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Abstract
Non-terminating (dependencies of) definitions can lead to logical contradictions, for example when
defining a boolean constant as its own negation. Some proof assistants thus detect and disallow
non-terminating definitions. Termination is generally undecidable when constants may have different
definitions at different type instances, which is called (ad-hoc) overloading. The Isabelle/HOL proof
assistant supports overloading of constant definitions, but relies on an unclear foundation for this
critical termination check. With this paper we aim to close this gap: we present a mechanised proof
that, for restricted overloading, non-terminating definitions are of a detectable cyclic shape, and
we describe a mechanised algorithm with its correctness proof. In addition we demonstrate this
cyclicity checker on parts of the Isabelle/HOL main library. Furthermore, we introduce the first-ever
formally verified kernel of a proof assistant for higher-order logic with overloaded definitions. All
our results are formalised in the HOL4 theorem prover.
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1 Introduction

For a consistent logical foundation, a theorem prover should only accept contradiction-free
definitions. Although the logical foundations of many theorem provers are well studied,
e. g. [21, 10, 13, 20, 5], still unverified implementations may allow proof of contradiction,
e. g. by contradictory definitions [18, 14, 15].

Contradictory definitions can be avoided if each defined symbols and its dependants span
a graph with only finite chains, i. e. if the so-called dependency graph is terminating. We
showed this in earlier work for a variant of higher-order logic (HOL) [1]. For more expressive
definitions, termination of the dependency graph is generally undecidable, which Obua [18]
showed if a symbol (like a constant or a type) may be defined at different type instances,
so-called (ad-hoc) overloading. Overloaded definitions enable recursion through types and
their dependency graphs are generally infinite.

In-logic overloading of constant definitions distinguishes the Isabelle/HOL theorem prover
from others, and permits Haskell-style type classes [26], which enable types to carry structure
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with operations, e. g. a monoid type class with composition and a neutral element [24].
We illustrate non-terminating definitions by an example,1 that enabled proof of contra-

diction in an earlier version of Isabelle/HOL. Assume a theory with the three polymorphic
constants cα list→Bool, d(α×β)→Bool and undefinedα, and the following two definitions.

c (xα list) ≡ d(undefinedα×α) d (xα×nat) ≡ ¬c([undefinedα])

Here, c with the argument xα list is defined in terms of d, and d with the argument xα×nat
is defined in terms of c. For the type instances of c at type nat list → Bool and of d at
type (nat × nat) → Bool, we obtain a non-terminating sequence and also a contradiction.

c ([undefinednat]) = d (undefinednat×nat) = ¬c ([undefinednat])

Non-termination and the contradiction only surface after type variable instantiation. (To
make this an overloaded definition, we could instead declare c of type α → Bool and in the
definitions replace each name d by c.)

In order to facilitate the check of termination of overloaded definitions in Isabelle/HOL,
Kunčar’s work suggests that so-called composable non-terminating dependency graphs have
a structure [14]. Detecting this structure in dependency relations that additionally are
orthogonal is decidable. Kunčar defines a dependency relation orthogonal if it is functional,
i. e. any symbol only depends on one other symbol. Despite these findings, we are unaware of
any formalisation of the theorems.

In this paper, we present a complete formalisation of the theory that any non-terminating
dependency relation contains cycles. We innovate to resolve a problem in Kunčar’s argument
for the main theorem that stems from an incorrect size comparison of a type prior to and after
type instantiation. Further, we discover that Kunčar’s restriction to orthogonal dependency
relations is not satisfiable by dependencies stemming from definitions, and invent a cyclicity
checker algorithm of our own. By formal proof our cyclicity checker can correctly calculate
non-termination for composable dependency relations. We profit from the rich infrastructure
around the CakeML language [23, 11] to synthesise a correct binary cyclicity checker. This
checker shows that extracts of dependencies from Isabelle/HOL theories are composable and
acyclic. If the checker detects acyclic dependencies of a theory of definitions, then by its
correctness guarantees, we can discharge the assumption of non-terminating definitions, and
obtain a consistent theory of definitions [1] with model-theoretic conservativity guaranties [8].
Altogether, we compose our verified cyclicity checker with the infrastructure from prior
work [1, 8], to obtain a formally verified theorem prover kernel for HOL with overloading,
that has the mentioned mechanised foundational properties.

All our definitions and theorems are formalised in the HOL4 theorem prover [19], and
available online.2

The remainder of this paper is structured as follows. In Section 2 we discuss the syntax, to
give an insight into the theory of non-terminating dependencies in Section 3. The full technical
account of the proof are documented in a technical report [7]. Our algorithm is presented
in Section 4 and illustrated with examples. We discuss potential future optimisations in
Section 6 and conclude with Section 7.

1 A variant of this example is attributed to Popescu by Kunčar [14].
2 Our mechanisation of Sections 3 and 4 are part of the CakeML development repository at https:

//code.cakeml.org/tree/master/candle/overloading.

https://code.cakeml.org/tree/master/candle/overloading
https://code.cakeml.org/tree/master/candle/overloading
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2 Syntax

In this section we define the syntax that we use throughout the paper. Type substitutions
are one essential component that we define in Section 2.2. We define symbols in Section 2.3
to be types and typed constants (i. e. tuples of names and types). We extend all the notions
to symbols (Section 2.3) and introduce dependency relations on symbols (Section 2.4).
In Section 2.5 we define composability of dependency relations.

2.1 Notation
The definitions and theorems are mostly generated from our HOL4 formalisation, with
theorems prefixed by ⊢. Constants in HOL4 are printed in sans-serif font and variables in
italic face, i. e. SUC n for the successor of a natural number n. We freely move between lists
and sets, and equate X x with x ∈ X . The list functions last, front, (++) and null denote the
last element, all elements but the last, append and emptiness, respectively. A colon denotes
the type of a term, as in (last : α list ⇒ α).

The sum type is written α + β, with disjoint branches (INL : α ⇒ α + β) and
(INR : β ⇒ α + β).

2.2 Types and Type Substitutions
Types are rank 1 polymorphic, and follow the grammar:

type = Tyvar string | Tyapp string (type list)

The set of all type variables of a type ty is FV(ty). The size of a type is defined as

size (Tyvar m) def= 1 size (Tyapp m tys) def= 1 + |tys| + sum (map size tys).

