin(θ1 − θ2)θ̇2

2 + A4 cos θ1

(2.24)

A first relation involving θ̈1 but not θ̈2 is thus obtained :

θ̈1 =
1

B1A2
B2

cos2(θ1 − θ2)−A1

[
A2B3

2B2
sin (2(θ1 − θ2)) θ̇2

1 + A3 sin(θ1 − θ2)θ̇2
2

−A2
B4

B2
cos θ2 cos(θ1 − θ2) + A4 cos θ1 − τ

(2.25)

In a similar way, θ̈1 can be expressed as a function of all the other variables and plugged
into the second equation :

0 =
B1

A1
cos(θ1 − θ2)

[
−θ̈2A2 cos(θ1 − θ2)−A3θ̇

2
2 sin(θ1 − θ2)−A4 cos θ1 + τ

]
+ B2θ̈2 −B3θ̇

2
1 sin(θ1 − θ2) + B4 cos θ2

(2.26)
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A second relation involving θ̈2 but not θ̈1 is thus obtained :

θ̈2 =
1

B1A2
A1

cos2(θ1 − θ2)−B2

[
−B3θ̇

2
1 sin(θ1 − θ2)−B1

A3

2A1
sin (2(θ1 − θ2)) θ̇2

2

−B1
A4

A1
cos θ1 cos(θ1 − θ2) + B4 cos θ2 +

B1

A1
cos(θ1 − θ2)τ

(2.27)

Thus, the system is now in a state-space form. If X =
[
θ1, θ2, θ̇1, θ̇2

]T
denotes the state

vector containing the four state variables, the following relation is obtained:

Ẋ = F
(
θ1, θ2, θ̇1, θ̇2

)
+ G (τ) (2.28)

Where

F
(
θ1, θ2, θ̇1, θ̇2

)
=


0 0 1 0
0 0 0 1

f1

(
θ1, θ2, θ̇1, θ̇2

)
f2

(
θ1, θ2, θ̇1, θ̇2

)
 (2.29)

G (τ) =


0
0
τ
0

 (2.30)

f1

(
θ1, θ2, θ̇1, θ̇2

)
denotes equation (2.25) and f2

(
θ1, θ2, θ̇1, θ̇2

)
denotes equation (2.27).

2.3.3 Validation of the model

Validation of the equilibrium points

It is first necessary to verify that the equilibrium points are correctly placed. The
Pendubot has three sets of equilibrium points:

• [θ1 = −π
2 ; θ2 = −π

2 ] : this is the only stable equilibrium

• [θ1 = −π
2 ; θ2 = π

2 ] : this equilibrium is unstable

• [θ1 = π
2 ; θ2 = π

2 ] : this equilibrium is unstable

The behavior of the system in those three positions corresponds to what was expected.
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Comparison with the real system

Thanks to the Data Acquisition function of Labview, it is possible to observe the
behavior of the system.

Schemes will be add in the final report
This result can be compared to the graph obtained with the Simulink model of the

system :
Schemes will be add in the final report

2.4 Linearization

2.4.1 Theoretical approach

The previous model is not directly exploitable. It is necessary to linearize it in order

to control it in an easier way. If
[
θ1eq, θ2eq, θ̇1eq, θ̇2eq

]T
denotes the values of the state

variables in an equilibrium point, the linearization around this point will be derived by
using Taylor’s expansion:

Ẋ = Ẋeq + JacF .∆X + JacG.∆U (2.31)

Further, the following notations will be used:

A = JacF (2.32)

B = JacG (2.33)

A and B can be calculated as follows:

A =


0 0 1 0
0 0 0 1

∂f1

∂θ1

∂f1

∂θ2

∂f1

∂θ̇1

∂f1

∂θ̇2
∂f2

∂θ1

∂f2

∂θ2

∂f2

∂θ̇1

∂f2

∂θ̇2


[θ1,θ2,θ̇1,θ̇2]T =[θ1eq ,θ2eq ,θ̇1eq ,θ̇2eq]T

(2.34)

B =


0
0
∂τ
∂τ
0

 =


0
0
1
0

 (2.35)

Finally, the general relation that will be used in the project is:
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∆Ẋ = A∆X + B∆U (2.36)

2.4.2 Calculations

Regarding the complexity of the equations, all the calculations of the partial derivatives
are performed with Maple.
The matrices A and B must be computed for each studied equilibrium point. Those
equilibrium points will be defined in the next chapter, when the controllers will be chosen.
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Chapter 3

Control design

The control of the Pendubot is divided into two main problems, swing-up and balancing.
These two problems are solved with different approaches.

