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Abstract

Safe extension of a logic with definitional axioms need acyclic defi-
nitions, because cycles in definitions possibly entail contradiction. In
this report we give a mechanised exact characterisation of acyclic over-
loading definitions. Our results support the soundness argument of the
cyclicity checker of the Isabelle/HOL theorem prover, and serve as the
theoretical foundation for future verification of such a cyclicity checker.

1 Introduction

Overloading definitions add complexity to a theorem prover. Adding new
overloaded definitions to a proof development requires that each defined sym-
bol does not depend on itself, as otherwise an extension by definitions with
cyclic dependencies may render the resulting theory inconsistent. Acyclic de-
pendencies (also called terminating dependencies) of definitions are a premise
to consistent theories, as discussed in [KP19, ÅG20] and guarantee conser-
vative definitions [GÅW21, GW20]. Hence, any theorem prover supporting
overloading definitions should check that their dependencies are not cyclic.

Whether dependencies of definitions are cyclic is undecidable, because the
post-correspondence problem can be embedded into a theory of overloaded
definitions [Obu06]. Yet, Kunčar [Kun15] lays the theoretical foundation for
checking cyclicity of composable dependencies which gives rise to a sound
algorithm. Furthermore, Kunčar identifies orthogonality as a restriction on
dependency relations that render the cyclicity checking algorithm complete
and decidable.

This report extends the earlier work in two ways. First, in Section 3 we
sketch the equivalence proof that composable dependencies are cyclic, if and
only if there are cycles of certain shapes. In our proof we highlight the fixes
of an innocent-looking false lemma, which relates the size of a type prior
to and after non-bijective type variable instantiation. Our proofs in this
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section are mechanised in the HOL4 theorem prover as part of the CakeML
project [TMK+19].1 Second, in Section 4 we discuss why orthogonality of
dependencies from overloading definitions is no suitable limitation.

As future work we aim to obtain a mechanised sound cyclicity checker,
which composed with our earlier work [ÅG20, GÅW21] yields a verified
theorem prover kernel that supports overloading.

2 Background

We generally follow the notation of Kunčar [Kun15].

2.1 Notation

In this section we define types and constant instances, that we call symbols,
and different operands on these.

Types. We fix an infinite set TVar of type variables ranged over by α, β.
A type signature is a pair (K, arOf) of a finite set K of type constructors,

where the arity of each type constructor is given by arOf : K → N0.
We further on assume a fixed signature and define the set of its types Type

as the smallest set satisfying

• TVar ⊆ Type, and

• (σ1, . . . , σarOf(k))k ∈ Type, for k ∈ K and σ1, . . . , σarOf(k) ∈ Type.

Types range over σ,τ .
For the discussion in Section 4 we assume that K contains a right-

associative binary type constructor → for function types and a unary type
constructor of Booleans bool. We identify bool with ()bool, and write function
types as infix, like σ → τ for σ, τ ∈ Type.

As inherited from [ÅG20, GÅW21], we define the size of a type recursively
for type variables as size(α) = 1 and for types (σ1, . . . , σarOf(τ))k ∈ Type as

size((σ1, . . . , σarOf(τ))k) = 1 + arOf(τ) +

arOf(τ)∑
i=1

size(σi).

Type variables and unary types have the same size, e. g. size(α) = size(bool).
Note, Kunčar defines that type variables do not contribute to the size of

a type (the base case is 0) and omits the arity arOf(τ) in the second clause.
This difference has no effect on the problems that we mention in Section 3.2.

The set FV(τ) collects all type variables of its argument type τ .
1https://code.cakeml.org/tree/master/candle/overloading/syntax
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Type instances. A type substitution is a function TVar → Type which
replaces type variables by a type, and type substitutions homomorphically
extend to type constructors. For a fixed type signature K, the set of all type
substitutions is TSubst.

For any type substitution ρ ∈ TSubst and any type σ ∈ Type, ρ(σ) is
a (type) instance of σ, written ρ(σ) ≤ σ. For τ = ρ(σ) we annotate the
type substitution ρ as in τ ≤ρ σ. For easier reading, ≥ is ≤ with flipped
arguments. Two types σ and τ are orthogonal if they have no common type
instance, i. e. if for all ρ, ρ′ ∈ TSubst, holds ρ(σ) 6= ρ′(τ).