We identify Tyvar «a», Tyvar «b», Tyvar «c» with α, β, γ respectively, and abbreviate common
types like Tyapp «list» [α] with α list, and Tyapp «bool» [ ] with Bool, and function types
Tyapp «fun» [α, β] with α → β. By the definition of size nullary types and type variables have
the same size, e. g. size Bool = size α = 1.

2.2.1 Type Substitutions
A type substitution ρ is a list of pairs of types such that (y,Tyvar x)∈ ρ whenever ρ (Tyvar x) = y.
Duplicates w. r. t. the second component within the list ρ are ignored.

Type substitutions extend to types homomorphically, that is type substitutions instantiate
type variables in a type. A type ty′ is an instance of a more general type ty, written ty ≥ ty′,
if there exists a type substitution ρ such that ty′ = ρ ty. We have implemented and verified
an algorithm that computes whether or not a type is an instance of another type.

In addition, we implement and verify a first-order unification algorithm (from [3, § 2.3.2])
that produces an idempotent, most general unifier of two types (if one exists). A type
unification algorithm can be used to calculate if two types have no common type instance,
i. e. are orthogonal (written with infix #):

ty1 # ty2
def= ¬∃ ty. ty1 ≥ ty ∧ ty2 ≥ ty

The types α × α and α × nat have the common instance nat × nat, and are not orthogonal.

ITP 2022
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2.2.2 Variable Renamings
A special kind of type substitution η is a renaming of type variables, written var_renaming η.
It is bijective and acts as the identity everywhere except on the subset of its domain dom η,
and only renames type variables.

var_renaming η
def=

(img η) = (dom η) ∧ (∀ x. x ∈ img η ⇒ ∃ a. x = Tyvar a) ∧ all_distinct (dom η)

For instance, the type substitution η = {α 7→ β, β 7→ γ, γ 7→ α} is a renaming.
Two types x and y are equivalent if they differ by a renaming.

x ≈ y def= ∃ η. var_renaming η ∧ x = η y

For instance, the types α list and β list are equivalent by the renaming η = {α 7→ β, β 7→ α}.
The relation ≈ is an equivalence (reflexive, symmetric and transitive).

2.3 Typed Constants and Symbols
Constants consist of a name and a type. Symbols are the sum type whose left leaves are types,
INL (ty : type), and whose right leaves are typed constants, INR (Const (c : string) (ty : type)).
For a constant we sometimes write the type as an index, like cBool for a constant c of type Bool.

We lift all notions (like size, FV, type substitutions, ≤, #, ≈) from types to constants in
the obvious manner, like size(cτ ) = size(τ) for a constant cτ of type τ .

2.4 Dependency Relations
A dependency relation ⇝ is a binary relation on symbols, i. e. types and typed constants.
For any relation R we interchangeably use the infix notation x R y, and (x, y) ∈ R, even
when R is internally represented as a list. Definitions imply dependencies, as is described
elsewhere [15, 1]. For example, the two definitions

c (xα list) ≡ d(undefinedα×α) and d (xα×nat) ≡ ¬c([undefinedα])

from Section 1 entail a dependency relation ↷↷↷ that contains the two elements

cα list→Bool↷↷↷d(α×α)→Bool and d(α×nat)→Bool↷↷↷cα list→Bool .

We refer to this particular dependency relation as the bold-face green-coloured arrow ↷↷↷
throughout this Section 2.

We write R+ for transitive closure, and R∗ for reflexive-transitive closure. With Rn we
denote the n-times iterated composition relation R · · · R︸ ︷︷ ︸

n-times

.

2.4.1 Monotone Relations
A relation is monotone if each type variable of the second argument is contained in the type
variables of the first argument.

monotone R def= ∀ x y. (x ,y) ∈ R ⇒ FV y ⊆ FV x

For dependencies arising from definitions, monotonicity is a natural assumption as it means
that each type variable of the right-hand side occurs in the defined symbol’s type. For
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example, attempting to define a constant enat as the cardinality of the universe of type α,
i. e. CARD U(: α), entails a non-monotone dependency enat ⇝ α. This attempted definition
is unsound as CARD U(: bool) = 2 and there certainly are types of different cardinality.
From this point onwards all dependency relations under consideration are monotone, unless
otherwise stated.

2.4.2 Type-substitutive Closure
With overloading, non-termination may stem from recursion through the types of constants.
Thus the analysis needs to consider type instances of dependencies. For a binary relation R
on symbols, two symbols x and y are in the type-substitutive closure relation x R↓ y if there
exists a type substitution ρ such that (ρ x) R (ρ y). For example, cα list→Bool↷↷↷d(α×α)→Bool
implies cnat list→Bool↷↷↷↓d(nat×nat)→Bool. The type-substitutive closure of a dependency relation
is infinite if the dependency relation contains a type variable.

2.4.3 Paths of Dependencies
In this section we define solutions, that we later use to witness elements in ⇝↓∗, paths as
witnesses for elements in ⇝⇝↓∗ modulo renaming, and introduce paths of fixed length.

A solution to a list of pairs of symbols pq is a list of type substitutions ρ, with the
constraint that applying the respective type substitution the i-th component (ρi) (snd (pqi))
equals the next (ρi + 1) (fst (pqi + 1)).

sol_seq ρ pq def=
wellformed pq ∧ |ρ| = |pq| ∧ ∀ i. i + 1 < |ρ| ⇒ (ρi) (snd (pqi)) = (ρi + 1) (fst (pqi + 1))

The wellformed predicate restricts the sequences to symbols (and could instead have been
realised by the type system). For example, the sequence of length two of the pairs
(cα list→Bool, d(α×α)→Bool) and (d(α×nat)→Bool, cα list→Bool) has a solution ρ with the compontents
ρ0 = ρ1 = α 7→ nat. This solution witnesses cnat list→Bool↷↷↷↓d(nat×nat)→Bool↷↷↷↓cnat list→Bool,
cf. Section 2.4.

