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Abstract. This paper examines the cost of testing network applications
using the User Datagram Protocol (UDP). Such applications must deal
with packet loss, duplication, and reordering. Ideally, a UDP applica-
tion should be tested against all possible outcomes of unreliable UDP
transmissions. Their number, however, grows at least exponentially in
the number of transmitted packets.

To estimate the cost of the exhaustive testing of UDP applications, we
determine the number of UDP transmission outcomes analytically. Based
on this combinatorial analysis, we derive a sound, complete, and optimal
algorithm for generating outcomes of unreliable UDP transmissions. The
algorithm is implemented in the net-iocache extension of the software
model checker Java Pathfinder (JPF).

Experimental results confirm the consistency of the implementation with
the analytical results. In addition, we found that JPF’s state matching
reduces the explored state space significantly and ensures the practica-
bility of the approach despite of its exponential complexity.

Keywords: User Datagram Protocol, Software Model Checking, Java
Pathfinder, Combinatorial Analysis

1 Introduction

Modern software often involves both multi-threading and network communica-
tion. Testing such systems is complex due to non-determinism in thread schedul-
ing and network behavior. When applying the User Datagram Protocol (UDP),
the application must be tested against non-deterministic outcomes of network
input/output (I/O) including packet loss, duplication, and reordering.

Despite of its unreliability, UDP is favorable over the Transmission Control
Protocol (TCP) for applications that require low latency and high throughput.
These include real-time and multimedia applications such as gaming and me-
dia streaming [11, 22], but also high performance computing [13], widely used
application-level protocols such as DNS [17], DHCP [5], and the new protocol
QUIC [21] for web applications. Studies [32] report on a significant and increasing
portion of UDP traffic on the Internet.
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Testing a distributed application against all possible outcomes of UDP I/O is
challenging because of the explosion of cases when combining packet loss, dupli-
cation, and reordering. Network emulators [7,15,19,26] that use stochastic meth-
ods for the injection of such packet perturbation, avoid a combinatorial explosion
but cannot guarantee the coverage of all combinations. Recent work [23,31] pro-
poses the application of software model checking with Java Pathfinder (JPF) [29]
for testing UDP applications exhaustively against possible outcomes of UDP I/O
but it is unclear which problem sizes these exhaustive methods scale up to.

In this paper, we analyze the practical feasibility of model checking UDP
applications. We describe unreliable UDP I/O in a formal model and analyze
the number of possible outcomes for a sequence of n transmitted packets. The
formal model and its analysis yield a sound, complete, and optimal algorithm
of generating outcome sets which is a formal and generally applicable version of
the algorithms presented in previous work [23]. In experiments, we determine its
cost in terms of runtime and memory consumption and compare the number of
generated cases with the analytically derived cardinality results. A major finding
is that the runtime grows less than the analytical results suggest because JPF
recognizes visited states and prunes the exploration of the state space.

These results encourage the application of software model checking for UDP
applications despite of its exponential complexity. The availability of efficient
formal methods promotes the use of UDP for a broader range of applications,
including dependable systems. The contributions of this paper are:

Formal Analysis: We formalize the set of UDP transmission outcomes for n
packets and analyze its cardinality. This is an indicator of the computational
cost of exhaustively testing UDP applications.

General Algorithm: We derive a new generally applicable algorithm for gen-
erating outcome sets which is sound, complete, and optimal. In contrast to
previous algorithms [23], it can be implemented independently from JPF.

Evaluation: In experiments, we compare the analytical results with the number
of cases generated by the JPF extension net-iocache, and evaluate the impact
JPF’s state matching on the runtime.

This paper is structured as follows. We introduce relevant concepts of JPF and
its extension net-iocache for networked systems in Section 2. Section 3 defines
outcome sets of unreliable UDP transmissions and proves their cardinality while
Section 4 presents algorithms for generating them. We report on experimental
results in Section 5 and discuss related work in Section 6 before concluding the
paper in Section 7.

2 Background

Java Pathfinder (JPF) [10,29] is a custom Java Virtual Machine (JVM) written
in Java. It runs on top of a host JVM (Fig. 1). The application verified by
JPF is called the system under test (SUT). Net-iocache [3, 14] extends JPF
towards major parts of the java.net application programmig interface (API): It
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Fig. 1. Java Pathfinder and its extension net-iocache for network communication.
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Fig. 2. State space exploration for input sequence a,b,c (left) and a,a,a (right) with
JPF v8.0 rev 25; Dotted arrows: backtracking.