A type substitution is a (variable) renaming if it is a permutation on a
subset of TVar. Hence, a renaming η keeps the structure of a type τ , and
has no effect on the size, size(η(τ)) = size(τ), nor on the number of type
variables #FV(η(τ)) = #FV(τ).

Equivalences. Two type substitutions ρ, ρ′ ∈ TSubst are equal on a type τ ,
written ρ =τ ρ

′, if ρ(τ) = ρ′(τ). This equality holds point-wise at every of
the type variables of τ . Two type substitutions ρ and ρ′ are equivalent, ρ ≈ ρ′
if there exists a renaming η such that ρ = η ◦ ρ′. We write ρ ≈τ ρ′ if the
equality holds on a type τ only: ρ =τ η ◦ ρ′.

For example, any renaming η is equivalent to the identity η ≈ id, as
witnessed by the inverse η−1.

Lifting to constants. We extend the type signature by a set of constants
Const, and by a function tpOf : Const → Type that assigns each constant
symbol its type. The set of constant instances CInst contains all tuples (c, τ)
written cτ , whose type is an instance of the type of c, τ ≤ tpOf(c).

We define Symb := CInst ∪ Type and lift the notions defined for types
to constant instances canonically. For example, we define size(cσ) = size(σ),
and ρ(cσ) = cρ(σ), and cσ ≤ dτ iff c = d and σ ≤ τ . We call the elements
from Symb as symbols and let them range over p, q, r, s.

We define orthogonality p# q for pairs (p, q) of types and constant in-
stances that either one of p and q is a type and the other a constant instance,
or otherwise both are orthogonal p# q.

2.2 Dependency Relation

For relations R, R+ is the transitive closure and R∗ is the reflexive-transitive
closure. For a binary relation of symbols we write  ⊆ Symb × Symb, and
say dependency relation.

The type-substitutive closure  ↓ of a dependency relation  on symbols
is the smallest relation such that ρ ∈ TSubst and x y implies ρ(x) ↓ ρ(y).

A dependency relation ismonotone, if for every p q, we have FV(q) ⊆
FV(p), i. e. all type variables of q are bound through p. Monotonicity holds
for dependencies of type and constant definitions as introduced in [KP19].
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A dependency relation  is cyclic (also non-terminating) if there exists
an infinite sequence of type substitutions ρi and pi  qi such that ρi(qi) =
ρi+1(pi+1) and pi  qi for all i ∈ N0. The constraint of these chains of
dependencies stem from that an instance ρi(pi) of a defined or declared
symbol pi is defined in terms of the symbol pi+1. Thus, to evaluate the
instance ρi(pi) one needs to evaluate its dependency ρi+1(pi+1).

Composability. A dependency relation on Symb is composable, if for any
sequence (ri)0≤i≤n of symbols with r0  r1 and for 1 ≤ i < n with ri  ↓ ri+1

for any possible continuation p q holds rn ≤ p, or rn ≥ p, or otherwise rn
and p are orthogonal, rn# p. That means that the fourth case ρ(rn) = ρ′(p)
for some non-trivial ρ, ρ′ ∈ TSubst does not occur.

2.3 Solutions

In this section we will define transitive dependency chains in  ↓ as solutions,
and prove basic properties of most general solutions.

For a finite sequence of dependencies (pi, qi)i≤n, i. e. pi  qi for 0 ≤ i ≤ n,
a sequence of type substitutions (ρi)i≤n is a solution if for every 0 ≤ i < n it
holds ρi(qi) = ρi+1(pi+1). An infinite sequence of type substitutions (ρi)i∈N0

is a solution of (pi, qi)i∈N0 , if every finite prefix is.
In finding a solution, the most general solutions are interesting, i. e. any

other solution can be obtained as a type instance of a most general solu-
tion. Most general solutions are unique up-to invertible renamings of type
variables ([Kun15, Lemma 5.4]). For a monotone relation we obtain the
following formulation:

Lemma 1. For a monotone dependency relation , and for two most general
solutions (ρi)i≤n and (ρ′i)i≤n of (pi, qi)i≤n ⊆ there exists an invertible
variable renaming η such that ρi = (η ◦ ρ′i)(pi) for all 0 ≤ i ≤ n.

By monotonicity, solutions are most general if the type substitution at
index 0 is equivalent to the identity.

Lemma 2. For a monotone relation , any solution (ρi)i≤n to (pi, qi)i≤n ⊆ 
with ρ0 ≈p0 id is a most general solution.