We are mainly interested in solutions to lists of dependencies, i. e. where pq ⊆⇝ holds.
A path through a dependency relation ⇝ is a list of pairs of symbols pq in ⇝, that have

a solution ρ, such that ρ0 is invertible on the type variables of fst (pq0).

path⇝ ρ pq def= 0 < |ρ| ∧ pq ⊆⇝ ∧ invertible_on (ρ0) (FV (fst (pq0))) ∧ sol_seq ρ pq

Hence, modulo renaming, any path path⇝ ρ pq, corresponds to an element of⇝⇝↓∗, namely

(ρ0) (fst (pq0)) ⇝⇝↓∗ (last ρ) (snd (last pq)).

A cyclicity checker that calculates paths will fix the first element of a path and try to
extend it. For the verification, we write has_path_to ⇝ n x y when there exists a path of
length n > 0 from x to y, namely x ⇝ (⇝↓)n−1 y.

has_path_to⇝ n x y def=
∃ ρ pq. path⇝ ρ pq ∧ n = |pq| ∧ x = fst (pq0) ∧ y ≈ (last ρ) (snd (last pq))

We define x = fst (pq0) instead of x = (ρ0) (fst (pq0)), because due to monotonicity the se-
quence (ρ0

−1 ◦ ρi) is a solution with (ρ0
−1 ◦ ρ0) = id on FV (fst (pq0)) and ρ0

−1 only renames
type variables of (last ρ) (snd (last pq)).

For a fixed x and length n we can freely rename variables of y:

⊢ var_renaming η ⇒ (has_path_to⇝ n x y ⇐⇒ has_path_to⇝ n x (η y))

ITP 2022
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2.4.4 Terminating and Cyclic Relations
A relation R is terminating if its converse relation has no infinite chains, i. e. is well-founded.

terminating R def= WF (λ x y. (y,x) ∈ R)

For a dependency relation ⇝, termination of its type-substitutive transitive closure ⇝↓+ is
difficult to characterise, but for certain relations we prove “not cyclic implies terminating” in
Section 3.6.

A path of length n is cyclic, written cyclic_len⇝ n, if its last element is an instance of
the first, namely x ⇝ (⇝↓)n−1 y with x ≥ y, modulo renaming. A dependency relation is
cyclic, written cyclic_dep⇝, if it has a cyclic path.

cyclic_len⇝ n def= ∃ x y. has_path_to⇝ n x y ∧ x ≥ y
cyclic_dep⇝ def= ∃ n. cyclic_len⇝ n

A cyclic relation is not terminating, because a cycle, i. e. x ⇝⇝↓∗ y with y = ρ x, entails
non-terminating dependencies x ⇝⇝↓∗ (ρi x) for any i > 0.

The converse is not true. As an example, the closure ↷↷↷↓+ (cf. Section 2.4) is non-
terminating, as witnessed by

cnat list→Bool↷↷↷↓d(nat×nat)→Bool↷↷↷↓cnat list→Bool↷↷↷↓ · · · ,

however all paths in ↷↷↷↷↷↷↓∗ are of length one and not cyclic.

2.5 Composability
Composability is a central concept that makes checking for termination of dependency
relations more feasible. We first give its definition and then exemplify the intuition.

A path x ⇝ (⇝↓)n y from x to y is composable if for all p⇝ q, either y ≤ p or y ≥ p, or
otherwise y and p are orthogonal y#p. We quantify over x and y, and formally write that
all paths of length n within ⇝ are composable as composable_len⇝ n:

composable_len⇝ n def=
∀ x y p q. has_path_to⇝ n x y ∧ (p,q) ∈⇝ ⇒ y ≥ p ∨ p ≥ y ∨ y # p

A dependency relation ⇝ is composable, denoted by composable_dep⇝, if all paths are.
The relation ↷↷↷ (cf. Section 2.4) is not composable, because attempting to extend the
dependency cα list→Bool↷↷↷d(α×α)→Bool by d(α×nat)→Bool↷↷↷cα list→Bool contradicts composability.
The constants d(α×α)→Bool and d(α×nat)→Bool are not orthogonal, because their types are not.
If d is instead defined at a more general type, like dα×α→Bool ≡ . . . then the dependency
relation becomes composable, but remains non-terminating.

The implications of composability for a user are discussed in the Isabelle/Isar reference
manual [25, § 5.9]. Composability requires all instances of overloaded constants to occur
either at their most general type, or with all type variables instantiated.

3 Theory

Our main theoretic contribution is a formal proof that any monotone, composable, and finite
dependency relation ⇝ has a not terminating type-substitutive closure if, and only if the
relation is cyclic.

⊢ monotone⇝ ∧ composable_dep⇝ ∧ wellformed⇝ ∧ finite (⇝) ⇒
(¬terminating⇝↓+ ⇐⇒ cyclic_dep⇝)
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The direction “cyclic implies not terminating” follows without composable_dep⇝, as sketched
in Section 2.4.4. In the following we discuss the interesting converse direction, which in
other words says, that for a finite, composable dependency relation ⇝ an infinite sequence
in ⇝↓+ gives rise to a cycle in ⇝⇝↓∗ of particular shape. (Generally, the type-substitutive
closure ⇝↓ is already infinite if any type variables occur in ⇝.)

Our proof arguments deviate from Kunčar’s due to a false lemma [14, Lemma 3.1b],
whose proof argues, that a type substitution that is not the identity should instantiate at
least one type variable by a type. This argument misses the effect of renamings, and requires
overall changes to the proof, although following Kunčar’s general proof idea. We discuss how
we circumvent this problem in Section 3.1.

The remaining section is structured as follows. We introduce some background concepts,
like the effect of type substitution on the type variables FV and type size size in Section 3.1,
and solutions that are most general in Section 3.2. Thereafter we continue the two main
proof arguments. First, in Section 3.3, with composability every sequence in ⇝↓+ implies
that there is some corresponding sequence in ⇝⇝↓∗ [14, Lemma 5.11]. As a consequence
(in Section 3.4) a solution can only be prolonged in two ways, either through a ≤-extension
or a strict ≥-extension. Second, in Section 3.5, by composability the shape of any infinite
sequence in ⇝⇝↓∗ can be narrowed down further. We combine these two main arguments
to a proof sketch in Section 3.6.

For full technical details, this work is complemented by a technical report [7].

