A VERIFIED CYCLICITY CHECKER
For THEORIES WITH OVERLOADED CONSTANTS

Arve Gengelbach ' Johannes Aman Pohjola 2

LKTH Royal Institute of Technology, Stockholm, Sweden

2University of New South Wales, Sydney, Australia

ITP, August 7, 2022

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

should be free from contradiction, i.e. consistent.

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

should be free from contradiction, i.e. consistent.

Suffices: cpool IS @ New symbol, not contained in term.

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = Chool

should be free from contradiction, i.e. consistent.

Suffices: cpool IS @ New symbol, not contained in —c).

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

CalistE'--

should be free from contradiction, i.e. consistent.

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

CalistE'--

should be free from contradiction, i.e. consistent.

How can we detect whether overloaded
definitions are without contradiction?

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

CalistE'--

should be free from contradiction, i.e. consistent.

How can we detect in a verified manner whether overloaded
definitions are without contradiction?

2/14

In classical and intuitionistic logics, any permitted definitions, like

Chool = term

CalistE'--

should be free from contradiction, i.e. consistent.

How can we detect in a verified manner whether overloaded
definitions are without contradiction?

Why? Soundness critical (not well understood) part of theorem
provers; mistakes in earlier attempts

2/14

CONTRIBUTION

Formally proved theory:
there is structure in overloaded definitions.

m Verified checker
m Demonstrate checker on Isabelle/HOL basis

m Verified kernel for HOL with overloading

3/14

HIGHER-ORDER LOGIC (HOL)

m Rank-1 polymorphic lambda-calculus
with built-in types bool, « — 3, ind
and built-in constants =4 4 —bools €(a—sbool)—a

m Theorems: boolean terms derived by inference rules

4/14

HIGHER-ORDER LOGIC (HOL) WITH DEFINITIONS

m Rank-1 polymorphic lambda-calculus
with built-in types bool, « — 3, ind
and built-in constants =4 4 —bools €(a—sbool)—a

m Theorems: boolean terms derived by inference rules
m Consistency by definitional (non axiomatic) theory extension,
assuming...
m New types are isomorphic to non-empty subsets of existing type
m New constants abbreviate existing terms

1

1Formal consistency proof by Kumar et al. ITP '14
4/14

HOL WITH OVERLOADED DEFINITIONS

m Overloading allows constants different definitions at
non-overlapping types, €. g. sizeq_snum

size(xy jist) = length x

size(Xpool) = 1

5/14

HOL WITH OVERLOADED DEFINITIONS

m Overloading allows constants different definitions at
non-overlapping types, €. g. sizeq_snum

size(xy jist) = length x

size(Xpool) = 1

m Each defined symbol depends on symbols in definition’s rhs,

€. g. Size, list—snum ~~ 1€Ngthy listsnum: SiZ€a list—snum ~> « list

5/14

HOL WITH OVERLOADED DEFINITIONS

m Overloading allows constants different definitions at
non-overlapping types, €. g. sizeq_snum

size(xy jist) = length x

size(Xpool) = 1

m Each defined symbol depends on symbols in definition’s rhs,

€. g. Size, list—snum ~~ 1€Ngthy listsnum: SiZ€a list—snum ~> « list
m ¥ extends ~ to all type-instances:

e.g. Sizenum listmnum ~> length ,um list—num> - - -

5/14

HOL WITH OVERLOADED DEFINITIONS

m Overloading allows constants different definitions at
non-overlapping types, €. g. sizeq_snum

size(xy jist) = length x

size(Xpool) = 1

m Each defined symbol depends on symbols in definition’s rhs,
€. g. Size, list—snum ~~ 1€Ngthy listsnum: SiZ€a list—snum ~> « list
m ¥ extends ~ to all type-instances:
€. . Sizenum list—snum ~* 1€Ngth,m list—nums - - -

m Terminating dependencies
= no infinite descending chains in ~¥*

5/14

EXAMPLE 2: INCONSISTENCY FROM
NON-TERMINATING DEPENDENCIES

A theory with three constants ¢, list—sbool: d(ax8)—sbools Undefq
and two definitions:

¢ (Xatist) = d(undefyxq) d (Xaxnum) = —c(undefy, jist)

2 Adapted from Kun&ar CPP '15
6/14

EXAMPLE 2: INCONSISTENCY FROM
NON-TERMINATING DEPENDENCIES

A theory with three constants ¢ list—sbool: @(ax8)—sbools Undefq,
and two definitions:

¢ (Xatist) = d(undefyxq) d (Xaxnum) = —c(undefy, jist)
Derive the contradiction:

C(Undefnum Iist) =d (Undefnumxnum) = C (Undefnum Iist)

2 Adapted from Kun&ar CPP '15
6/14

EXAMPLE 2: INCONSISTENCY FROM
NON-TERMINATING DEPENDENCIES

A theory with three constants ¢, list—sbool: d(ax8)—bools Undefq
and two definitions:

C(Xdlﬁﬂ Egd(undefaxa) d(xcvxnum);E ﬁc(undefaﬁﬂ)
Derive the contradiction:
c (Undefnum Iist) =d (undefnumxnum) = C (Undefnum Iist)

Replace d by c to use overloading.