Proof. Assume that ρ0 acts as the identity on type variables not from FV(p0)
Furthermore, we assume that ρ0 =p0 id. (By assumption ρ0 is invertible, thus
as the dependency relation is monotone, if one of the sequences (ρ−10 ◦ ρi)i≤n
and (ρi)i≤n is a most general solution, so is the other.) Let (ρ′i)i≤n be another
solution to (pi, qi)i≤n, then by induction we show that ρ′0 ◦ ρi =pi ρ

′
i for

all i ≤ n. At i = 0, we have ρ′0 ◦ ρ0 =p0 ρ
′
0. For i > 0, for all j < i it

holds ρ′0 ◦ ρj =pj ρ
′
j , and by monotonicity FV(qj) ⊆ FV(pj) this equality
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also holds on qi, ρ′0 ◦ ρj =qj ρ
′
j . The claim ρ′0 ◦ ρi =pi ρ

′
i follows, because

both (ρi)i≤n and (ρ′i)i≤n are solutions:

(ρ′0 ◦ ρi)(pi) = (ρ′0 ◦ ρi−1)(qi−1) = ρ′i−1(qi−1) = ρ′i(pi)

3 Equivalence of Acyclicity

In this section we discuss the equivalence proof that permits a different
formulation of cyclic dependencies from overloading definitions. The argument
closely follows the rigorous pen-and-paper proof of Kunčar [Kun15].

We first state in Section 3.1 the problem that we aim to solve, and discuss
in Section 3.2 why we slightly deviate from Kunčar’s proof. In Section 3.3
we discuss properties of extending solutions by one step and conclude this
part with a proof of the key lemma in Section 3.4.

3.1 Equivalence of Acyclicity

The key insight is that composable dependency relations allow a differ-
ent characterisation of the acyclicity problem. The main theorem [Kun15,
Lemma 5.17] states that for a finite, monotone and composable dependency
relation  the following equivalence holds:

Theorem 3. The type-substitutive, transitive closure  ↓+ of the dependency
relation is cyclic iff the type-substitutive closure has a cycle of the form x 
y  ↓∗ ρ(x) for some ρ ∈ TSubst, and some x, y ∈ Symb.

In other words, cyclic dependencies are discoverable by searching for
cycles of the latter shape. The discovered cycles are infinite solutions whose
type substitution at index 0 is the identity id. Essential to an algorithmic
search is, that the first step is not type-substitutive.

3.2 The Measure

The equivalence follows through a contradiction by infinite descent as dis-
cussed in Section 3.4. For cyclic dependencies we will achieve that the change
in number of free variables strictly decreases or the change in type size strictly
increases.

Lemma 3.1b in [Kun15] misses that a non-bijective type substitution may
leave the size of a type unchanged. For example, instantiating the polymorphic
function type α→ β with ρ = α 7→ β results in ρ(α→ β) = β → β, where ρ
does not affect the size. We correct the statement as follows:

Lemma 4. For two symbols p and q with q ≥ρ p, holds size(q) ≤ size(p).
If additionally q 6≤ p holds, then #FV(p) < #FV(q) or size(q) < size(p).
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In other words, applying the type substitution ρ to q (observe that
p = ρ(q)) may increase the size size(q) ≤ size(ρ(q)). In the second part of
Lemma 4, q is no instance of p, written q 6≤ p, means that for all ρ′ ∈ TSubst
the symbol q is q 6= ρ′(p). Thus ρ applied to q is not invertible (Kunčar
describes this as ρ 6≈q id) and applying ρ to q may unify at least two type
variables of FV(q) or strictly increase the size. In the latter case ρ instantiates
at least one of the type variables of q with a type constructor.

This lemma entails adjustments to the proofs, that we mainly discuss
in Sections 3.3 and 3.4.

3.3 Extending Solutions by One Step

Due to composability the solutions that can be extended by one dependency
step have particular shapes and properties, that we discuss in this section.

By composability, trying to extend a solution (ρi)i≤n of (pi, qi)i≤n (with
initial ρ0 = id) by one step gives three cases: either for all p q orthogonality
holds ρn(qn)# p and no extension is possible, or an extension is possible as
there exists p q such that ρn(qn) ≤ p, or ρn(qn) ≥ p.

3.3.1 ≤-extension

If a solution is extendable with a ≤ step (i. e. ρn(qn) ≤ p), the resulting
solution has the following shape [Kun15, Lemma 5.9].