3.1 Balancing control

To stabilize the Pendubot in position state-feedback with LQR-control is used[2] . LQR is
used since it gives an optimal stabilizing controller. The LQ-parameters are derived using
the linearized systems evaluated around the different equilibria. This gives a feedback
torque as

τ = τ0 −K(x− x0) (3.1)

were K is the 1×4 vector containing the state feedback gains. K is calculated by minimizing
eq. 3.2. This is done by solving the Algebraic Riccati Equation eq. 3.3, then K is given by
eq. 3.4.

min

∫
∆xT Q∆x + ∆τT R∆τ (3.2)

AT P + PA + Q = PBR−1BT P (3.3)

K = R−1BT P (3.4)

3.1.1 Tuning the balancing controllers

As mentioned in section 3.1 LQR is optimal, however it is important to remember that it
is optimal with respect to the weightings Q and R. Hence the controller can be tuned by
changing the values of these parameters. In this application it was found that the below
values of Q and R gave a good result.
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Q =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

 R = 50

3.1.2 Robustness of stabilizing controllers

Since the controllers are calculated based on the linearized system they need to be robust
so that they function on the true system. The controller derived with LQR are robust and
function in a neighborhood around the linearization point. Since this neighborhood only
covers a part of a revolution several controllers are needed. Testing has shown that one
revolution needs to be divided into 6 sectors with one balancing controller in each sector.

3.2 Swing-up control

The swing-up control design ??will be divided in two parts:

• A partial linearization of the model

• The design of the PD controller

3.2.1 Partial linearization

The equation noted (2.21) and (2.22) will be used here:

τ = θ̈1A1 + θ̈2A2 cos(θ1 − θ2) + A2θ̇
2
2 sin(θ1 − θ2) + A4 cos(θ1) (3.5)

0 = θ̈1B1 cos(θ1 − θ2) + θ̈2B2 −A2θ̇
2
1 sin(θ1 − θ2) + B4 cos θ2 (3.6)

From the equation (3.6)the relations of θ̈1 and θ̈2 can be obtained as showed in the previous
chapter:

θ̈1 =
θ̇1

2
A2 sin(θ1 − θ2)−B4 cos(θ2)− θ̈2B2

A2 cos(θ1 − θ2)
(3.7)

θ̈2 =
1

B2

[
θ2
1A2 sin(θ1 − θ2)−B4 cos(θ1 − θ2)− θ̈1A2 cos(θ1 − θ2))

]
(3.8)

A new equation of the torque can be derivated by replacing θ̈2 in the equation (3.5)
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τ =θ̈1A1 + A2θ̇
2
2 sin(θ1 − θ2) + A4 cos(θ1) + fracA2B2 cos(θ1 − θ2)

[
θ2
1A2 sin(θ1 − θ2)

−B4 cos(θ1 − θ2)− θ̈1A2 cos(θ1 − θ2))
(3.9)

which can be rewritten:

τ =θ̈1

[
A1 −

A2
2

B2
cos2 (θ1 − θ2)

]
+ θ̇2

2A2 sin (θ1 − θ2) + θ̇2
1

A2
2

B2
cos (θ1 − θ2) sin (θ1 − θ2)

+ A4 cos(θ1)−B4
A2

B2
cos(θ2) cos (θ1 − θ2)

(3.10)

α
(
θ1, θ2, θ̇1, θ̇2

)
=θ̇2

2A2 sin (θ1 − θ2) + θ̇2
1

A2
2

B2
cos (θ1 − θ2) sin (θ1 − θ2) + A4 cos(θ1)

−B4
A2

B2
cos(θ2) cos (θ1 − θ2)

(3.11)

