A VERIFIED CYCLICITY CHECKER For Theories with Overloaded Constants

Arve Gengelbach ¹ Johannes Åman Pohjola ²

¹KTH Royal Institute of Technology, Stockholm, Sweden ²University of New South Wales, Sydney, Australia

ITP, August 7, 2022

 $c_{\text{bool}} \equiv \textit{term}$

should be free from contradiction, i. e. consistent.

 $c_{\text{bool}} \equiv \textit{term}$

should be free from contradiction, i. e. consistent.

Suffices: c_{bool} is a new symbol, not contained in *term*.

 $c_{bool} \equiv \neg c_{bool}$

should be free from contradiction, i. e. consistent.

Suffices: c_{bool} is a new symbol, not contained in $\neg c_{bool}$.

 $c_{bool} \equiv term$ $c_{\alpha \text{ list}} \equiv \dots$

should be free from contradiction, i. e. consistent.

 $c_{bool} \equiv term$ $c_{\alpha \text{ list}} \equiv \dots$

should be free from contradiction, i. e. consistent.

How can we detect whether *overloaded* definitions are without contradiction?

 $c_{bool} \equiv term$ $c_{\alpha \text{ list}} \equiv \dots$

should be free from contradiction, i. e. consistent.

How can we detect in a verified manner whether *overloaded* definitions are without contradiction?

 $c_{bool} \equiv term$ $c_{\alpha \text{ list}} \equiv \dots$

should be free from contradiction, i. e. consistent.

How can we detect in a verified manner whether *overloaded* definitions are without contradiction?

Why? Soundness critical (not well understood) part of theorem provers; mistakes in earlier attempts

CONTRIBUTION

- Formally proved theory:
 - there is structure in overloaded definitions.
- Verified checker
- Demonstrate checker on Isabelle/HOL basis
- Verified kernel for HOL with overloading

HIGHER-ORDER LOGIC (HOL)

- Rank-1 polymorphic lambda-calculus with built-in types bool, $\alpha \rightarrow \beta$, ind and built-in constants $=_{\alpha \rightarrow \alpha \rightarrow \text{bool}}, \epsilon_{(\alpha \rightarrow \text{bool}) \rightarrow \alpha}$
- Theorems: boolean terms derived by inference rules

HIGHER-ORDER LOGIC (HOL) WITH DEFINITIONS

- Rank-1 polymorphic lambda-calculus with built-in types bool, $\alpha \rightarrow \beta$, ind and built-in constants $=_{\alpha \rightarrow \alpha \rightarrow \text{bool}}, \epsilon_{(\alpha \rightarrow \text{bool}) \rightarrow \alpha}$
- Theorems: boolean terms derived by inference rules
- Consistency by definitional (non axiomatic) theory extension,¹ assuming...
 - New types are isomorphic to non-empty subsets of existing type
 - New constants abbreviate existing terms

¹Formal consistency proof by Kumar et al. ITP '14

■ Overloading allows constants different definitions at non-overlapping types, e. g. size_{α→num}

> $ext{size}(x_{lpha ext{ list}}) \equiv ext{length } x$ $ext{size}(x_{ ext{bool}}) \equiv 1$

■ Overloading allows constants different definitions at non-overlapping types, e. g. size_{α→num}

> $ext{size}(x_{lpha ext{ list}}) \equiv ext{length } x$ $ext{size}(x_{ ext{bool}}) \equiv 1$

■ Each defined symbol *depends* on symbols in definition's rhs, e.g. size_{α list→num} \rightsquigarrow length_{α list→num}, size_{α list→num} \rightsquigarrow α list

■ Overloading allows constants different definitions at non-overlapping types, e. g. size_{α→num}

> $ext{size}(x_{lpha ext{ list}}) \equiv ext{length } x$ $ext{size}(x_{ ext{bool}}) \equiv 1$

 Each defined symbol *depends* on symbols in definition's rhs, e. g. size_{α list→num} → length_{α list→num}, size_{α list→num} → α list
 →↓ extends → to all type-instances: e. g. size_{num list→num} →↓ length_{num list→num}, ...

