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Abstract—Apache ZooKeeper is a distributed data storage
that is highly concurrent and asynchronous due to network
communication; testing such a system is very challenging. Our
solution using the tool ‘“Modbat” generates test cases for con-
current client sessions, and processes results from synchronous
and asynchronous callbacks. We use an embedded model checker
to compute the test oracle for non-deterministic outcomes; the
oracle model evolves dynamically with each new test step.
Our work has detected multiple previously unknown defects in
ZooKeeper. Finally, a thorough coverage evaluation of the core
classes show how code and branch coverage strongly relate to
feature coverage in the model, and hence modeling effort.

I. INTRODUCTION

Model-based testing derives concrete test cases from an
abstract test model [1], [2]. In many tools, the model specifies
both possible test executions and expected results (the test
oracle) [3], [4], [5], [6].

Networked systems cannot be tested in isolation; testing a
server requires simulating clients that utilize the system under
test (SUT). Modbat [3] can dynamically instantiate models
representing client sessions, which allows it to test networked
systems, as shown in this paper for Apache ZooKeeper.

Apache ZooKeeper is a service for maintaining configu-
ration information, naming, and providing distributed syn-
chronization and group services [7], [8]. Multiple clients can
access ZooKeeper concurrently. Actions can be synchronous
or asynchronous. Synchronous actions block (suspend) the
active client thread until the server returns the result directly to
that thread. Asynchronous actions are dispatched to the server
without blocking the calling client thread. Instead, the result
is returned via a callback: a previously specified function is
executed later in a separate thread on the client side.

The complexity of ZooKeeper requires state-of-the-art ver-
ification. At the time of writing, verification was mostly

performed by a few hundred automated unit tests. We show
how model-based testing can generate more tests, in a way
that increases the diversity of action sequences that are tested
and can uncover previously unknown defects.

When testing and monitoring concurrent actions of multiple
components of a system, it is impossible to impose a total
order on all events. Accesses to shared resources (such as
shared memory or network ports) are subject to delays; a tester
observes only one particular execution schedule among many
possible schedules. We make the following contributions:

o We orchestrate concurrent client sessions against a server
using Modbat [3] to test Apache ZooKeeper.

o Our test architecture handles concurrent callbacks from a
thread outside the model-based testing framework.

« To handle non-deterministic test outcomes, we employ an
embedded model checker where the model is parameter-
ized based by hitherto generated test actions, and evolves
with each test action.

o We evaluate code coverage by both the built-in unit tests
and Modbat-generated test cases.

« We have discovered multiple previously unknown defects,
one of which can be found only with a detailed oracle
that handles concurrency.

This paper is organized as follows: Section II gives the
background of this work. Section IIl covers our model to
test Apache ZooKeeper. Non-deterministic test cases have to
be evaluated by computing all possible outcomes, which is
explained in Section IV. Section V shows the results of our
experiments in terms of code coverage and defects found.
Section VI discusses our experience, and Section VII covers
related work. Section VIII concludes and outlines future work.



II. BACKGROUND

This section introduces the model-based testing tool we use
(Modbat), and Apache ZooKeeper.

A. Modbat

Modbat provides an embedded domain-specific language [9]
based on Scala [10] to model test executions in complex
systems succinctly [3]. System behavior is described using
extended finite-state machines (EFSMs) [11]. An ESFM is a
finite-state machine that is extended with variables, enabling
functions (preconditions), and update functions (actions) for
each transition. Results of actions on the system under test
(SUT) can be checked using assertions, or stored in model
variables that are used in subsequent calls.

Test cases are derived by exploring available transitions,
starting from the initial state. A test case continues until a
configurable limit is hit or a property is violated. Properties
include unexpected exceptions and assertion failures.

In Modbat, model transition functions combine precondi-
tions (which have to hold for a transition to be enabled), test
actions (which call the SUT), and postconditions (assertions).
Modbat also supports exceptions: If an exception occurs during
a transition, its target state can be overridden with a different
(exceptional) state. Non-deterministic outcomes (both normal
and exceptional) are also supported, by overriding the default
target state with a different state [3].

Finally, Modbat offers a 1aunch function, which initializes
a new child model. If multiple models are active at the
same time, they are executed using an interleaving semantics,
choosing one transition from all eligible transitions among all
active models. The parent model instance can pass parameters
to the constructor of the child model, for sharing information
between models.

B. ZooKeeper

Apache ZooKeeper implements a high-performance dis-
tributed data store [7], [8]. ZooKeeper can operate as one
or more servers, and each server allows concurrent access
by multiple clients. Data are organized as nodes in a tree,
similar to a file system. The core application programming
interface (API) of ZooKeeper [12] provides functions to
access and manipulate data: create, delete, exists,
and getChildren affect or check the existence of nodes,
while setData and getData manipulate data in a node.
Finally, setACL and getACL update or retrieve the current
access permission for a node, and a ftransaction executes a
sequence of certain commands (create, delete, exists,
setData) atomically.

Each of the API functions can be called synchronously or
asynchronously. In an asynchronous call, no data is returned
to the caller, but a callback function supplying the return value
is executed later, in a dedicated callback thread [12].