3.1 Type Instantiation, Type Size and Type Variables

In this section we describe why we deviate from Kunčar’s original proof. One argument
claims that non-identical type instantiation increases the size of a type [14, Lemma 3.1b].
A counterexample to this claim3 is the instantiation of a function type α → β with the type
substitution ρ = α 7→ β, that unifies the two type variables ρ(α → β) = β → β and does not
change the size: size(α → β) = size(β → β).

We circumnavigate this problem by observing change of size and number of type vari-
ables [7, Lemma 4]. A type substitution ρ may increase the size:

⊢ size p ≤ size (ρ p)

However, if ρ is not invertible on FV(p) and the size is invariant size(p) = size(ρ(p)) then the
number of type variables decreases strictly | FV(p)| > | FV(ρ(p))|.

That ρ has no inverse although the size is unchanged means that ρ only unifies type
variables α, β ∈ FV(p) (such that ρ(α) = ρ(β)) and instantiates type variables to nullary
types. Both nullary types and type variables have the same size, e. g. size Bool = size α = 1.

Assuming q = ρ(p), i. e. q is an instance of p witnessed by ρ, then we can rephrase “ρ is
not invertible on FV(p)” as ¬(q ≤ p) which means that there is no type substitution that
witnesses that ρ(p) is an instance of p.

⊢ q ≥ p ∧ ¬(p ≥ q) ∧ size q = size p ⇒ |FV p| < |FV q|

Later in Section 3.4 we will call this a strict ≥-extension, as q ≥ p and ¬(q ≤ p).

3 Note, that the stated problem also surfaces for Kunčar’s slightly different definition of size.

ITP 2022
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3.2 Most General Solutions
Recall that solutions of dependencies witness elements in ⇝↓∗, as defined in Section 2.4.3. In
this section we define most general solutions. For example, the sequence (α list, α), (β list, β)
has the solution ρ0 = (α 7→ Bool list), ρ1 = (β 7→ Bool), which gives rise to the dependencies
Bool list list ⇝↓ Bool list ⇝↓ Bool. However, another more general solution would be
(α 7→ β list), id.

A solution (ρ′
i)i≤n for (pi, qi)i≤n is a most general solution, written mg_sol_seq ρ′ pq, if any

other solution (ρi)i≤n is an instance of (ρ′
i)i≤n, i. e. there exist type substitutions (ηi)i≤n such

that ρ′
i(pi) = (ηi ◦ ρi)(pi) holds for i ≤ n. (Note, that ρi(pi) = (ηi ◦ ρi)(pi) entails ρi(qi) =

(ηi ◦ ρi)(qi) due to monotonicity.)
A solution (ρi)i≤n is most general if ρ0 is invertible, e. g. when ρ0 = id.

⊢ monotone⇝ ∧ sol_seq ρ pq ∧ 0 < |pq| ∧ pq ⊆⇝ ∧ invertible_on (ρ0) (FV (fst (pq0))) ⇒
mg_sol_seq ρ pq

Each path is a most general solution, and hence every path in ⇝⇝↓∗ is most general.
For a monotone dependency relation any two most general solutions (ρi)i≤n and (ρ′

i)i≤n

are equivalent up to renaming, i. e. there exists a renaming η with ρ′
i(pi) = (η ◦ ρi)(pi)

for i ≤ n. Thus variable names in most general solutions can be freely renamed:

⊢ mg_sol_seq ρ pq ∧ var_renaming η ⇒ mg_sol_seq (map (λ x. ( η ◦ x )) ρ) pq.

3.3 Restricting to Suffixes of Solutions
The first main implication of composability is, that any sequence in⇝↓+ has a corresponding
suffix in ⇝⇝↓∗. More precisely, any solution has a most general solution with an invertible
type substitution at some index k. After normalising the most general solution ρ′, we could
even assume that ρ′

k is the identity type substitution.

⊢ 0 < |pq| ∧ sol_seq ρ pq ∧ pq ⊆⇝ ∧ monotone⇝ ∧ composable_dep⇝ ⇒
∃ ρ′ k. mg_sol_seq ρ′ pq ∧ invertible_on (ρ′

k) (FV (fst (pqk))) ∧ k < |pq|

This theorem has an important implication: for pq = (pi, qi)i≤n, it entails that the suf-
fix (ρ′

i)k≤i≤n is a most general solution for (pi, qi)k≤i≤n, because ρ′
k is invertible and w. l. o. g.

a renaming, and hence composability applies to any possible extension of this suffix solution.

3.4 Prolonging a Solution by One Element
Searching for infinite sequences in ⇝↓+ means at each breadth level n finding all extensions
of a sequence of length n by one element in the ⇝↓ relation. There are four possibilities
for extending a solution (ρi)i≤n of a sequence (pi, qi)i≤n in the dependency relation, by one
more element p⇝ q.

Either the sequence cannot be prolonged by an instance of p ⇝ q because ρn(qn)
and p are orthogonal, i. e. ρn(qn)#p, or there are unifying type substitutions σ, σ′ such
that σ(ρn(qn)) = σ′(p). The following three cases arise.
1. σ is invertible and ρn(qn) = σ−1(σ′(p)). As we showed [7, Lemma 5], then (ρi)i≤n, (σ−1 ◦

σ′) is a (most general) solution of (pi, qi)i≤n, (p, q). This also includes the case that
additionally σ′ is invertible. We say ≤-extension for this case, as ρn(qn) ≤ p.

2. The substitution σ′ is invertible, and σ is not invertible and σ′−1(σ(ρn(qn))) = p. Then
by [7, Lemma 7] the type substitutions (σ′−1 ◦σ ◦ρi)i≤n, id form a (most general) solution
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of (pi, qi)i≤n, (p, q). We say strict ≥-extension for this case, as ρn(qn) ≥ p and the type
substitution σ′−1 ◦ σ that witnesses this instantiation is not invertible.

3. Both σ and σ′ are not invertible. Then the type substitutions (σ ◦ ρi)i≤n, σ′ form a
solution of (pi, qi)i≤n, (p, q), which is most general if σ and σ′ are most general unifiers.

The following theorem summarises that, assuming composability, the case of Item 3 does
not occur. If a solution for the sequence of dependency pairs pq can be extended, then a
most general solution of pq, that is invertible at some index k, can be extended in only two
manners, that together comprise Item 1 and Item 2.