■ Overloading allows constants different definitions at non-overlapping types, e. g. size_{α→num}

> $ext{size}(x_{lpha ext{ list}}) \equiv ext{length } x$ $ext{size}(x_{ ext{bool}}) \equiv 1$

- Each defined symbol *depends* on symbols in definition's rhs, e.g. size_{α list→num} \rightsquigarrow length_{α list→num}, size_{α list→num} \rightsquigarrow α list
- $\rightarrow \downarrow$ extends \rightarrow to all type-instances:
 - e.g. size_{num list \rightarrow num} \rightsquigarrow^{\downarrow} length_{num list \rightarrow num}, \ldots
- Terminating dependencies
 = no infinite descending chains in →↓*

A theory with three constants $c_{\alpha \text{ list} \rightarrow \text{bool}}$, $d_{(\alpha \times \beta) \rightarrow \text{bool}}$, undef_{α} and two definitions:

$$c(x_{\alpha \text{ list}}) \equiv d(\text{undef}_{\alpha imes \alpha}) \qquad d(x_{\alpha imes \text{num}}) \equiv \neg c(\text{undef}_{\alpha \text{ list}})$$

²Adapted from Kunčar CPP '15

A theory with three constants $c_{\alpha \text{ list} \rightarrow \text{bool}}$, $d_{(\alpha \times \beta) \rightarrow \text{bool}}$, undef_{α} and two definitions:

 $c(x_{\alpha \text{ list}}) \equiv d(\text{undef}_{\alpha \times \alpha}) \qquad d(x_{\alpha \times \text{num}}) \equiv \neg c(\text{undef}_{\alpha \text{ list}})$

Derive the contradiction:

 $c (undef_{num \ list}) = d (undef_{num \times num}) = \neg c (undef_{num \ list})$

²Adapted from Kunčar CPP '15

A theory with three constants $c_{\alpha \text{ list} \rightarrow \text{bool}}$, $d_{(\alpha \times \beta) \rightarrow \text{bool}}$, undef_{α} and two definitions:

 $c(x_{\alpha \text{ list}}) \equiv d(\text{undef}_{\alpha \times \alpha}) \qquad d(x_{\alpha \times \text{num}}) \equiv \neg c(\text{undef}_{\alpha \text{ list}})$

Derive the contradiction:

 $c (undef_{num \ list}) = d (undef_{num \times num}) = \neg c (undef_{num \ list})$

Replace d by c to use overloading.

²Adapted from Kunčar CPP '15

A theory with three constants $c_{\alpha \text{ list} \rightarrow \text{bool}}$, $d_{(\alpha \times \beta) \rightarrow \text{bool}}$, undef_{α} and two definitions:

$$c(x_{\alpha \text{ list}}) \equiv d(\text{undef}_{\alpha imes \alpha}) \qquad d(x_{\alpha imes \text{num}}) \equiv \neg c(\text{undef}_{\alpha \text{ list}})$$

Dependencies:

 $c_{\alpha \text{ list} \rightarrow \text{bool}} \rightsquigarrow d_{(\alpha \times \alpha) \rightarrow \text{bool}}$ and $d_{(\alpha \times \text{num}) \rightarrow \text{bool}} \rightsquigarrow c_{\alpha \text{ list} \rightarrow \text{bool}}$

²Adapted from Kunčar CPP '15

A theory with three constants $c_{\alpha \text{ list} \rightarrow \text{bool}}$, $d_{(\alpha \times \beta) \rightarrow \text{bool}}$, undef_{α} and two definitions:

 $c(x_{\alpha \text{ list}}) \equiv d(\text{undef}_{\alpha \times \alpha}) \qquad d(x_{\alpha \times \text{num}}) \equiv \neg c(\text{undef}_{\alpha \text{ list}})$

Dependencies:

 $c_{\alpha \text{ list} \rightarrow \text{bool}} \rightsquigarrow d_{(\alpha \times \alpha) \rightarrow \text{bool}} \text{ and } d_{(\alpha \times \text{num}) \rightarrow \text{bool}} \rightsquigarrow c_{\alpha \text{ list} \rightarrow \text{bool}}$

Non-terminating dependencies at instance $\alpha \mapsto \text{num}$:

$$c_{\mathsf{num}} \mid_{\mathsf{ist} o \mathsf{bool}} \rightsquigarrow^{\downarrow} d_{(\mathsf{num} imes \mathsf{num}) o \mathsf{bool}} \rightsquigarrow^{\downarrow} c_{\mathsf{num}} \mid_{\mathsf{ist} o \mathsf{bool}}$$

²Adapted from Kunčar CPP '15

 Consistency by definitional (non axiomatic) theory extension, assuming definitions have terminating dependencies^{↓*}.
 [Åman Pohjola et al. LPAR'20].