C. Command processing by ZooKeeper

On the server side, ZooKeeper handles requests in three
stages. Each stage of the request handling pipeline can ac-
commodate one request at a time [13]. A new request is
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Fig. 1. Request handling pipeline on ZooKeeper server.
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Fig. 2. Model architecture with server and client model instances.

first processed by PrepRequestProcessor (see Figure 1). The
first stage checks the validity of the incoming request. The
second stage carries out the request and saves it in the log
file. The final stage returns the result. A transaction completes
if it successfully arrives at the final stage [13]. Access control
rights are checked at the first stage of the pipeline, except for
read-only requests, where the current implementation (as of
late 2016) checks permission at the final stage.

III. TEST MODEL FOR ZOOKEEPER

A good test model covers more diverse test sequences than
what is feasible by manually written unit tests. The fact that
Apache ZooKeeper allows clients to mix unrestricted (asyn-
chronous) access with synchronous access and transactions,
gives rise to very complex behavior. Our test model includes
a full oracle that models the exact set of possible outcomes of
any possible interleaving of a given set of operations.

The initial ZooKeeper session model was created in two
weeks by a third-year student with one month of experience
with ZooKeeper, Scala, and Modbat. It includes the core set
of synchronous operations and successfully executes against
the ZooKeeper server without producing spurious error reports
(false positives). However, adding asynchronous callbacks
greatly increased the complexity of the model. The current
state of the model reflects a little over one man-year of shared
effort by three students and one senior researcher.

A. Model Structure

Apache ZooKeeper handles connections and requests inter-
nally; our model treats the server as a black box. We organize
our model into multiple components: The main model starts
the server, and launches a random number of client models that
run concurrently (see Figure 2). Each client model connects
to the server and performs a series of operations on it. The
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Fig. 3. Detailed test model representing one client session, to generate test cases for ZooKeeper. States are shown as nodes, while arrows represent transitions.
Solid black arrows represent normal outcomes; red arrows show exceptions. Non-deterministic outcomes are shown by dotted red arrows. The self-transition
at state “connected” generates one of many possible actions on ZooKeeper and adds a record of that action to the event sequence of that model instance.
Transactions are generated in state “transaction”, which initializes a new transaction, to which operations are added whenever a self-transition is taken. A
transition from a state with a name that starts with “chk” checks if the exception occurred for the right reason.
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Fig. 4. Interaction between test model, SUT, and oracle model. The test
model updates the event graph (1) and calls the SUT (2), which returns the
result (3). The oracle checks the result (4), (5).

maximal number of clients is determined by a configuration
parameter.

The client model is the core of our verification effort on
ZooKeeper. Each model instance performs API calls that query
or modify data nodes on the server (see Figure 3). Note that
although each client session is modeled independently, we use
shared variables among all models to maintain a global view
of all client sessions and pending requests.

We define an event sequence to be the sequence of com-
mands sent by a ZooKeeper client to its corresponding server.
Each client-side model maintains its own event sequence,
which is updated by each test action that generates a request.
The set of all events sequences constitutes the event graph
(see Figure 4). Thus, in addition to executing actions on the
SUT, our test model generates the event graph. Result returned
by the SUT are compared against possible results as defined
by that event graph; the detailed semantics of each action are
implemented by the oracle model (see Section IV).

Our oracle model uses only the event graph and does not
access the internal state of the server. The main complexity
in the model arises from maintaining the model-side view
of the server state, and from modeling asynchronous calls
with callbacks (see below). The model-side view of the SUT
includes the event graph and its semantics, as implemented by
a component of the test oracle (see Figure 4).

To generate a synchronous action, a new request is gen-
erated for a new or existing ZooKeeper node. A call to the
server obtains the test result, which is compared against the
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Fig. 5. Asynchronous call handling between Modbat and ZooKeeper.

oracle prediction (see Figure 6). For synchronous transitions,
the result is obtained and verified right away, within the model
transition itself (see Figure 6a).

Transactions may include multiple actions, and are gener-
ated as in-memory data structures at first. A new transaction
object is initialized when state “transaction” is entered (see
Figure 3). In a self-transition on that state, a new transaction
operation is randomly chosen and added to the current list
of transactions. When leaving state “transaction”, the entire
transaction sequence is finalized, added to the list of events,
and executed against the ZooKeeper server. The test oracle
executes transactions atomically, and stores the result of each
step separately, as mandated by the API [12].

B. Handling Callbacks

In our test setup, Modbat launches a fresh ZooKeeper server
at the beginning of each test case. The ZooKeeper server then
runs in the background, alongside Modbat executing parts of
the test model to produce client-side API calls (see Figure 5).
Callbacks from ZooKeeper are handled by a callback thread,
which is created and managed by the client-side library of
ZooKeeper. Our model has no control about the life cycle
of that thread; however, Modbat provides API functions so
the callback function can notify Modbat of a failed test. By
using these functions (custom versions of assert), property
violations are made visible to Modbat even when executing in
a separate thread.



1 // synchronous create
"connected" -> "connected" := {

lock.synchronized { // avoid data race between Modbat and ZooKeeper’s callback handlers

currentNode =

5 val newEvent = sync (ZKEvent.create (currentNode,
addEvent (newEvent) // store event in event sequence

val result = zk.create(currentNode, ...)
checkResult (newEvent, result, None)

} } catches ("NodeExistsException" -> "checkExists",
10 // 1f ZooKeeper throws an exception,

(a) Synchronous create.