⊢ sol_seq ρ (pq ++ [(p,q)]) ∧ pq ⊆⇝ ∧ (p,q) ∈⇝ ∧ composable_dep⇝ ∧
monotone⇝ ∧ mg_sol_seq ρ′ pq ∧ invertible_on (ρ′

k) (FV (fst (pqk))) ∧ k < |ρ′| ⇒
(last ρ′) (snd (last pq)) ≥ p ∨ p ≥ (last ρ′) (snd (last pq))

By applying the theorem from Section 3.3 to sol_seq (front ρ) pq (any prefix of a solution is
a solution), the assumptions mg_sol_seq ρ′ pq and invertible_on (ρ′

k) (FV (fst (pqk))) can be
discharged, as long as |pq| > 0.

3.5 Restriction to Only ≤-Extensions
Non-termination of ⇝↓+ means that there is an infinite sequence (pi, qi)i∈N ⊆⇝ with an
infinite solution. Kunčar observes [14, Lemma 5.16] that the following holds. We correct the
argument in [7, Theorem 11].

For a composable and monotone dependency relation⇝, if the sequence (pi, qi)i∈N ⊆⇝
has an infinite solution, then the following holds. There exists an index k, such that
for each k′ > k the sequence (pi, qi)i<k′ has a most general solution whose extension
with (pk′ , qk′) is a ≤-extension.

It suffices to show this claim for the sequence (pi, qi)k≤i<k′ instead (by an argument involving
Section 3.3). Using composability, by contradiction there exists for each k a smallest index k′

such that for any most general solution (ρi)i<k′ of (pi, qi)i<k′ the extension step by (pk′ , qk′)
is a strict ≥-extension. We briefly illustrate why these infinitely many strict ≥-extension
steps lead to a contradiction, by observing the change of each solution step at index 0
using Section 2.2.

Assume (ρ′
i)i≤k′ is the most general solution of the longer sequence (pi, qi)i≤k′ . For a ≤-

extension, type sizes and number of type variables do not change: size(ρ0(p0)) = size(ρ′
0(p0))

and | FV(ρ0(p0))| = | FV(ρ′
0(p0))|. For a strict ≥-extension at index k′, by monotonicity we

can transfer the reasoning about type size and type variables from index k′ to index 0: the type
size may increase size(ρ0(p0)) ≤ size(ρ′

0(p0)), and if instead holds size(ρ0(p0)) = size(ρ′
0(p0))

then the number of free variables decreases | FV(ρ0(p0))| > | FV(ρ′
0(p0))|. During each of the

infinitely many strict ≥-extensions the number of type variables at p0 after instantiation can
only decrease to zero. The contradiction is, that also the size of the type substitution applied
to p0 may not strictly increase infinitely. After finitely many strict ≥-extensions the type
size of the respective most general solution at index 0 will be larger than the type size of the
original infinite solution, that witnessed non-termination.

3.6 Non-termination Implies Cyclicity
By the arguments in Section 3.5, any infinite sequence in ⇝↓+ entails a corresponding
sequence in ⇝⇝↓+ that contains ≤-extensions steps only.
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As ⇝ is finite, in an infinite sequence (pi, qi)i∈N ⊆⇝ after some index k, a repetition
must exist, i. e. for every i with i > k, (pi, qi) occurs again in (pj , qj)j>i. We apply the
theorem from Section 3.5 to the sequence (pi, qi)i≥k ⊆⇝ with solution (ρi)i≥k. Hence at
some index k′ > k we have a most general solution (ρ′

i)i≥k′ such that ρ′
k′ only renames

the variables of pk′ and only ≤-extension steps occur. We assume that ρ′
k′ = id, otherwise

variables in the solution can be renamed (cf. Section 2.4.3). Let m > k′ be an index at which
(pk′ , qk′) occurs again, i. e. (pk′ , qk′) = (pm, qm), then ρ′

m−1(qm−1) ≤ pm = pk′ gives a cycle:

pk′ ⇝ qk′ = ρ′
k′+1(pk′+1)⇝↓ . . .⇝↓ ρ′

m−1(qm−1) ≤ pm = pk′

3.7 Comment on the Formalisation

From a proof-engineering perspective the formalisation of the arguments in our correction
to the key lemma (cf. [7, Theorem 11] and [14, Lemma 5.16]) and also the implication
“non-termination implies cyclicity” ([14, Lemma 5.17]) involves reasoning about infinite
sequences and their infinite subsequences that satisfy certain properties, for which we used
the Hilbert choice operator. One overall technical obstacle is the correct handling of type
variables, for example some substitutions must be considered up to variable renaming and
we need to verify a unification algorithm.

4 Algorithmically Checking for Cycles

In this section we describe the main idea and the correctness properties of a clocked breadth-
first search that checks for composability and cycles in dependency relations. We invent a
clocked algorithm of our own, because the restriction of orthogonality of dependency relations,
that tremendously decreases the search space (as suggested by Kunčar [14]) does not apply to
dependencies induced by theories of overloading definitions. We discuss the most important
function, and conclude this section with an evaluation. We extract provably correct code,
and check Isabelle/HOL theories for cycles in definitions.

4.1 Main Idea

As argued in Section 3.6, it suffices to search ⇝⇝↓+ for cycles, in order to check non-
termination of ⇝↓+, given composability.

The basis for the cyclicity check is the following corollary. For a finite monotone depen-
dency relation ⇝, if at each depth composability and acyclicity hold, the type-substitutive
closure of the dependency relation is terminating.

⊢ wellformed⇝ ∧ monotone⇝ ∧ finite (⇝) ∧ (∀ n. composable_len⇝ n) ∧
(∀ n. ¬cyclic_len⇝ n) ⇒ terminating⇝↓+

We recall from the definitions of composable_len⇝ n and cyclic_len⇝ n, that these consider
the paths ⇝ (⇝↓)n, which consist of only ≤-extensions, cf. Section 3.4.

The algorithm checks composable_len⇝ n and ¬cyclic_len⇝ n in a breadth-first manner
for all n ≥ 1 up to a given depth limit. (The case n = 0 is trivial.) The depth limit is
required, because the search might not terminate if the dependencies ⇝⇝↓+ are infinite. We
discuss the depth limit for some practical examples in Section 4.5.
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4.2 Central Components of the Algorithm

In this section we describe the algorithm dep_steps and discuss its core function composable_one
in further detail.