Table 1. Explored state space for different input sequences.

input cases branches states transitions

a,b,c 6 6 10 9
a,a,a 6 4 3 5

intercepts method calls of the SUT to classes such as java.net.DatagramSocket
and forwards network I/O to the remote peers (Fig. 1 center). This way, instances
of packet loss, duplication, or reordering can be injected transparently.

For non-deterministic operations such as thread scheduling or random num-
ber generation, JPF creates a choice generator and explores the rest of the SUT
for each of the possible choices on a separate execution branch. JPF offers an
application programming interface (API) for creating custom choice generators.
Net-iocache uses this API for the exhaustive exploration of non-deterministic
outcomes of UDP I/O [23]. E. g., permutations can be generated as follows:

1 List<Character> l=new ArrayList<Character>(Arrays.asList(’a’,’b’,’c’));
  for(int i=0; i<perm.length; i++) {
    int max=l.size()-1;
    perm[i]=l.remove(Verify.getInt(0, max));
5 }
  System.out.print(Arrays.toString(perm)+" ");

The program stores the character sequence ’a’,’b’,’c’ in a list l (line 1)
and moves it to an array perm (lines 2–5). Verify.getInt(0,max) in line 4
creates a data choice generator with choices 0,1,...,max. When executing on
a standard JVM, Verify.getInt returns a randomly chosen value in [0,max]

and the program outputs a single permutation of a,b,c, for instance [c,a,b]. In
contrast, when executing the same program on JPF, it outputs all permutations
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[a,b,c] [a,c,b] [b,a,c] [b,c,a] [c,a,b] [c,b,a]. This is because JPF
executes the SUT for all possible return values of each call to Verify.getInt

in a depth-first-search manner (Fig. 2 lhs). For the input sequence a,b,c, each
alternative choice results in a new program state, numbered in the order of
their first visit (0: initial state, 9: last visited state). When reaching one of
the 6 terminal states {2, 3, 5, 6, 8, 9}, JPF backtracks the SUT to a previous
state with open choices. Note that the result of Verify.getInt(0,0) is deter-
ministic. JPF merges it into the same transition as the preceding invocation
Verify.getInt(0,1) (Fig. 2 lhs bottom).

When the arguments of method Arrays.asList in line 1 are changed to
“’a’,’a’,’a’”, different return values of Verify.getInt lead to the same pro-
gram state (Fig. 2 rhs). By default, JPF recognizes previously visited states by
state matching and prunes the search as follows (dotted arrows indicate back-
tracking): 0 → 1 → 2 99K 1 → 2 (visited) 99K 0 → 1 (visited) 99K 0 → 1
(visited). Note that only 4 execution branches and 5 forward transitions are exe-
cuted instead of 6 branches and 9 transitions in the scenario of Fig. 2 lhs. Table 1
summarizes the size and structure of the explored state space for each of the two
input sequences a,b,c and a,a,a. Column ‘cases’ refers to the number of per-
mutations of length 3, while ‘branches’ refers to the number of combined choices
generated by calls of Verify.getInt. If state matching detects visited states, the
number of explored ‘branches’ can be smaller than the number of ‘cases’. State
matching can be disabled in the JPF settings via property vm.storage.class

to save memory. If enabled, it leads to a significant speed up in our experiments
(Section 5).

3 Formal Analysis of Unreliable UDP Behavior

When a message consisting of a sequence of n packets is sent by UDP, which
messages possibly arrive at the destination? How many possibilities are there,
taking arbitrary combinations of packet loss, duplication and reordering into
account?

Consider a message being fragmented into the three packets (p1, p2, p3) put
onto the network subsequently. Since each packet may get lost, duplicated,
and/or reordered, the packet sequences, which possibly arrive at the destina-
tion, include

ε empty sequence, all packets lost
(p1, p2, p3) normal delivery, no loss/duplication/reordering
(p1, p3, p3) p2 lost, p3 duplicated, no reordering
(p2, p3, p2, p1, p3) p2, p3 duplicated, reordered
...

How many such messages are there? Let us assume first that packets are dupli-
cated at most once and do not get reordered. Then there are three possibilities
for each individual packet: 1) loss, 2) delivery once, 3) delivery twice, resulting
in 3n combinations for n packets, i.e., 27 in the given case of n = 3. This means
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that even in scenarios without reordering, the number of transmission outcomes
grows already exponentially in the number of transmitted packets.

We will show that the number of transmission outcomes increases up to 271
for messages of 3 packets (Table 2), if cases of reordering are considered in
addition. Their number depends on the network capacity which is the maximum
number of packets the network can hold at a certain time. For instance, the
number of transmission outcomes for messages of 3 packets drops to 135 on a
network with a capacity of 2 packets and to 27 on a network with capacity 1
which does not permit any reordering (Table 2).