1 // asynchronous create
"connected" -> "connected" := {
lock.synchronized ({
currentNode = chooseNode
5 val newEvent = ZKEvent.create (currentNode,
addEvent (newEvent)
zk.create (currentNode, ...,

Create)

// call ZooKeeper server
// check that result returned by server matches oracle
"NoNodeException" -> "checkNotExists")
check that it occurred for the right reason

new CheckCreateCallback (newEvent) ,

chooseNode // choose a node at random from existing nodes or new node
Create))

(SUT)

null)

} } // return value is verified in callback handler instead of transition function

(b) Asynchronous create.

1 class CheckCreateCallback (val newEvent: ZKEvent)
override def processResult (rc: Int, result:
lock.synchronized {
val returnCode = Code.get (rc)
5 returnCode match {
case OK => checkResult (newEvent,
case NONODE => checkResult (newEvent,

String,

result, None)
null,

Some (ZKException.create (KeeperException.Code.NONODE,

case NODEEXISTS => checkResult (newEvent, null,

10 Some (ZKException.create (KeeperException.Code .NODEEXISTS,
"An abnormal rc code has been returned")

case _ => assert(false,

extends StringCallback {
ctx:

Object, name: String) {

newEvent .name) ) )

newEvent .name) ) )

(c) Callback handler for asynchronous create.

Fig. 6. Model transition functions for synchronous and asynchronous create (simplified). Bold text marks updates of the event graph (newEvent, addEvent),

and handling the result returned by ZooKeeper.

To avoid data races between the main thread (controlled by
Modbat) and the callback thread (controlled by ZooKeeper),
we use a global lock in any transition that uses shared
variables. This effectively makes individual transitions and
callbacks behave atomically on the client side. Note that our
lock usage does not affects possible interleavings on the server
side, so it still allows for all possible test outcomes in the SUT.

Transitions representing an asynchronous action (Figure 6b)
differ from synchronous ones in that the callback function
(see Figure 6c) obtains the result, rather than the API call
itself [12]. Each callback function is parameterized by the
target event of which the outcome is to be checked (line 1
in Figure 6¢). The callback function receives the results of
the call to ZooKeeper as parameters (line 2). The callback
function first decodes the result (line 4) and then evaluates
it depending on whether it represents a normal outcome or
an exception. It can be seen that line 6 in the callback
function (Figure 6¢) corresponds to line 8 in the transition
representing the synchronous create operation (Figure 6a).
The remaining code in the callback function (lines 7-11)
duplicates the same functionality for exceptions; the same code
is executed indirectly by a set of non-deterministic transitions
in line 9 in Figure 6a. The state-based modeling approach
cannot be be used in the callback handler, because the callback
handler is executed by ZooKeeper and therefore cannot utilize
the Modbat model notion of states and transitions. However, it
is possible to share the code executed by the callback handler

and corresponding model transitions (such as “checkExists”
— “connected”); we do so in the function checkResult.

IV. TEST ORACLE

Even after ensuring the absence of data races between
Modbat’s actions and ZooKeeper’s callbacks, the correctness
of the test oracle still poses a challenge. Interleaved calls from
different sessions may produce non-deterministic results due
to network delays. For instance, when two clients attempt to
create a new node, only one of them succeeds, while the other
one receives an exception indicating that the node already
exists. Without a global view of the entire network, it is not
possible to predict which client “wins” in this race.

A. Semantics of concurrent requests

A ZooKeeper client handles all requests from a given client
session within the same outgoing queue. Therefore, commands
sent to the ZooKeeper server are ordered within one client
session, but unordered across client sessions. The ZooKeeper
server also adheres to this sequential consistency [14], so that
within each session, commands are processed in the order in
which they are issued.

Modbat interleaves actions of multiple models, but uses
no true concurrency. Thanks to this design, test actions are
totally ordered, as each action completes fully before a new
action (on the same or on a different model) is executed. As
a consequence of this, synchronous actions become totally



ordered, even across sessions, because the result of each
action is received before a new command is issued. However,
asynchronous actions are only queued for transmission and
execution. Network delays and non-determinism in the thread
schedule on the ZooKeeper server make it possible that they
are executed in a different order than the one in which they
were generated or received.

Therefore, whenever we mix synchronous with asyn-
chronous actions, we have true concurrency, and the result of
a given set of event sequences (using multiple sessions) is no
longer deterministic in general. Figure 7 shows an example
with two sessions accessing /a and /b. Three actions are
synchronous; they are numbered according to the order in
which they are generated by the models.

To calculate possible outputs of three actions in each session
(Figure 7a), we simulate all possible interleavings obeying the
total ordering constraints of synchronous actions. In a first
step, we can choose the first command of each session. If
we choose “create /a”, that node is created, and the search
frontier advances one step on session 1 and in the sequence
of synchronous actions (Figure 7b). At that point, again either
session can be chosen for the next step, because asynchronous
commands are unordered.

If we choose the second session from the initial state, node
/b is created, and we now have a global ordering constraint
for the next event that permits only “create /a” of session 1 to
be executed next (Figure 7c).

