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In classical and intuitionistic logics, any permitted definitions, like

cbool ≡ term

cα list ≡ . . .

should be free from contradiction, i. e. consistent.

Suffices: cbool is a new symbol, not contained in term.
How can we detect whether overloaded
definitions are without contradiction?

Why? Soundness critical (not well understood) part of theorem
provers; mistakes in earlier attempts
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In classical and intuitionistic logics, any permitted definitions, like

cbool ≡ ¬cbool

cα list ≡ . . .

should be free from contradiction, i. e. consistent.

Suffices: cbool is a new symbol, not contained in ¬cbool.

How can we detect whether overloaded
definitions are without contradiction?

Why? Soundness critical (not well understood) part of theorem
provers; mistakes in earlier attempts
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Contribution

Formally proved theory:
there is structure in overloaded definitions.
Verified checker
Demonstrate checker on Isabelle/HOL basis
Verified kernel for HOL with overloading

Code available online: https://code.cakeml.org/
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Higher-order logic (HOL)

Rank-1 polymorphic lambda-calculus
with built-in types bool, α → β, ind
and built-in constants =α→α→bool, ϵ(α→bool)→α

Theorems: boolean terms derived by inference rules

Consistency by definitional (non axiomatic) theory extension,1
assuming...

New types are isomorphic to non-empty subsets of existing type
New constants abbreviate existing terms

1Formal consistency proof by Kumar et al. ITP ’14
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HOL with overloaded definitions

Overloading allows constants different definitions at
non-overlapping types, e. g. sizeα→num

size(xα list) ≡ length x
size(xbool) ≡ 1

Each defined symbol depends on symbols in definition’s rhs,
e. g. sizeα list→num ⇝ lengthα list→num, sizeα list→num ⇝ α list
⇝↓ extends ⇝ to all type-instances:
e. g. sizenum list→num ⇝↓ lengthnum list→num, . . .
Terminating dependencies
= no infinite descending chains in ⇝↓∗
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Example 2: Inconsistency from
non-terminating dependencies

A theory with three constants cα list→bool, d(α×β)→bool, undefα
and two definitions:

c (xα list) ≡ d(undefα×α) d (xα×num) ≡ ¬c(undefα list)

2Adapted from Kunčar CPP ’15
6/14
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HOL with overloaded definitions

Consistency by definitional (non axiomatic) theory extension,
assuming definitions have terminating dependencies↓∗.
[Åman Pohjola et al. LPAR’20].

Termination undecideable [Obua RTA’06]
Pen-and-paper proof [Kunčar CPP’15]:
Composable dependencies have further structure.
Orthogonal dependencies are decidable.
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Theory for a Cyclicity Checker

Pen-and-paper proof [Kunčar CPP’15]:

⊢ wellformed⇝ ∧ monotone⇝
∧ finite⇝ ∧ composable⇝

=⇒ (¬terminating⇝↓∗ ⇐⇒ cyclic⇝)

Assuming composable ⇝, checking non-termination of ⇝↓∗

equals finding cycles ⇝⇝↓∗.
We formalise, uncover bugs and fix proof.
[Gengelbach et al., tech report ’21]
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Cyclicity Checker Algorithm

Kunčar: cyclic is decideable for orthogonal dependencies

Orthogonal: each symbol depends on at most one symbol
Orthogonal is too restrictive:
sizeα list→num ⇝ lengthα list→num, sizeα list→num ⇝ α list
Thus: depth limited, breadth first search of cycles in ⇝⇝↓∗
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Cyclicity Checker Algorithm (2)

For p ⇝ (⇝↓n)q (dependency chain of length n + 1)
Composable: limited ways extending q ⇝↓ y
Acyclic: p is no type-instance of y

Soundness

⊢ wellformed⇝ ∧ monotone⇝ ∧ finite⇝
∧ (∀n. composable_len⇝ n) ∧ (∀n. ¬cyclic_len⇝ n)

=⇒ terminating⇝↓∗

Verified executable implementation in CakeML
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Check Cycles in Isabelle/HOL

Theory #Deps Output Runtime Longest path
HOL 165 acyclic 0.01s 7
Orderings 764 acyclic 0.4s 13
Set 2657 acyclic 13s 14
Fun 2773 acyclic 13s 14
Transitive_Closure∗ 2195 acyclic 8s 20
Transitive_Closure 7159 acyclic 14h 35
Main∗ 12913 acyclic 12h 37
Main 45738 - - -

Extracted dependencies from subtheories of Isabelle/HOL Main
∗: Only constant ⇝ constant

Naive algorithm
Overloading mainly through Haskell-like type classes
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Verified kernel for HOL with overloading

Implemented verified kernel for HOL in [Åman Pohjola et al.
LPAR’20], assuming terminating dependencies
Verified cyclicity checker discharges termination assumption

From earlier work: kernel is formally proven model-theoretic
conservative, Gengelbach et al. LFMTP’20.
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Demo: Verified kernel
for HOL with overloading

Acyclic example defining e : A such that:

ebool ≡ True eA→A ≡ λx . x

Cyclic example defining c : A, d : A such that:

c(A→A)→bool ≡ λx . d(undefA×A)

d(A×A)→bool ≡ λx . ¬c(undefA→A)

Thanks to Oskar Abrahamsson
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