To check a dependency relation ⇝, the cyclicity checker algorithm dep_steps is called
as dep_steps⇝ k ⇝ with a maximal depth k. The function call dep_steps⇝ k R recursively
extends each path that is stored in R by a dependency step⇝, and terminates either when R
is empty, thus no extension is possible and all earlier steps were composable and acyclic. Or
otherwise the recursion terminates if the depth counter k decreases to 0, and thus there are
paths longer than k that the algorithm did not check for composability nor for cyclicity.

A call to dep_steps⇝ k ⇝ results in one of the following outcomes, whose correctness we
discuss in Section 4.3.

Maybe_cyclic if the recursion depth k was too small, cf. Section 4.3.2.

Acyclic _ if the relation is acyclic, cf. Section 4.3.3.

Cyclic_step (p,_,p′) if a cycle p⇝⇝↓+ p′ with p ≥ p′ exists, cf. Section 4.3.4,

Non_comp_step (p,q,pq′) if a non-composable path exists, i. e. p ⇝⇝↓+ q with pq′ ∈⇝
and ¬(q ≥ fst pq′), ¬(fst pq′ ≥ q), ¬(q # fst pq′), cf. Section 4.3.4.

The function dep_steps ⇝ k R folds another function dep_step ⇝ at most k times
over R. For a relation R corresponding to ⇝ (⇝↓)n (for some breadth n ≥ 0) the call
to dep_step⇝ R computes all ≤-extensions for the current breadth n and checks the resulting
relation⇝ (⇝↓)n+1 for cyclicity. Each of the possible extension steps of each of the paths xRy

(i. e. x ⇝ (⇝↓)n y) by p ⇝ q is computed according to Section 3.4 by composable_one y p,
which may fail whenever R is not composable.

composable_one y p def=
case unify y p of

None ⇒ Ignore
| Some (s_y,s_p) ⇒
let sp_inv = invertible_on s_p (FV p) ; sy_inv = invertible_on s_y (FV y) in
if sp_inv ∧ ¬sy_inv then Ignore
else if ¬sp_inv ∧ ¬sy_inv then Uncomposable
else if ¬sp_inv ∧ sy_inv then Continue s_p
else Continue [ ]

Figure 1 Definition of the function composable_one, that is called by dep_steps.

The function composable_one y p, as defined in Figure 1, attempts to unify the two
symbols y and p, and calculates if the resulting type substitutions are invertible. The possible
return values are either Ignore, Uncomposable or Continue ρ for some type substitution ρ.

An Ignore return value signifies either orthogonality of y and p or a strict ≥-extension,
i. e. y ≥ p and ¬(y ≤ p). If the unifying type substitutions are both not invertible, the
relation is uncomposable. A return value Continue ρ means that y ≈ ρ p, and the path can be
continued as x ⇝ (⇝↓)n+1 (ρ q). Following the ≤-extension steps each calculated path is
checked for cyclicity, i. e. if x ≥ (ρ q) holds.
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4.3 Correctness
The major result about our algorithm dep_steps is its correctness. In Section 4.1 we motivated
that for a monotone dependency relation that is acyclic and composable at all lengths, the
type-substitutive transitive closure of the dependency relation is terminating. This theorem
shows that we check composability and acyclicity using our algorithm dep_steps:

⊢ wellformed⇝ ∧ monotone (⇝) ∧ finite (⇝) ∧ dep_steps⇝ (SUC k)⇝ = Acyclic k ′ ⇒
terminating⇝↓+

We outline some proof ideas and discuss further soundness and correctness properties.
The correctness proof is unsurprising but technically involved.

4.3.1 The Recursion Invariant of dep_steps

We establish a simple invariant dep_steps_inv⇝ i R j R′ that captures that R reduces to R′

in (i − j) applications of dep_step⇝, that is, (i − j) composable and non-cyclic steps in the
dependency relation ⇝. We further on regard the case of R =⇝.

The invariant dep_steps_inv⇝ i ⇝ j R′ entails that R′ =⇝ (⇝↓)i−j modulo renaming.

⊢ wellformed⇝ ∧ monotone (⇝) ∧ dep_steps_inv⇝ i ⇝ j R′ ⇒
∀ x. wellformed [x] ⇒

((∃ y. (fst x ,y)∈ R′ ∧ y ≈ snd x) ⇐⇒ has_path_to (⇝) (SUC (i − j)) (fst x) (snd x))

Modulo renaming, R′ contains exactly the paths in ⇝ of length i − j + 1.
For a non-trivial, monotone dependency relation we characterise the invariant exactly.

⊢ wellformed⇝ ∧ monotone (⇝) ∧ ¬null⇝ ∧ j ≤ i ⇒
((∃ R′. dep_steps_inv⇝ i ⇝ j R′) ⇐⇒

(1 < i − j ⇒ ∃ x y. has_path_to (⇝) (i − j) x y) ∧
∀ k ′. 0 < k ′ ∧ k ′ ≤ i − j ⇒ composable_len (⇝) k ′ ∧ ¬cyclic_len (⇝) (SUC k ′))

The first conjunct within the conclusion ∃ x y. has_path_to ⇝ (i − j) x y expresses non-
emptiness of the previous search depth. If the search depth i − j is strictly larger than one,
then there exists a path in ⇝ (⇝↓)i−j−1. The second conjunct says that for each depth k′

such that 0 < k′ ≤ i − j, all paths in the relation ⇝ (⇝↓)k′−1 are composable and all paths
in ⇝ (⇝↓)k′ are acyclic.

The lengths of the paths for composability and acyclicity differ by one, as within dep_step
a composable relation is first extended, and then the resulting (one step longer) paths are
checked for cyclicity.

4.3.2 Example: Deriving Correctness for Non-exhaustive Search
We establish when dep_steps ⇝ k ⇝ outputs Maybe_cyclic: it can happen when ⇝ (⇝↓)k

is composable and acyclic, and contains a path that can be prolonged. In other words
k-many iterative calls to dep_step⇝ yield a non-empty result, which in-turn shall mean that
the supplied search depth was too small to cover all paths, and the calculated relation is
non-empty and could contain the initial segment of a cycle. We establish this claim in terms
of the invariant that we introduced in Section 4.3.1.