As a consequence of these constraints, the second syn-
chronous command in session 2 (“exists /a”) always returns
that the node exists. However, the second asynchronous com-
mand in session 1 (“exists /b”) may fail to find its node due to
non-determinism in some cases. Furthermore, one of the two
“delete” command always succeeds, and the other one always
fails; the execution schedule decides the “winner”.

B. Embedding a model checker for test oracle generation

To calculate all possible outcomes of a given set of test
actions, we need an infrastructure to model all possible inter-
leavings of commands sent to the server, while obeying the
ordering constraints of synchronous actions.

Model checkers, such as SPIN [15], can analyze such
systems.! The problem with our approach is that the sequence
of test events that generates such transitions grows with each
test step, and has to be rewritten for each test. Existing model
checkers read the model from files. With such an approach,
a file or set of files describing session models would have to
be incrementally generated over dozens of steps for a given
test, repeated thousands of times for an entire test set. Clearly,
such an approach would be cumbersome. What is needed is a
model checking infrastructure that can receive the model as a
parameter (a data structure), without any file input.

'In this work, we do not use the model checker to verify the test model
itself. Instead, we use it to generate the set of states that corresponds to all
possible interleavings of the hitherto simulated test actions. Instead of trying to
disprove a given property, we confirm that the observed execution is within the
set of all possible executions. This turns the normal usage of model checking
upside down but uses the same mechanism.

1

Sync actions: [ I [ 2 [ 3 ]
1

Session 1: [ I:create /a [ exists /b [ 3: delete /a ]

Session 2: [ create /b [ 2:exists /a [ delete /a_|

(a) Initial state.

1

Sync. actions: [ I [ 2 [ 3 |
1

Session 1: [ I: create /a | exists /b [ 3: delete /a |

Session 2: [ create /b | 2:exists /a | delete /a_ ]

(b) Synchronous “create /a” is executed first.

Sync. actions: [ I [ 2 [ 3 ]

Session 1: [ I:create /a | exists /b | 3: delete /a |

Session 2: [ create /b | 2:exists /a [ delete /a_|

(c) Asynchronous “create /b” is executed first.

Fig. 7. Possible progress from multiple ZooKeeper sessions accessing the
same nodes with synchronous and asynchronous commands. Vertical arrows
indicate the current action within a session.

We tried package gov.nasa.jpf.util.event in Java
Pathfinder [16] for this purpose. It supports generating all
possible interleavings of a set of sequences that is created via
library calls.> While the extra ordering constraint imposed by
synchronous actions in ZooKeeper is not directly supported,
we were able to take these constraints into account by slightly
extending the existing code.

Unfortunately, that approach also proved infeasible. Unlike
JPF itself, this utility package uses a stateless search. It
generates all possible interleavings of events, even if many
interleavings result in the same search state and are thus
redundant. Due to the exponential state space explosion, we
found the overhead of the stateless search to be overwhelming
even for small cases, and had to abandon this approach.
Related work [17] using a similar approach applied this idea to
models with fewer concurrent components than in our work.

We therefore wrote a custom explicit-state embedded model
checker for this purpose. It takes as input the set of event
sequences that is generated as the model is executed by
Modbat. Each event represents a test action that was executed
by Modbat on the actual SUT. Our model checker then
executes each event on a model representation of the SUT.
The set of all possible outcomes is stored by a set of visited

2Unlike JPF itself, this package is currently not formally documented, but it
is part of the source code. We thank Peter Mehlitz for explaining this option.



states, which use a model representation of the actual system
state.’ Using a model state reduces memory usage; the use of
a symbolic state representation is future work.

C. Optimizations

Each time we need a result, we are interested in the outcome
of the current event issued (or callback received) among all
sessions. If any interleaving confirms the observed result from
the SUT, the search terminates; if the search completes without
confirming the observed result, it returns an error.

Compared to the version of the embedded model checker
described above, the actual implementation (written in Scala)
also handles exceptional outcomes. Normal return values and
exceptions are modeled as a pair of returned values, with one
of them always being undefined, depending on whether the
outcome is an exception or not.

Furthermore, we memoize previously visited states, to avoid
exploring the same state several times, and abort the search
if the observed result has been confirmed by a particular
interleaving. Early work using a stateless search was unsuc-
cessful with larger problem sizes, so despite high memory
requirements, an explicit state representation works well. We
also pre-process the session graph: Except for the final action,
we remove read-only actions (calls to pure functions) from the
session graph, as these calls do not affect the outcome.

Furthermore, we experiment with different search orders.
As soon as the actual outcome is matched, the given test case
is confirmed to be correct up to this point, and the search
can be aborted. It is therefore beneficial to hit the target
event with the right prediction as soon as possible. If we
use breadth-first search, all successors of events at a given
depth are explored first. This explores a large portion of the
state space before the target event can be reached. Typically,
this strategy is inefficient. Conversely, a depth-first search
prioritizes exploring a chain of events until the end, before
trying an alternative. This increases the odds of hitting the
target event early, and increases the probability of confirming
the observation (and thus terminating the search) early. To
increase the odds of matching the observed outcome, heuristic
search sorts the events in the order in which the requests
were generated, or in the order in which the responses were
received, before performing a depth-first search.