- Consistency by definitional (non axiomatic) theory extension, assuming definitions have terminating dependencies^{↓*}.
 [Åman Pohjola et al. LPAR'20].
- Termination undecideable [Obua RTA'06]

- Consistency by definitional (non axiomatic) theory extension, assuming definitions have terminating dependencies^{↓*}.
 [Åman Pohjola et al. LPAR'20].
- Termination undecideable [Obua RTA'06]
- Pen-and-paper proof [Kunčar CPP'15]: Composable dependencies have further structure. Orthogonal dependencies are decidable.

THEORY FOR A CYCLICITY CHECKER

Pen-and-paper proof [Kunčar CPP'15]:

 $\vdash \mathsf{wellformed} \rightsquigarrow \land \mathsf{monotone} \rightsquigarrow \land \mathsf{finite} \rightsquigarrow \land \mathsf{composable} \rightsquigarrow \Rightarrow (\neg\mathsf{terminating} \rightsquigarrow^{\downarrow *} \iff \mathsf{cyclic} \rightsquigarrow)$

THEORY FOR A CYCLICITY CHECKER

Pen-and-paper proof [Kunčar CPP'15]:

■ Assuming composable ~>, checking non-termination of ~>↓* equals finding cycles ~>~>↓*.

THEORY FOR A CYCLICITY CHECKER

Pen-and-paper proof [Kunčar CPP'15]:

 $\vdash \mathsf{wellformed} \rightsquigarrow \land \mathsf{monotone} \rightsquigarrow \land \mathsf{finite} \rightsquigarrow \land \mathsf{composable} \rightsquigarrow \Rightarrow (\neg\mathsf{terminating} \rightsquigarrow^{\downarrow*} \iff \mathsf{cyclic} \rightsquigarrow)$

- Assuming composable ~>, checking non-termination of ~>↓* equals finding cycles ~>~>↓*.
- We formalise, uncover bugs and fix proof. [Gengelbach et al., tech report '21]

• Kunčar: cyclic is decideable for orthogonal dependencies

- Kunčar: cyclic is decideable for orthogonal dependencies
- Orthogonal: each symbol depends on at most one symbol

- Kunčar: cyclic is decideable for orthogonal dependencies
- Orthogonal: each symbol depends on at most one symbol
- Orthogonal is too restrictive: size_{α list \rightarrow num} \rightsquigarrow length_{α list \rightarrow num}, size_{α list \rightarrow num \rightsquigarrow α list}

- Kunčar: cyclic is decideable for orthogonal dependencies
- Orthogonal: each symbol depends on at most one symbol
- Orthogonal is too restrictive: size_{α list \to num} \rightsquigarrow length_{α list \to num}, size_{α list $\to num$} $\rightsquigarrow \alpha$ list
- Thus: depth limited, breadth first search of cycles in $\rightsquigarrow \rightsquigarrow \downarrow *$

Cyclicity Checker Algorithm (2)

 For p → (→↓ⁿ)q (dependency chain of length n + 1) Composable: limited ways extending q →↓ y Acyclic: p is no type-instance of y

Cyclicity Checker Algorithm (2)

- For p → (→↓ⁿ)q (dependency chain of length n + 1) Composable: limited ways extending q →↓ y Acyclic: p is no type-instance of y
- Soundness

 $\vdash \mathsf{wellformed} \rightsquigarrow \land \mathsf{monotone} \rightsquigarrow \land \mathsf{finite} \rightsquigarrow \land (\forall n. \mathsf{composable_len} \rightsquigarrow n) \land (\forall n. \neg\mathsf{cyclic_len} \rightsquigarrow n) \implies \mathsf{terminating} \rightsquigarrow^{\downarrow*}$

Cyclicity Checker Algorithm (2)

 For p → (→↓ⁿ)q (dependency chain of length n + 1) Composable: limited ways extending q →↓ y Acyclic: p is no type-instance of y