Lemma 5. For a most general solution (ρi)i≤n of a family of pairs (pi, qi)i≤n
from a monotone dependency relation with pn+1  qn+1 and ρn(qn) ≤ρ′ pn+1,
the following is a most general solution to the longer sequence (pi, qi)i≤n+1:

(ρi)i≤n, ρ
′.

The previous Lemma 5 entails the following invariant of the size and
number of type variables in a ≤-extension of a solution.

Lemma 6. For a monotone dependency relation  , let (pi, qi)i≤n+1 ⊆ be
dependency pairs with a most general solution (ρi)i≤n of the shorter sequence
and with (ρ′i)i≤n+1 a most general solution of the longer sequence.
If ρn(qn) ≤ρ′ pn+1, then the following two equalities hold:

size(ρ0(p0)) = size(ρ′0(p0)) #FV(ρ0(p0)) = #FV(ρ′0(p0)).

Observing that by Lemma 1 the most general solutions (ρi)i≤n, ρ
′ and

(ρ′i)i≤n+1 are equivalent on p0 modulo renaming of type variables and ob-
serving that renamings have no effect on the type size and number of type
variables, the proof of Lemma 6 is easy. As a consequence, a sequence of
consecutive ≤-extensions has no effect on the size nor the number of free
variables at p0 w. r. t. the most general solutions at index 0.
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3.3.2 (Strict) ≥-extension

Analogously to the previous Section 3.3.1, we look at the other possible way
to extend a solution and the change of the size of the type or the number
of type variables. If a solution is extendable with a ≥ step (i. e. ρn(qn) ≥ p),
the resulting solution has the following shape [Kun15, Lemma 5.10].

Lemma 7. For a most general solution (ρi)i≤n of a family of pairs (pi, qi)i≤n
from a monotone dependency relation with pn+1  qn+1 and ρn(qn) ≥ρ′ pn+1,
there exists a type substitution ρ̂ ∈ TSubst such that ρ̂ =ρn(qn) ρ

′, ρ̂(α) = α
for all α ∈ FV(ρ0(p0)) \ FV(ρn(qn)) and the following is a most general
solution of the family (pi, qi)i≤n+1:

(ρ̂ ◦ ρi)i≤n, id .

As Lemma 6 already covers the case when in an extension step both
of ρn(qn) ≤ pn+1 and ρn(qn) ≥ pn+1 hold, we regard the effect of strict
≥-extension. With a strict ≥-extension of a solution (ρi)i≤n we mean that
the following is true:

ρn(qn) 6≤ pn+1 and ρn(qn) ≥ pn+1.

The initial Lemma 4 states a property that applies in this situation, and
which we can port from index n to index 0 by monotonicity.

Lemma 8. For a monotone dependency relation  , let (pi, qi)i≤n+1 ⊆ be
dependency pairs with a most general solution (ρi)i≤n of the shorter sequence
and with (ρ′i)i≤n+1 a most general solution of the full sequence.

If both ρn(qn) 6≤ pn+1 and ρn(qn) ≥ρ′ pn+1 hold, then we can derive the
inequality size(ρ0(p0)) ≤ size(ρ′0(p0)), and additionally the formula:

size(ρ0(p0)) < size(ρ′0(p0)) ∨#FV(ρ′0(p0)) < #FV(ρ0(p0)).

Proof. For the most general solution (ρi)i≤n with ρn(qn) ≥ρ′ pn+1, let ρ′ be
as obtained by Lemma 7. Thus, all type variables from the two sets R :=
FV(ρ0(p0)) \ FV(ρn(qn)) and C := FV(ρ′(ρn(qn))) are named apart. The
type variables in R are those variables that got instantiated at different
extension steps between 0 and n. We may assume that ρ′ acts as the identity
everywhere else except on FV(ρn(qn)).

By Lemma 1 we can assume that ρ′ ◦ ρi =pi ρ
′
i for i ≤ n.

Assume size(ρ0(p0)) = size((ρ′ ◦ ρ0)(p0)). The following claim remains:

#FV((ρ′ ◦ ρ0)(p0)) < #FV(ρ0(p0)).