V. EXPERIMENTS

The primary goal of black-box testing is to cover all
behaviors that are described in the specification. Tests are
designed to verify if the implementation meets the expected
behavior. White-box testing, on the other hand, tries to execute
certain aspects of the implementation, such as all possible
branches. Full branch coverage reveals if parts of the code
correspond to unreachable (“dead”) code or if some branches
result in failures.

The given models were designed as black-box models,
i.e., without knowledge of the implementation. We had also

3For ZooKeeper, our model state consists of the tree of all data nodes in
ZooKeeper. Each node has a name, data, and access permissions.

decided in advance to elide watchers, and the ability to use
our own in-memory database settings, from the models due to
time constraints.

To evaluate the effectiveness of our work, we are interested
in these research questions:

RQ1: How many parallel sessions can we simulate and ver-
ify?

RQ2: How does the modeling effort relate to code and feature
coverage?

RQ3: Are we able to detect defects in ZooKeeper?

A. Setting

The two key classes of ZooKeeper are ZooKeeper and
ZooKeeperServer. Most of the API functions are provided
there. ZooKeeper handles node data, while ZooKeeperServer
organizes sessions and connections between server instances.
We analyze code coverage on these two classes, and compare
branch coverage of the 361 unit tests in ZooKeeper 3.4.8
with the coverage achieved by our Modbat model in the same
version, and random tests generated by GRT [18].

ZooKeeper’s unit tests amount to a sizeable amount of
code, over 26,000 lines (see Table I). Including comments,
the Modbat model comprises about 2,000 lines of code (LOC).
This count includes 170 LOC for unit tests for some of the
internal data structures we wrote. A large part of the code deals
with callbacks and event evaluation: About 240 LOC constitute
the callback handlers themselves, while the embedded model
checker and the ZooKeeper-specific oracle both take up about
250-300 LOC each. The core ZooKeeper server model is
currently about 130 LOC, and the client core (without callback
functions) is about 600 LOC. Overall our model code is 13
times smaller than the test suite of ZooKeeper, which was
developed over eight years.

GRT is an automated test case generation tool based on
Randoop [19], which generates tests by randomly invoking
methods based on data types that can be synthesized from
constants and results of previous method invocations. Unlike
Randoop, GRT uses multiple static and dynamic program
analysis techniques to guide the search and make it much more
effective. GRT is currently state of the art and won the 2015
contest on search-based software testing [20].

B. Test model performance

RQ1 is concerned with the limits of our test setup, and the
scalability of the oracle. Figure 8 shows the performance of
our embedded model checker on a computer with a 3.7 GHz
Quad-Core Intel Xeon E5 processor with 64 GB of RAM,
running Mac OS X 10.10.5 and Scala 2.11.8 with Java version
1.8.0_51. We run 10,000 tests with the test oracle disabled (to
show the time taken by ZooKeeper itself), and with unop-
timized and optimized versions. To vary the complexity, we
choose one parameter that determines the maximum number of
client sessions and the number of actions of each client. We
average the results over ten runs with a fixed random seed,
to reduce the influence of delays incurred by the run-time
environment (particularly garbage collection). If a series of
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Fig. 8. Performance of embedded model checker.

tests does not conclude within half an hour (1,8005s), we treat
this as a time-out and do not plot a data point in Figure 8.

For up to four sessions, the time taken by ZooKeeper itself
dominates. Even removing the test oracle altogether has little
effect on the run-time at that point. At four sessions, the
overhead of the search starts to become visible but is still
benign. However, breadth-first search is already infeasible for
five sessions. Heuristic search scales well to five sessions and
has a clear advantage over simple depth-first search here, but
difficult cases cause the state space to explode for six sessions,
where only the oracle-free search can still complete all tests
(see Figure 8).

To see why we run out of memory, we consider the number
of states searched in one oracle call. For five sessions, depth-
first search needs to compute fewer than 25 states in 99.5 % of
all oracle evaluations (99.9 % of all cases for heuristic search).
However, in the worst case, depth-first search computes 1.8
million states, using up tens of GB of memory; heuristic search
needs at most 30,000 states in the same setting.

C. Coverage comparison between tools

RQ2 relates code coverage, and coverage of major features
of ZooKeeper. ZooKeeper’s built-in unit tests require the
largest amount of time to execute, as they include a lot of
functionality outside the two core classes that we focus on,
ZooKeeper and ZooKeeperServer. The unit test suite takes
about 20 minutes to execute, with most of the time being
spent by a few tests waiting for timeouts to occur (see Table I).
Modbat runs 10,000 tests (configured to generate up to three
client sessions) in about two minutes. For GRT, we set the
time limit of its dynamic search to 500 s to give GRT enough
time for its random search to reach a relatively stable plateau.
GRT needs an additional 20 s for its initial static analysis.

We measure branch coverage with JaCoCo [21] for tests
generated with each approach.* Table I shows the results. It
should be noted that the execution time of the unit tests for

4We choose branch coverage because full branch coverage implies full
statement coverage, but the reverse is not true for if branches without an
else statement.

TABLE I
BRANCH COVERAGE FOR ZooKeeper (ZK) AND ZooKeeperServer (ZKS).