⊢ wellformed⇝ ⇒
(dep_steps⇝ k ⇝ = Maybe_cyclic ⇐⇒ ∃ R′. dep_steps_inv⇝ k ⇝ 0 R′ ∧ ¬null R′)
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Further, we establish that composability and acyclicity hold for the respective intermediate
search steps up to the recursion level k, and secondly, that the relation R′ =⇝ (⇝↓)k is
non-empty. The latter is witnessed by a path of length k + 1.

⊢ wellformed⇝ ∧ monotone (⇝) ⇒
(dep_steps⇝ k ⇝ = Maybe_cyclic ⇐⇒

(∀ l. 0 < l ∧ l ≤ k ⇒ composable_len (⇝) l ∧ ¬cyclic_len (⇝) (SUC l)) ∧
∃ x y. has_path_to (⇝) (SUC k) x y)

4.3.3 Correctness for Acyclicity
For a sufficiently large k the function dep_steps detects that the non-trivial, monotone
relation ⇝ is acyclic, returning Acyclic k ′ for some integer k′ ≤ k. The value k′ is such
that all paths in the calculated relation ⇝⇝↓+ are at most of length k − k′ and no path of
length k − k′ + 1 (or larger) exists. All paths of smaller length are composable and acyclic.

⊢ wellformed⇝ ∧ monotone (⇝) ∧ ¬null⇝ ∧ 0 < k ⇒
(dep_steps⇝ k ⇝ = Acyclic k ′ ⇐⇒

k ′ ≤ k ∧ (∀ x y. ¬has_path_to (⇝) (SUC (k − k ′)) x y) ∧
(1 < k − k ′ ⇒ ∃ x y. has_path_to (⇝) (k − k ′) x y) ∧
∀ l. 0 < l ∧ l ≤ k − k ′ ⇒ composable_len (⇝) l ∧ ¬cyclic_len (⇝) (SUC l))

Acyclicity holds for paths of all lengths, including length one (which is not included in the
equivalence). Such are cycles in⇝, and these entail cycles of length 2, and thus ¬cyclic_len⇝ 1
follows from ¬cyclic_len⇝ 2. Overall holds composable_dep⇝ and ¬cyclic_dep⇝.

4.3.4 Soundness for Non-composable and Cyclic
By the above two correctness results (in Sections 4.3.2 and 4.3.3) the algorithm dep_steps
is sound and complete. For illustration, we state the soundness for when the algorithm
witnesses a non-composable path or detects a cycle. For better readability we omit acyclicity
and composability of previous search lengths from the conclusion.

⊢ wellformed⇝ ∧ monotone (⇝) ∧
dep_steps⇝ (SUC k)⇝ =

Non_comp_step (p,q,pq′) ⇒
∃ n. n ≤ k ∧

has_path_to (⇝) (SUC n) p q ∧
pq′ ∈⇝ ∧ ¬(q ≥ fst pq′) ∧
¬(fst pq′ ≥ q) ∧ ¬(q # fst pq′)

⊢ wellformed⇝ ∧ monotone (⇝) ∧
dep_steps⇝ (SUC k)⇝ =

Cyclic_step (p,q,p′) ⇒
∃ n. n ≤ k ∧

has_path_to (⇝) (SUC (SUC n)) p p′ ∧
p ≥ p′

When an uncomposable step is detected, then there exists a path p ⇝ (⇝↓)n q that is not
composable (cf. Section 2.5). As stated, when a cyclic step is detected, then there is a path
in⇝ (⇝↓)n+1 that ends in an instance of the starting symbol, and by definition cyclic_dep⇝
holds (cf. Section 2.4.4).

4.4 A Verified Theorem Prover Kernel
In earlier work [1] we implemented parts of a theorem prover that supports overloading
of constant definitions, and is partially based on a verified implementation of HOL Light
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(nicknamed Candle) [13]. A verified cyclicity checker is the missing puzzle piece of this
verified theorem prover. Whenever an overloaded constant is added to a proof development
the resulting theory needs to have a terminating dependency relation.

A theory of definitions ctxt has the relational dependencies dependency ctxt that are
computed by dependency_compute ctxt. The following corollary (of the results from Section 3
and Section 4.3.3) allows to discharge termination of dependency ctxt by a call to the dep_steps
algorithm on the dependencies dependency_compute ctxt.

⊢ let⇝ = dependency_compute ctxt in
dep_steps⇝ (SUC k)⇝ = Acyclic k ′ ∧ good_constspec_names ctxt ⇒

terminating dependency ctxt↓+

The premise good_constspec_names ctxt states that all type variables on the right-hand side
of a constant definition must occur on the left-hand side. This ensures that the dependency
relation is monotonic. All HOL kernel implementations that we are aware of enforce this
restriction, since without it, HOL is inconsistent (see Section 2.4.1).

To obtain a verified kernel, we integrate our cyclicity check into a shallowly embedded
monadic HOL kernel derived from [13], and extract a correct-by-construction CakeML
implementation using existing tools for proof-producing synthesis [11]. By the previous
theorem, we can replace the termination assumption with a call to the (monadic) cyclicity
checker and prove kernel soundness, i. e. a successful check entails a valid update of a theory.

To our knowledge, this yields the first verified theorem prover kernel that both supports
overloading of constant definitions and has mechanised semantics [1] with a formal proof
that any theory is consistent. The proof of consistency for theories relies on the consistency
of Zermelo-Fraenkel set theory. From our joint work with Weber follow (formally verified)
model-theoretic conservativity guarantees [8].

4.5 Checking Cyclicity of Isabelle/HOL Theories
In addition to verifying the theory and deriving a correct algorithm, we extracted the
dependencies of theories from Isabelle/HOL and checked if their dependency graphs are
acyclic and composable. We focus on the theory Main, that extends HOL with libraries for
e. g. orderings, lattices, transitive closure, sets and natural numbers [16].

We composed an (unverified) dependency parser written in CakeML with the (verified)
CakeML implementation of our cyclicity checker, and extracted an executable binary using
the CakeML compiler. The translator ensures that the cyclicity checking function of the
binary has the same correctness properties as the monadic variant, which in turn is equivalent
to the HOL4 implementation from Section 4.2.