By the definition of size, the equality entails that ρ′ only renames variables and
instantiates type variables by type constructors of arity 0, and unifies distinct
type variables, thus for any p it holds (1): #FV(ρ′(p)) = #(ρ′(FV(p))).
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By monotonicity holds FV(ρn(qn)) ⊆ FV(ρ0(p0)), and we can regard
the disjoint partition (2): FV(ρ0(p0)) = R ∪ FV(ρn(qn)). For the type sub-
stitution ρ′ it holds, (3) that ρ′(R) ∩ C = ∅ and on the type variables R,
the substitution acts as the identity (4) ρ′(R) = R. We obtain the follow-
ing equality.

#FV((ρ′ ◦ ρ0)(p0))
(1)
= #

(
ρ′ (FV(ρ0(p0))

) (2)
= #

(
ρ′(R) ∪ ρ′(FV(ρn(pn)))

)
(1)
= #

(
ρ′(R) ∪ C

) (3)
= #ρ′(R) + #C

(4)
= #R+#C

By (2) we rewrite the right-hand side in the remaining claim:

#FV((ρ′ ◦ ρ0)(p0)) < #R+#FV (ρn (qn))

Hence, it remains to prove #C < #FV(ρn(qn)) for C = FV(ρ′(ρn(qn))).
But this strict inequality holds by Lemma 4: The equality of sizes

size(ρn(pn)) = size((ρ′ ◦ ρn)(pn))

holds, as it holds on the superset FV(ρ0(p0)) ⊇ FV(ρn(pn)), which proves
the lemma.

Consequently a strict ≥-extension of a solution entails, that a solution at
index 0 unifies at least two type variables or instantiates at least one type
variable with a type constructor.

3.4 Proving The Key Technical Lemma

Composability implies that an infinite chain of dependencies contains only
finitely many strict ≥-extensions, which we prove in this section.

We define an infinite solution as k-ascending if from index k onward only
≤-extensions occur.

Definition 9. For a family (pi, qi)i≤n and p ∈ Symb we write (pi, qi)i≤n 4 p
if there exists a most general solution (ρi)i≤n such that ρn(qn) ≤ p.
An infinite family (pi, qi)i∈N0 is k-ascending, if for all n ≥ k it holds that
(pi, qi)i≤n 4 pn+1.

As the following Lemma 10 proves, a suffix of a k-ascending sequence
is 0-ascending, because at any ≥-extension step the solution is id.

Lemma 10. Let  be a composable, monotone dependency relation and
(pi, qi)i∈N0 an infinite sequence of dependency pairs. If (pi, qi)i∈N0 is k-
ascending then (pi, qi)k≤i is 0-ascending.

Proof. Let 0 < k be the smallest, such that (pi, qi)i∈N0 is k-ascending and
let (ρi)i≤k−1 be a most general solution. As k is smallest, it holds ρk−1(qk−1) 6≤
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pk and hence ρn(qk−1) ≥ pk, by composability. By Lemma 7, there exists
a ρ̂ such that (ρ̂ ◦ ρi)i≤k−1, id is a most general solution to (pi, qi)i≤k. Con-
sequently by Lemma 1, any most general solution (ρ′i)i≤k of (pi, qi)i≤k is at
index k equivalent to the identity: ρ′k ≈pk id.

For any k′ ≥ k, we show that if (ρi)i≤k′ is a most general solution
for (pi, qi)i≤k′ , then the suffix (ρi)k≤i≤k′ is a most general solution for
(pi, qi)k≤i≤k′ . As all the steps from k to k′ are ≤-extensions, thus ρk ≈pk id.
Then (ρi)k≤i≤k′ is a most general solution for (pi, qi)k≤i≤k′ , by Lemma 2.

With these preparations, we prove the key lemma [Kun15, Lem 5.16].

Theorem 11 (The Key Technical Lemma). For a composable and monotone
dependency relation and (pi, qi)i∈N0 ⊆ an infinite sequence of dependency
pairs, such that every finite prefix of (pi, qi)i∈N0 has a solution, then there
exists an index k with (pi, qi)k≤i is 0-ascending.

Proof. By Lemma 10 it suffices to show that there exists an index k such that
(pi, qi)i∈N0 is k-ascending, i. e. from index k onward only ≤-extensions occur.
Assume the contrary, that for each k there exists a smallest k′ > k such that
if (ρi)i<k′ is a most general solution for (pi, qi)i<k′ then ρk′−1(qk′−1) 6≤ pk′ .
By composability also holds ρk′−1(qk′−1) ≥ pk′ .