Approach Coverage Exec. time  Human input
ZK ZKS
Unit tests 80% 75% 1,226s 26,000LOC
Model-based tests 51% 41% 110s 2,000LOC
Random tests 20% 27% 520s 0LOC
TABLE II

TYPES OF LACK OF COVERAGE BY ZOOKEEPER AND MODBAT TESTS.

Type of lack of coverage ZooKeeper ZooKeeperServer
junit  Modbat  junit Modbat
Untested public method 1 16 6 15
Untested protected method 0 3 1 3
Untested private method 0 0 0 1
Branch depends on...
internal state 3 14 12 20
parameter 15 34 4 9
result of method call 4 7 4 13
system configuration 3 3 7 8
exception being thrown 2 3 10 14
Total 28 80 44 83

ZooKeeper is dominated by a few tests that pause for one or
several minutes; actual CPU time in the tests is much less than
that. We think our test model strikes a good balance between
human effort and coverage; we also achieve higher coverage
than automated test generation.

GRT covers a lot of branches early on. After a few min-
utes, coverage improvements taper off. The total run time of
GRT is slightly above the time limit of the dynamic search
because of the initial static analysis phase of GRT. A detailed
coverage analysis of random tests produced by GRT reveals
that GRT often cannot progress beyond the initialization
phase of ZooKeeper because GRT is type-driven, not state-
driven (and thus not protocol-aware). GRT cannot distinguish
between uninitialized and initialized data of the same type
and therefore, not surprisingly, fails to “guess” the right
sequence of actions needed to progress past initialization. The
strengths of GRT lie in testing exceptions that are triggered
with uninitialized data, as well as the breadth of methods that it
attempts to test. Methods that can be covered with very simple
data, such as null references, tend to be covered by GRT,
but not always by unit tests or model-based tests. Modbat’s
coverage is mostly a subset of the unit tests, except for two
branches that are covered by our model but not by the unit
tests.

When looking at coverage by unit tests and our Modbat
model, we first consider why a method is not covered, or why a
branch is not taken. In Table II, we list the number of untested
methods (regardless of the number of branches in these meth-
ods) and missed branches, which include branches in methods
that were never called. Unit tests miss one public method in
ZooKeeper and six public methods in ZooKeeperServer, while
the model misses these methods and an additional 15 and 9



TABLE III
LACK OF COVERAGE BY ZOOKEEPER FEATURE.

Reasons for lack of coverage ZooKeeper ZooKeeperServer

junit  Modbat  junit Modbat
Watcher functionality 13 45 0 0
Authentication 5 6 7 16
Session/request mgt. 3 7 16 40
Transactions 1 4 0 0
Logging 2 2 6 6
1/0 handling 3 1 2 3
Internal database 0 0 11 13
Other 1 15 2 5
Total 28 80 44 83

public methods, respectively. We find the following reasons
for lack of branch coverage:

Internal state: A branch depends on a field of the class under
test.

Parameter: A branch depends on a condition that uses the
value of a parameter, or one of its fields if the parameter
is an object.

Result of method call: A branch depends on the outcome of
a method call.

System configuration: A branch depends on a configuration
setting.

Exception: An exception handler (catch clause) was not
executed. An exception handler can usually be triggered
from many possible locations in the corresponding try
block. However, this detailed type of coverage [22] is
not measured by existing coverage tools. Therefore, we
counted each occurrence as one branch for simplicity.

Our model is largely based on certain given values for
parameters and sometimes fails to include alternative values,
such as invalid arguments. Despite this, we cover most excep-
tional cases, except cases that are not covered by unit tests
either. Both built-in unit tests and our tests also tend to miss a
couple of branches related to various functions that are tested,
but not with all possible combinations of parameters. In most
cases where branches are not covered, calls involving invalid
parameters, such as null pointers, are missing from unit tests
and models. These are easy to cover with white-box tools such
as GRT, which derive new test cases from information about
uncovered branches. We have not yet used coverage data to
refine the parameters in the Modbat model.

We further analyze what features (rather than code con-
structs) cause methods not to be executed or branches not to
be taken (see Table III). As watchers are a feature that is
orthogonal to many other functions, most built-in functions
are represented again by a variant that supports watchers.
Hence, the total number of watcher-related branches is high.
ZooKeeper’s unit tests cover watcher-related functions about
equally well compared to the remainder of the code base. Our
Modbat model does not include watchers and functions that
configure the internal database used by the server; therefore,
related functions are not covered at all. For most other features,

branch coverage of our generated tests is close to the coverage
of the built-in tests. In two cases, our tests cover a branch that
is missed by unit tests.

We think that method and branch coverage is strongly
related to the type of functionality that is included in the
model. Our current model has a very high branch coverage
for the functions that we modeled, despite not explicitly taking
the code into account when choosing model parameters. Thus,
the current model misses a few cases, which are related to
invalid parameters, alternative configuration options, and error
states. Error states are intrinsically hard to cover and typically
require in-depth understanding of the detailed semantics of
the SUT. Investigating techniques to cover such cases will be
future work. We are also interested in measuring more detailed
coverage metrics, such as path coverage. Unfortunately, we are
not aware of a free tool that can measure such advanced types
of coverage.