2Adapted from Kunéar CPP '15

6/14

EXAMPLE 2: INCONSISTENCY FROM
NON-TERMINATING DEPENDENCIES

A theory with three constants ¢, list—sbool: @(ax8)—sbools Undefq
and two definitions:

¢ (Xa1ist) = d(undefyxq) d (Xaxnum) = —c(undefy, jist)
Dependencies:

Ca list—bool ~7 d(axa)—)bool and d(axnum)—)bool ~> Ca list—bool

2 Adapted from Kun&ar CPP '15

6/14

EXAMPLE 2: INCONSISTENCY FROM
NON-TERMINATING DEPENDENCIES

A theory with three constants ¢, list—sbool: d(ax8)—bool: Undefq
and two definitions:

¢ (Xa1ist) = d(undefyxq) d (Xaxnum) = —c(undefy, jist)
Dependencies:

Co list—bool ~ d(axa)ﬁbool and d(oz><num)~>boo| ~ Cq list—bool

Non-terminating dependencies at instance o +— num:

. 4 4 .
Chum list—bool ~ d(numxnum)—>boo| ~*" Chum list—bool

2Adapted from Kunéar CPP '15

6/14

HOL WITH OVERLOADED DEFINITIONS

m Consistency by definitional (non axiomatic) theory extension,
assuming definitions have terminating dependencies**.
[Aman Pohjola et al. LPAR'20].

7/14

HOL WITH OVERLOADED DEFINITIONS

m Consistency by definitional (non axiomatic) theory extension,
assuming definitions have terminating dependencies**.
[Aman Pohjola et al. LPAR'20].

m Termination undecideable [Obua RTA'06]

7/14

HOL WITH OVERLOADED DEFINITIONS

m Consistency by definitional (non axiomatic) theory extension,
assuming definitions have terminating dependencies**.
[Aman Pohjola et al. LPAR'20].

m Termination undecideable [Obua RTA'06]

m Pen-and-paper proof [Kuncar CPP'15]:

Composable dependencies have further structure.
Orthogonal dependencies are decidable.

7/14

THEORY FOR A CYCLICITY CHECKER

m Pen-and-paper proof [Kunéar CPP'15]:

F wellformed ~~ A monotone ~

A finite ~ A composable ~

—> (—terminating ~+* <= cyclic ~)

8/14

THEORY FOR A CYCLICITY CHECKER

m Pen-and-paper proof [Kunéar CPP'15]:

F wellformed ~~ A monotone ~

A finite ~ A composable ~

—> (—terminating ~+* <= cyclic ~)

m Assuming composable ~, checking non-termination of ~4*
equals finding cycles ~s~¥*.

8/14

THEORY FOR A CYCLICITY CHECKER

m Pen-and-paper proof [Kunéar CPP'15]:

F wellformed ~~ A monotone ~

A finite ~ A composable ~
—> (—terminating ~+* <= cyclic ~)
m Assuming composable ~, checking non-termination of ~-+*
equals finding cycles ~s~¥*.

m We formalise, uncover bugs and fix proof.
[Gengelbach et al., tech report '21]

8/14

CycLICITY CHECKER ALGORITHM

m Kuncar: cyclic is decideable for orthogonal dependencies

9/14

CycLICITY CHECKER ALGORITHM

m Kuncar: cyclic is decideable for orthogonal dependencies

m Orthogonal: each symbol depends on at most one symbol

9/14

CycLICITY CHECKER ALGORITHM

m Kuncar: cyclic is decideable for orthogonal dependencies
m Orthogonal: each symbol depends on at most one symbol
m Orthogonal is too restrictive:

SIZ€q list—num 7 Iengtha“stﬁnumv Sizeq list—num ~~ « list

9/14

CycLICITY CHECKER ALGORITHM

Kunéar: cyclic is decideable for orthogonal dependencies

Orthogonal:- each symbol depends on at most one symbol

Orthogonal is too restrictive:
SIZ€4 list—num ~ Iengtha“stﬁnumv Sizeq list—num ~~ « list