Denote by (kj)j∈N0 the sequence of all indices that iterate all the strict
≥-extensions. That is, for any n, any j and any most general solution (ρi)i≤n
for (pi, qi)i≤n, we have:

For kj < n < kj+1 we have a ≤-extension ρn(qn) ≤ pn+1, and otherwise,
for n = kj we have a strict ≥-extension ρn(qn) 6≤ pn+1 and ρn(qn) ≥ pn+1.

For n ∈ N0, we consider each of the two cases kj < n < kj+1 and n = kj

individually, and denote by (ρ
(j)
i )i≤j a most general solution of (pi, qi)i≤j .

It is irrelevant which representant of the equivalence class of most general
solutions of length j (modulo bijective renaming of type variables) is chosen,
because size and number of free type variables are invariant under renaming
of type variables. Furthermore, we abbreviate r(i) = ρ

(i)
0 (p0).

≤-extension: Assume kj+1 < kj+1, i. e. there is at least one ≤-extension.
Then for all m such that kj < n ≤ m ≤ kj+1 we obtain by induction and
by Lemma 6:

size(r(n)) = size(r(m)) #FV(r(n)) = #FV(r(m)).

Strict ≥-extension: Otherwise, we regard the case n = kj . By Lemma 8,
we obtain size(r(n)) ≤ size(r(n+1)), and

size(r(n)) < size(r(n+1)) ∨#FV(r(n+1)) < #FV(r(n)).

Thus at ≤-extension steps equality holds and at strict ≥-extension steps,
at index 0 the size increases strictly or the number of type variables decreases
strictly. Assume there is an index l, such that for all i ≥ l, the size at index 0 is
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constant, size(r(l)) = size(r(i)). Combining both of the properties of (kj)j∈N0 ,
a contradiction follows, as for each of the infinitely many indices kj > l
it holds:

#FV(r(kj+1)) < #FV(r(kj))

Thus, there are infinitely many indices I ⊆ (kj)j∈N0 such that for all n ∈ I:

size(r(n)) < size(r(n+1))

Let (ρi)i∈N0 be a solution for (pi, qi)i∈N0 . As the size grows infinitely, there
exists an index n ∈ N0 such that the size of r(n) = ρ

(n)
0 (p0) has grown

larger than the size of ρ0(p0), i. e. size(ρ0(p0)) < size(r(n)). As (ρ(n)i )i≤n is
a most general solution for (pi, qi)i≤n, there exist type substitutions (ηi)i≤n
that witness that (ρi)i≤n is an instance: (ηi ◦ ρ(n)i )(pi) = ρi(pi), for all
i ≤ n. Because any type substitution increases the size of a type, size(r(n)) ≤
size(η0(r

(n))), we obtain the contradiction:

size(r(n)) ≤ size(η0(r
(n))) = size(ρ0(p0)) < size(r(n))

This proves the claim.

As a conclusion, for monotone, composable dependency relations  ,
cycles in the type-substitutive hull ↓ start with a non-type-substitutive step.
Theorem 3 follows, as the proof of [Kun15, Lemma 5.17], holds unchanged as
our formalisation certifies. We mechanised the proofs for a specific dependency
relation which originates from dependencies of overloading definitions [ÅG20].

4 Cyclicity of Overloading Definitions

In this section we discuss how the proven equivalence of cyclic dependencies
(cf. Theorem 3) can be used in a cyclicity checker for theories of type definitions
and overloading constant definitions. In the discussion we also focus on the
sufficient properties that render a dependency relation decidable, according
to Kunčar [Kun15].

4.1 Algorithmically Checking for Cycles

A verified theorem prover would need to check if a theory is definitional,
i. e. finite, consisting of pair-wise orthogonal definitions and the closure of its
dependency relation is terminating. For finitely many definitions the induced
dependency relation is finite, orthogonality can be determined in polynomial
time and monotonicity holds by definition.
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The search for cycles in the dependency relation of the theory, amounts
to a breadth-first search of the type-substitutive closure  ↓, from each of
the finitely many tuples p q. At the i-th iteration step,

p p(1)  ↓ · · · ↓ p(i),

this path through the type-substitutive reflexive hull  ↓∗ can be checked
for composability (whether for each x y one of the instantiations p(i) ≤ x,
or p(i) ≥ x, or orthogonality p(i)#x holds). Following a successful check,
the path p  ↓+ p(i) can be extended for each x  y with p(i) ≤ρ x, which
means p(i) = ρ(x). By Theorem 11, the other case p(i) ≥ x is irrelevant for
finding cycles. However, if x = p a cycle p  ↓+ ρ(p) is found. Otherwise,
p(i)  ↓ ρ(y), and the search continues with p(i+1) = ρ(y).