D. Defects found

RQ3 relates to defect detection capability. We found a total
of five new defects, all of which are confirmed in the official
bug tracker and either under investigation or being fixed (see
Table IV). We can group these defects into three categories:
The first group consists of three shallow defects (bug ID 2391)
that were found upon inspection of the API. Finding these
defects is a result of studying ZooKeeper in the process of
modeling its functionality.

The second type of defect (bug ID 2496) relates to rela-
tively new functionality that was insufficiently tested. Incorrect
behavior was discovered as part of executing the test cases,
but the type of test required is not particularly complex. This
defect could have been found just as well with an ordinary
unit test that verifies the exact data returned. In fact, a more
limited version of that defect was discovered independently by
another ZooKeeper user (bug ID 2276). Our bug report covers
another variant of the defect that was not detected before.

Finally, we found a deep, complex defect (bug ID 2439) that
requires a very specific sequence of asynchronous and syn-
chronous actions. The test succeeds if we insert a significant
delay (such as one second) between each step. Otherwise, it
always fails on Linux but usually succeeds on Mac OS X [13].
The defect is triggered if an asynchronous setACL operation
on a node n is immediately followed by another (synchronous
or asynchronous) operation op that modifies the state of n.
Both requests are issued by the same client in the same
session. If the first operation removes access rights for further
modifications, op must fail according to the specification.
However, in this case, it can happen that the second request
arrives while the first request (setACL) has not been fully
processed yet by the central stage of ZooKeeper’s command
processing pipeline (see Section II). Because access permis-
sions for modifications are checked at the initial stage, this
results in op being successful, violating sequential consistency.
If other requests are interleaved between setACL and op,
setACL advances far enough down the pipeline to mask the
defect; op (correctly) fails in these cases.



TABLE IV
DEFECTS FOUND IN APACHE ZOOKEEPER.

Defect ID
Special value —1 in timeout setting not documented. 2391
Minimum timeout can be bigger than maximum timeout. 2391
Insufficient range checking of timeout setting. 2391
Transactions do not set path information on failure. 2496
One variant of the defect was reported by others as bug 2276.
Asynchronous setACL violates sequential consistency. 2439

We think that it is highly unlikely that a manually written
unit test could have produced just this sequence of operations
in the right order, with the right parameters. However, model-
based testing can find this type of defect because it can cover
a lot of relevant combinations of actions when running 10,000
or a million randomly generated tests.

VI. DISCUSSION

This paper shows how to design a test model to test the
behavior of a complex service that allows for concurrent client
access: Apache ZooKeeper.

A. Test Model Architecture

Our model consists of a main model, which starts the
server, and then proceeds to start multiple client models. All
client models run in parallel to simulate concurrent requests.
Our model ensures that the server is running before clients
are launched, so each client can connect successfully to the
server. When testing a deterministic system, the test model can
execute the SUT directly and evaluate its results. To cope with
non-determinism, we build an event graph, which represents
the concurrent actions that are executed on the SUT. Results
returned by the SUT are not evaluated directly, but instead
compared to all possible interleavings of actions in that event
graph (recall Figure 4).

Because the set of possible outcomes changes dynamically
with each test step, we need to be able to generate the set
of all outcomes with a parameterized model. Due to this we
implement an embedded model checker that takes a model as
a data structure at run-time, unlike most existing tools that
take a fixed model (usually a text file) as input.

This model architecture is suitable for other non-
deterministic systems. Other test tools can also be used to
model such systems; a lack of built-in features for modeling
exceptions and multiple states machines can be compensated
with user-written code [3]. Furthermore, if a tool does not
support the dynamic creation of model instances, a sufficiently
large number of instances can be created in advance and later
activated during test case generation.

The structure of the extended finite state machines of the
model is fairly straightforward, with the largest model having
eight states (recall Figure 3). However, the client model
uses complex data structures for its internal variables. These
variables track past actions, and they are intimately tied up
with the test oracle. While model variables could be converted

to states [23], such a conversion would lead to a large number
of states and reduce readability.

Techniques related to model learning [24], [25] extract to
this overall state and transition structure from the implementa-
tion. The test oracle itself cannot be learned from the SUT, as
using the behavior of the existing system in the model would
duplicate existing defects as well. Instead, the oracle needs to
be derived from the specification. Automated model generation
would therefore not make a big impact on the overall effort in
this case, even if we had a new kind of tool that can handle
a certain degree of parallelism and non-determinism of the
system under test. However, learning-based approaches may be
useful for different types of protocols where parallel sessions
do not interact, or for generating an initial serial model of the
system that is later refined by a human.

B. Challenges

As discussed above, we assume a complete view of the state
of all model instances, including their internal variables. How-
ever, we assume no control over external components (such as
the ZooKeeper server) and the network itself. Therefore, we
do not know the order in which requests and responses arrive.

Without observing the whole network, the outcome of a
test is not deterministic in general. Our embedded model
checker can generate all possible outcomes. Its performance
is excellent for up to five concurrent sessions, but it suffers
from the state space explosion beyond that point. The code
of the embedded model checker, together with model code
maintaining a detailed view of active and pending requests,
currently makes up more than half of the whole code and
separates concurrency aspects from the semantics of individual
API operations.