The results in Figure 2 show for each Isabelle/HOL theory the number of extracted
dependencies, the result output of the checker, the runtime in seconds or hours on an Intel
Core i7 processor, and the length of the longest checked path. All of these results state that
the extracted dependencies contain no cycles and are composable. The reported maximal
length of covered paths of 37 shows that for these realistic scenarios the maximum depth
limit can be chosen small. Implementing a cyclicity checker that is optimised for performance
was not the objective of this work, which shows in the runtimes. Checking the 45,738
dependencies of the complete Isabelle/HOL main library is not feasible, but we establish that
the subset of dependencies from constants to constants is acyclic. This approach is unsound,
but gives an idea of the algorithm’s performance.

In the checked theories overloading is mainly occurring due to type classes, e. g. the
size_class exhibits a constant Nat.size_class.size of type α → nat, and the list type is
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Theory #Dependencies Output Runtime Longest path
HOL 165 Acyclic 0.01s 7
Orderings 764 Acyclic 0.4s 13
Set 2657 Acyclic 13s 14
Fun 2773 Acyclic 13s 14
Transitive_Closure∗ 2195 Acyclic 8s 20
Transitive_Closure 7159 Acyclic 14h 35
Main∗ 12913 Acyclic 12h 37
Main 45738 - - -

Figure 2 Results of checking exported dependencies of Isabelle theories. The asterisk ∗ denotes
that the dependencies only include dependencies of constants on constants. The runtimes are from
single runs.

a class instance that defines a size constant at the type α list → nat.
The runtimes motivate that a cyclicity checker should be checking dependencies incre-

mentally, which we discuss further in Section 6, because incremental checking corresponds to
the incremental nature of theory extension.

5 Related Work

Like other theorem provers that do not support overloading, the verified implementation of
HOL Light into the CakeML framework [13], nicknamed Candle, achieves acyclic definitions
by a simple syntactic check: Only already defined constants and types are allowed to occur
in the definition of a new symbol.

In the Coq theorem prover a termination check corresponds to finding a type hierarchy
acyclic. When type-checking a term, hierarchy (in)equality constraints are collected, whose
conjunction needs to be satisfiable. As Sozeau and Tabareau argue [22], checking these
conjunctions is decidable. Earlier a proof of contradiction seemed to be originating from a
bug in this cyclicity checker [6]. The current Coq implementation [12] relies on an incremental
cyclicity checking algorithm by Bender et al. [4], that combines forward- and backward-search
and uses a non-decreasing integer level invariant for chains in the graph. Guéneau et al. [9]
verified a similar algorithm in addition to some of the complexity properties. We discuss
incremental extension to our algorithm in Section 6. In contrast to Sozeau and Tabareau,
checking termination of interesting dependency relations in our context is not decidable. To
add another difference, their rewriting system allows unfolding of a constant by its definition,
whereas our cyclicity checker can also check dependencies from theories with more expressive
definitions [2], e. g. implicit definitions.

The current algorithm that checks for cycles in Isabelle theories4 is authored by Wenzel.
It is unclear how the implementation relates to Kunčar’s work [14], and our cyclicity checker.
A later proof checker for Isabelle/HOL by Nipkow and Roßkopf [17] treats definitions as
axioms, i. e. does not check for cycles.

With the intent to obtain a terminating and efficient cycle detection algorithm, Kunčar
suggests in [14] that dependency relations should satisfy orthogonality. The orthogonality
criterion implies that paths do not diverge, hence any two paths from a symbol pass through
the same symbols if the paths are of same length [14, Theorem 6.2]. That means that

4 https://isabelle.sketis.net/repos/isabelle/file/Isabelle2021/src/Pure/defs.ML
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composability only needs to hold for paths that cannot be extend any further, so called final
paths. Orthogonality is no suiting criterion for dependencies of definitions (cf. [15, 1]): any
definition of a symbol may depend on more than one other symbol [7].

6 Future Work

With the suggested algorithm we already implement the interesting and correctness critical
optimisation to avoid inversion of bijective renamings. For future work we identify three
main areas of improvements.

First, we should investigate further restrictions of dependency relations that avoid checking
composability of every path and second, the dependency relation that is generated from
theories should be minimised. For example, dependencies introduced by some built-in symbols
can be omitted from the graph.

Third, theory extension is incremental, and such should the check of cyclicity (and
composability) be. Whenever a theory is extended by a definition, only a few dependencies
are added by the new definition, which implies that big parts of the dependency graph remain
unchanged. Together with Weber [8] we have identified those parts of the dependency graph
that change by the introduction of a new definition. An incremental cyclicity check clearly
profits from such an analysis.

As an example, assume a theory with terminating dependencies that contains the constant
lengthα list→nat (that returns the length of a list) with the dependency lengthα list ⇝ α list.
When this theory is extended by a new polymorphic constant sizeα→nat and the definition

sizeα list ≡ lengthα list

two new dependencies sizeα list ⇝ lengthα list and sizeα list ⇝ α list are introduced. A cyclicity
check may stop after covering the path from size⇝ length, because it is already known that
paths from length are composable and acyclic. Thus any path starting from sizeα list ⇝ α list
need not to be covered at all.

7 Conclusion

In this paper we have presented the theory and implementation of a formally verified cyclicity
checker and its use in a verified theorem prover kernel that supports (ad-hoc) overloaded
constant definitions. We demonstrated a verified binary cyclicity checker on theories of
Isabelle/HOL and established that the definitions are acyclic. The verified binary was
synthesised from our verified version through the CakeML infrastructure [23].

This work closes a gap in the foundation of Isabelle/HOL, in two ways. First, we establish
the formalised theory for checking dependencies. Second, we discharge an assumption from
earlier work [1], which strengthens the consistency by mechanised semantics.

Our verified kernel could be used as a verified proof checker for simple Isabelle/HOL
theories. After accounting for differences Isabelle/HOL’s and our kernel’s logic, like axiomatic
type classes, and implementing and verifying a performant cyclicity checker, our theorem
prover kernel could proof-check Isabelle/HOL theories, and their dependencies.
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