The proven equivalence of Theorem 3 [Kun15, Lemma 5.17] of cyclic
dependency relations holds, as we have motivated above and shown in a
mechanised proof. That implies that the described algorithm is sound.

Despite its unclear termination without further restrictions on the depen-
dency relation, this algorithm is close the algorithm used in Isabelle/HOL.2

For the purpose of checking orthogonality and whether a type is an instance of
another type, we have formalised a unification algorithm (based on [BSN+01])
and an instantiation check, each of which we have proven sound and complete
in a mechanised proof.

4.2 Restricting Dependencies for Termination

With further restriction of (1) and (2) (cf. [Kun15, Def. 6.1]) on the relation,
Kunčar discovered that the iteration terminates.

∀p q p ′ q ′. p q ∧ p ′ q ′ ∧ p 6= p ′ =⇒ p# p ′ (1)
∀p q p ′ q ′. p q ∧ p ′ q ′ ∧ q 6= q ′ =⇒ p# p ′ (2)

We exemplify that each of these restrictions are not satisfiable for dependency
relations induced by theories of definitions.

First, to compensate for a larger dependency relation, by [ÅG20], the
dependencies in the first conjunct (1) needs to exclude any dependencies aris-
ing from declarations. (Note, that [ÅG20] was published well after Kunčar’s
work.) A theory with a polymorphic constant sizeα→N0 and a definition of a
proper instance sizeα list→N0 , induces among others the following dependencies,
where the latter originates from the constant declaration of sizeα→N0 .

sizeα list→N0  α list and sizeα  α

This is an example that contradicts (1), as sizeα list→N0 6= sizeα, but both
constant instances are not orthogonal.

2cf. https://isabelle.sketis.net/repos/isabelle/file/Isabelle2020/src/Pure/defs.ML#181
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Second, the other conjunct (2) is too restrictive, even for dependency
relations that are induced by theories of definitions without overloaded
constants. In the following a constant ONTO of type (α → β) → bool is
defined by a lambda expression with quantifier constants.

ONTO(α→β)→bool ≡ λf. ∀yβ. ∃xα. y = f(x)

The formula ONTO f expresses that fα→β is a surjective function, which
allows to formulate the axiom of Dedekind-infinity in [ÅG20]. Among others,
this constant definition introduces the following dependencies.

ONTO ∀ ↓ α and ONTO ∃ α

These dependencies violate the restriction of (2). In (2) any branching
dependency from p = p′ = ONTO is not orthogonal; for any p holds ¬(p# p).
Furthermore, as a consequence of the amendments to the dependency relation
in [ÅG20] the given chains of dependencies do not satisfy [Kun15, Lemma 6.2].

Further future work could investigate criteria sufficient for a decidable
check of cyclic dependency relations for theories of definitions. At the current
stage, we suggest to parameterise the cyclicity check by a maximal search
depth. Such an algorithm is not complete, as it either finds a cycle, or
confirms that there is no cycle, or finds that there may be a cycle of length
longer than the maximal search depth.

5 Conclusion

Acyclic definitions entail consistent theories in the Isabelle/HOL theorem
prover [KP19, ÅG20]. In this report we show that cycles in type-substitutive
dependencies start with a non-type-substitutive step for composable de-
pendency relations. We fix the proof by Kunčar, and discuss why further
restrictions, that render acyclicity decidable, do not apply for dependen-
cies by definitions. Ultimately, overloading definitions are no different from
other definitions in that they could need a termination argument to aid an
automatic checker that cannot decide the acyclicity.

Future work could finalise the formalisation of a cyclicity check of over-
loading definitions. To the best of our knowledge this would entail the first
formally verified proof assistant, by the CakeML tool chain [TMK+19], that
supports overloading and has verified model-theoretic conservativity guar-
antees. The expected result is a verified proof-checker for HOL with ad-hoc
overloading similar to the work of Abrahamsson [Abr20], but with overloading
definitions. Such a proof checker would permit verified proof-checking of
Isabelle/HOL theories, such as those published in the Archive of Formal
Proofs [EKN+].
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