During execution, side effects of API calls (the use of net-
work connections and temporary files) pose another challenge.
If a test does not clean up all resources when it ends, it is
possible to create dependencies between tests. We observed
this in cases where a test could not be replayed in isolation, but
only if it was part of a larger sequences of multiple tests. With
some effort we were able to fix all these cases. We eventually
arrived at what we think is a correct model by executing half
a million test cases against the system, without false positives.

Testing networked systems may eventually exhaust available
ephemeral ports that are used by a server when accepting a
new connection. On today’s systems, a few tens of thousands
of such ports are available; their number can be increased only
slightly with a custom kernel configuration. A lack of available
ephemeral ports results in a slowdown of test execution (until
closed ports are made available again). For ZooKeeper, the
computational overhead of the test oracle and ZooKeeper
itself usually slows down the system sufficiently to mask this
problem.

Finally, it can be seen that substantial effort is required to
achieve high branch coverage in model-based testing. When
used together with an existing test suite, a good strategy may
be to focus on generating many different execution paths in
the test model [26], and rely on existing unit tests to cover



rare branches in parts of the system that are not covered by
the model. In other words, we consider unit testing and model-
based testing as complementary methods, and does not treat
the latter as a complete replacement of the former.

VII. RELATED WORK

Unit testing experienced a widespread rise in software
development in the late 1990s [27]. While unit testing au-
tomates test execution, model-based testing automates test
design [1], [2]. Instead of designing individual test cases, test
models describe entire sets of possible tests. More model-
based testing tools than can be described here exist, based
on state machines [2], [3], [S] or constraint specifications [4],
[6]. Test models (as well as unit tests) are usually designed
based on the specification [2].

We are not aware of related work that models the protocol
of ZooKeeper for testing its actual implementation, although
similar work exists for different protocols. In particular, Spec
Explorer [5] has been used to model families of protocols.
In that work [17], an oracle is computed that represents the
entire possible state space of non-deterministic outcomes for
all possible tests. Our approach differs in that we generate
only the state space that is specific to the subset of all possible
outcomes related to given test actions. This allows us to scale
to more parallel sessions. Because we need to generate a new
oracle after each test step, we use an embedded model checker
that can compute the state space on the fly.

Semantic-aware model checking (SAMC [28]) verifies dis-
tributed systems by supplying a system-specific test and mon-
itoring harness on top of a framework to verify networked
systems. In that framework, all possible schedules (interleav-
ings) of networked messages are tested, based on a given
system test that executes a particular sequence of API calls
for each client. Existing work has applied this approach to a
model of ZooKeeper [28] that is written in Java, but about an
order of magnitude smaller than the real implementation. In
contrast to this, our work tests many different sequences of
API calls, but executes one test schedule each time, on the
actual implementation of ZooKeeper.

Other related work analyzes the underlying algorithms and
protocols of ZooKeeper and related frameworks, for which op-
erational semantics have been defined recently [29]. The algo-
rithms behind ZooKeeper and Cassandra (another distributed
data storage) have been verified against generic property such
as weak or strong consistency [30], [31]. In that work, generic
assumptions are made about network delay and its effect on
system behavior. Our work distinguishes itself in that it uses a
model to test the actual implementation of the system, rather
than verifying its design.

As we do not control the network layer in our work, test
outcomes are often non-deterministic. To avoid false positives,
we use an embedded model checker to generate all possible
outcomes of the given event sequences. Our work is inspired
by a similar tool used inside Java Pathfinder [16], where
the state space exploration is used to generate all possible
stimuli (but not results) for a given system. We think the

idea of embedding model checkers in other tools has great
potential, similar to the way SAT solvers are often embedded
in verification tools [32]. Our embedded model checker is
also related to SPIN [15] and PAT [33], which can interact
with custom program code. However, in our case, we need to
be able to specify the core model as a data structure rather
than from an input language; the two aforementioned tools
currently do not have this feature.

We also experimented with random testing as a means to
improve coverage. Automated random testing [19], [34] uses
only information available from the implementation. Possible
test sequences are constrained by parameter and return value
types, and results are checked against generic properties.
Random testing can be fully automated, and has been shown
to be useful to complement human efforts in testing [35],
[36], where human-written test oracles can implement detailed
properties.

VIII. CONCLUSION AND FUTURE WORK

We show how to model a complex client/server system,
Apache ZooKeeper, using Modbat. Separate model instances
represent each component; Modbat executes these components
in parallel. Challenges in the modeling process involve writing
a correct test oracle in the presence of concurrent requests on
the same data. Code that manages the model-side view of such
actions is responsible for the majority of the model complexity
and development time.

We introduce an embedded model checker, which is param-
eterized by events representing test actions on the SUT. This
model checker executes after each test step, checks if the
observed outcome matches one of the possible outcomes
predicted by our model of concurrent test actions. Our test
oracle revealed five new defects in ZooKeeper, one of which
is a very deep defect that would likely have been missed by
less stringent testing.

Our work also applies to other systems. The overall design
of our models can be used with other model-based testing tools
as long as these tools can interface directly with the target
system. We think the idea of an embedded model checker
deserves future research; in particular, highly optimized exist-
ing model checkers could be leveraged in this way, similar to
embedded SAT solvers [32].

In the future, we want to extend our ZooKeeper model to
handle more features, such as watchers, and the use of multiple
servers, and also explore ways of automatically covering
missing branches by extending the model code accordingly.
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