Thus: depth limited, breadth first search of cycles in ~s~s+*

9/14

CycLICITY CHECKER ALGORITHM (2)

m For p ~» (~*")q (dependency chain of length n+ 1)
Composable: limited ways extending g ~* y
Acyclic: p is no type-instance of y

10/14

CycLICITY CHECKER ALGORITHM (2)

m For p ~» (~*")q (dependency chain of length n+ 1)
Composable: limited ways extending g ~* y
Acyclic: p is no type-instance of y

m Soundness

- wellformed ~~ A monotone ~~ A finite ~~
A (Vn. composable len ~» n) A (¥n. —cyclic_len ~~ n)

— terminating ~~**

10/14

CycLICITY CHECKER ALGORITHM (2)

m For p ~» (~*")q (dependency chain of length n+ 1)
Composable: limited ways extending g ~* y
Acyclic: p is no type-instance of y

m Soundness

- wellformed ~~ A monotone ~~ A finite ~~
A (Vn. composable len ~» n) A (¥n. —cyclic_len ~~ n)

— terminating ~~**

m Verified executable implementation in CakeML

10/14

CHECK CYCLES IN [SABELLE/HOL

Theory #Deps | Output | Runtime | Longest path
HOL 165 | acyclic 0.01s 7
Orderings 764 | acyclic 0.4s 13
Set 2657 | acyclic 13s 14
Fun 2773 | acyclic 13s 14
Transitive_ Closure* 2195 | acyclic 8s 20
Transitive_ Closure 7159 | acyclic 14h 35
Main* 12913 | acyclic 12h 37
Main 45738 | - - -

m Extracted dependencies from subtheories of Isabelle/HOL Main

m *: Only constant ~~ constant

11/14

CHECK CYCLES IN [SABELLE/HOL

Theory #Deps | Output | Runtime | Longest path
HOL 165 | acyclic 0.01s 7
Orderings 764 | acyclic 0.4s 13
Set 2657 | acyclic 13s 14
Fun 2773 | acyclic 13s 14
Transitive_ Closure* 2195 | acyclic 8s 20
Transitive_ Closure 7159 | acyclic 14h 35
Main* 12913 | acyclic 12h 37
Main 45738 | - - -

m Extracted dependencies from subtheories of Isabelle/HOL Main

m *: Only constant ~~ constant

m Naive algorithm

11/14

CHECK CYCLES IN ISABELLE/HOL

Theory #Deps | Output | Runtime | Longest path
HOL 165 | acyclic 0.01s 7
Orderings 764 | acyclic 0.4s 13
Set 2657 | acyclic 13s 14
Fun 2773 | acyclic 13s 14
Transitive_ Closure* 2195 | acyclic 8s 20
Transitive_ Closure 7159 | acyclic 14h 35
Main* 12913 | acyclic 12h 37
Main 45738 | - - -

m Extracted dependencies from subtheories of Isabelle/HOL Main

m *: Only constant ~~ constant

m Naive algorithm

m Overloading mainly through Haskell-like type classes

11/14

VERIFIED KERNEL FOR HOL WITH OVERLOADING

= Implemented verified kernel for HOL in [Aman Pohjola et al.
LPAR'20], assuming terminating dependencies

m Verified cyclicity checker discharges termination assumption

12/14

VERIFIED KERNEL FOR HOL WITH OVERLOADING

= Implemented verified kernel for HOL in [Aman Pohjola et al.
LPAR'20], assuming terminating dependencies

m Verified cyclicity checker discharges termination assumption

m From earlier work: kernel is formally proven model-theoretic
conservative, Gengelbach et al. LFMTP'20.

12/14

DEMO: VERIFIED KERNEL
FOR HOL WITH OVERLOADING

m Acyclic example defining e: A such that:

€hool = True CALA = AX. X

13/14

DEMO: VERIFIED KERNEL
FOR HOL WITH OVERLOADING

m Acyclic example defining e: A such that:
€hool = True eAA = AX. X
m Cyclic example defining c: A, d: A such that:

C(A—A)—bool = AX. d(undefaxa)

d(A><A)4>boo| = Ax. _\C(UndefAA)A)

13/14

DEMO: VERIFIED KERNEL
FOR HOL WITH OVERLOADING

m Acyclic example defining e: A such that:
€hool = True eAA = AX. X
m Cyclic example defining c: A, d: A such that:

C(A—A)—bool = AX. d(undefaxa)

d(AXA)%bool = Ax. _\C(UndefAA)A)

m Thanks to Oskar Abrahamsson

13/14

CONTRIBUTION

Formally proved theory:
there is structure in overloaded definitions.

m Verified checker
m Demonstrate checker on Isabelle/HOL basis

m Verified kernel for HOL with overloading

Code available online: https://code.cakeml.org/

14/14