β(θ1, θ2, θ̇1, θ̇2) = A1 −
A2

2

B2
cos2 (θ1 − θ2) (3.12)

The feedback will be design in order to nullify the terms α and β:
After the application of the feedback linearization a new set of state equation can be

computed:

θ̈1 = v1 (3.13)

θ̈2 =
1

B2

[
θ2
1A2 sin(θ1 − θ2)−B4 cos(θ1 − θ2)− v1A2 cos(θ1 − θ2))

]
(3.14)
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The system is now linear with respect to θ1. Furthermore, as it is a second order
system a PD controller must now be implemented. The global corrected system will be
looped as follows:

Figure 3.1: Swing-up control

3.3 Safety net

The safety net is not yet designed nor implemented. The current idea is to first monitor if
the states or the calculated output are unsafe. If they are the controller will let the system
free-fall until both arms are pointing downwards and θ1 and θ2 are in a sufficiently small
sector around −π/2. What remains is to decide when the system is unsafe. Currently that
is said to be when the calculated torque is too high and when θ2 is not sufficiently close to
π/2.

3.4 Switched system

All of the above parts of the controller must be put together in a switched system. A pilot
version of this switch system has been implemented revealing new problems. Apart from
the pure implementation problems there are a few theoretical. The first one of these is how
to do the hand-over between different sector controllers, currently a large step occurs when
this is done. How to set the references in the different sectors to follow a global reference
is another.
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Chapter 4

Implementation

4.1 The Pendubot

The Pendubot has got two encoders that gives the angle of the inner and the outer link,
θ1, θ2. The encoders have got a resolution of 1250 points per revolution, which means that
it is possible to detect an angular deviation of 5 · 10−3 rad on each link. To apply a torque
to the inner link the Pendubot uses a 90 volts DC motor. Since the power to the Pendubot
is taken from a wall socket the Pendubot is equipped with an AC-DC converter. This
converter provides a control unit with DC power. The control unit also receives control
signals from the users control program, amplifies them by a factor 10 and send them out
to the DC motor.

4.2 DAQ

To control the Pendubot Labview is used. Labview uses a Data Aquisition Card, or a DAQ
card, to collect and send data from and to the Pendubot. The DAQ card that is used in this
project is a National Instruments PCI 6221, which collects the angular measurements from
the two encoders in the Pendubot and sends out a calculated voltage to the DC motor.

4.3 Samplingrate

In one sampling interval Labview collects data from the two encoders, does all the stabi-
lizing calculations and sends out a voltage to the motor in the Pendubot. Therefor one
important parameter to set is the sampling frequency. With a to low sampling rate the
controllers will not be able to stabilize the system. A high sampling rate requires a fast
program that is able to do all the calculations within the sampling time. A good sapling
frequency to stabilize the system seems to be 200 Hz. This result is derived by practical
testing.
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4.4 Problems

When using 200 Hz sampling frequency the system has 5 ms to collect data, make all the
computations, send out data and react to the new output signal. It is essential to give
the system time to react to the new output signal before collecting the new angles. The
stabilizing controllers have been implemented in Labview and tested on the real system
one by one. They work perfect on the real system with 200 Hz sampling rate when used
one at a time. However, when the entire system is implemented with data processing, all
the stabilizing controllers and switching criterions, the program uses almost the entire 5 ms
time space to complete the calculations an sending out data. This means that the system
does not have any time to respond to the new output signal before new data is collected.
The result is an overcompensating system that starts to shake. To get the entire system
to work a new faster control program has to be developed.

When stabilizing the Pendubot a bias can be detected. For example, if the system is
stabilized in the up-up position the inner link does not have the angular output θ1 = π

2
rad like it is supposed to have. Instead θ1 = π

2 + 5 · 10−2 rad, which corresponds to a de-
viation of about 3◦ in the counter clockwise direction. This problem is probably due to an
amplification error in the control unit in the Pendubot. By measuring the voltage output
from the control unit to the motor a difference in amplification between the positive and
the negative output has been detected. The positive output voltage has a somewhat higher
amplification than the negative output. Since a positive output will result in revolutions
in the counter clockwise direction it seems reasonable that this is the source to the bias.
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