Soundness

 $\vdash \mathsf{wellformed} \rightsquigarrow \land \mathsf{monotone} \rightsquigarrow \land \mathsf{finite} \rightsquigarrow \land (\forall n. \mathsf{composable_len} \rightsquigarrow n) \land (\forall n. \neg\mathsf{cyclic_len} \rightsquigarrow n) \implies \mathsf{terminating} \rightsquigarrow^{\downarrow*}$

Verified executable implementation in CakeML

CHECK CYCLES IN ISABELLE/HOL

Theory	#Deps	Output	Runtime	Longest path
HOL	165	acyclic	0.01s	7
Orderings	764	acyclic	0.4s	13
Set	2657	acyclic	13s	14
Fun	2773	acyclic	13s	14
Transitive_Closure*	2195	acyclic	8s	20
Transitive Closure	7159	acyclic	14h	35
Main*	12913	acyclic	12h	37
Main	45738	-	-	-

Extracted dependencies from subtheories of Isabelle/HOL Main

■ *: Only constant ~→ constant

CHECK CYCLES IN ISABELLE/HOL

Theory	#Deps	Output	Runtime	Longest path
HOL	165	acyclic	0.01s	7
Orderings	764	acyclic	0.4s	13
Set	2657	acyclic	13s	14
Fun	2773	acyclic	13s	14
Transitive_Closure*	2195	acyclic	8s	20
Transitive Closure	7159	acyclic	14h	35
Main*	12913	acyclic	12h	37
Main	45738	-	-	-

Extracted dependencies from subtheories of Isabelle/HOL Main

- *: Only constant \rightsquigarrow constant
- Naive algorithm

CHECK CYCLES IN ISABELLE/HOL

Theory	#Deps	Output	Runtime	Longest path
HOL	165	acyclic	0.01s	7
Orderings	764	acyclic	0.4s	13
Set	2657	acyclic	13s	14
Fun	2773	acyclic	13s	14
Transitive_Closure*	2195	acyclic	8s	20
Transitive_Closure	7159	acyclic	14h	35
Main*	12913	acyclic	12h	37
Main	45738	-	-	-

- Extracted dependencies from subtheories of Isabelle/HOL Main
- *: Only constant ~→ constant
- Naive algorithm
- Overloading mainly through Haskell-like type classes

VERIFIED KERNEL FOR HOL WITH OVERLOADING

- Implemented verified kernel for HOL in [Åman Pohjola et al. LPAR'20], assuming terminating dependencies
- Verified cyclicity checker discharges termination assumption

VERIFIED KERNEL FOR HOL WITH OVERLOADING

- Implemented verified kernel for HOL in [Åman Pohjola et al. LPAR'20], assuming terminating dependencies
- Verified cyclicity checker discharges termination assumption
- From earlier work: kernel is formally proven model-theoretic conservative, Gengelbach et al. LFMTP'20.

DEMO: VERIFIED KERNEL FOR HOL WITH OVERLOADING

• Acyclic example defining e : A such that:

$$e_{bool} \equiv True \qquad e_{A \to A} \equiv \lambda x. x$$

DEMO: VERIFIED KERNEL FOR HOL WITH OVERLOADING

• Acyclic example defining e : A such that:

 $e_{bool} \equiv True \qquad e_{A \to A} \equiv \lambda x. x$

Cyclic example defining c : A, d : A such that:

$$\begin{aligned} \mathsf{c}_{(A \to A) \to \mathsf{bool}} &\equiv \lambda x. \ d(\mathsf{undef}_{A \times A}) \\ \mathsf{d}_{(A \times A) \to \mathsf{bool}} &\equiv \lambda x. \ \neg c(\mathsf{undef}_{A \to A}) \end{aligned}$$

DEMO: VERIFIED KERNEL FOR HOL WITH OVERLOADING

• Acyclic example defining e : A such that:

 $e_{bool} \equiv True \qquad e_{A \to A} \equiv \lambda x. x$

Cyclic example defining c : A, d : A such that:

$$c_{(A \to A) \to \text{bool}} \equiv \lambda x. \ d(\text{undef}_{A \times A})$$
$$d_{(A \times A) \to \text{bool}} \equiv \lambda x. \ \neg c(\text{undef}_{A \to A})$$

Thanks to Oskar Abrahamsson

CONTRIBUTION

- Formally proved theory:
 - there is structure in overloaded definitions.
- Verified checker
- Demonstrate checker on Isabelle/HOL basis
- Verified kernel for HOL with overloading

Code available online: https://code.cakeml.org/