Why is it important to know the number of transmission outcomes precisely?
Obviously it is an indicator of the cost of testing a UDP application exhaustively.
More importantly, the cardinality analysis reveals the structure of outcome sets
and yields an algorithm for generating them which is sound, complete, and op-
timal by construction.

3.1 Unreliable UDP Transmissions

We denote the set of natural numbers including 0 as N. N1 =def N \ {0} denotes
the set of positive natural numbers; [n,m] =def {i ∈ N : n ≤ i ≤ m} denotes a
closed interval in N; P(A) =def {S : S ⊆ A} denotes the powerset of set A; A]B
denotes the union of disjoint sets A,B, i. e., A ]B = A ∪B and A ∩B = ∅.

Definition 1 (Packet, Packet Sequence).
P denotes an infinite set of packets.
Pn with n ∈ N denotes the set of packet sequences of length n. Elements of

Pn are denoted as (p1, ..., pn). ε denotes the empty sequence for n = 0.

p1 p2 ... pn

delivery set Dp

p1 p2 p2 p1p1 ...p1 p1

dispatch p



Fig. 3. Set of possible deliveries for a sequence of n dispatched packets (p1, ..., pn).

In our model we fix a sequence of n unique packets p ∈ Pn, forwarded to the
network (dispatch), and define the possible UDP transmission outcomes of p as
delivery set (Fig. 3):

Definition 2 (Dispatch, Delivery, Dispatch Order).
Let p ∈ Pn be a packet sequence of length n ∈ N. Then

– p is a dispatch iff pi = pj implies i = j for all i, j ∈ [1, n].
– Dp =def

⋃
m∈N{pi : i ∈ [1, n]}m denotes the set of deliveries of dispatch p.

– The dispatch order is: pi < pj ⇔def i < j for all i, j ∈ [1, n].
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Each element of Dp is a sequence of packets of p with arbitrary order and number
of instances: (p1, p2, p1) ∈ D(p1,p2) and ε ∈ D(p1,p2) but (p1, p2, p3) 6∈ D(p1,p2)

with p1, p2, p3 ∈ P being distinct packets.
The network has a limited capacity; it can hold at most c packets at a time.

After a packet pi is delivered, at most c − 1 late packets can be delivered that
have been sent before pi. This limits the delivery set for p as follows:

Definition 3 (Capacity-Bounded Deliveries).
Let Dp be the set of deliveries of a dispatch p ∈ Pn. Let c ∈ N1 be the

maximum number of packets the network can hold at a given time.
For a delivery q ∈ Dp with length m and i ∈ [1,m− 1], let Lq,i =def {qj : j >

i ∧ qj < qi} denote the set of packets which are late in q w. r. t. qi. Then

Dp,c =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1,m− 1]. |L(q1,...,qm),i| < c}

is the set of capacity-c-bounded deliveries of p.

As an example, consider the delivery q = (p2, p3, p1, p3, p2) of dispatch p =
(p1, p2, p3). Then Lq,1 = {p1}, Lq,2 = {p1, p2}, Lq,3 = ∅, and Lq,4 = {p2}.
Thus q ∈ Dp,c if and only if c > |Lq,2| = 2. Note that Dp,c = Dp if c ≥ n.
Furthermore, a network with capacity 1 does not permit reordering. For instance,
(p1, p1, p2) ∈ D(p1,p2),1 but (p1, p2, p1) 6∈ D(p1,p2),1.

In the example above one may argue that a network capacity of 3 is still not
sufficient for delivering (p2, p3, p1, p3, p2) because after the first delivery of p3
there are three more packets delivered which must have been on the network at
the time p3 is delivered. Definition 3 is based on the assumption that a packet
is not necessarily duplicated at dispatch time but at any time while it is on the
network. The latest possible time is just the time of delivery. This most general
assumption regarding duplication maximizes the cases of reordering permitted
by a given network capacity in our model. For instance, a network with capacity
3 can generate the delivery (p2, p3, p1, p3, p2) as follows:

Event Packets on the network Delivered packets

p1, p2, p3 dispatched {p1, p2, p3} ()
duplicate of p2 delivered {p1, p2, p3} (p2)
duplicate of p3 delivered {p1, p2, p3} (p2, p3)
p1 delivered {p2, p3} (p2, p3, p1)
p3 delivered {p2} (p2, p3, p1, p3)
p2 delivered ∅ (p2, p3, p1, p3, p2)

Delivery sets of non-empty dispatches are infinite because deliveries may con-
tain arbitrarily many instances of dispatched packets. We identify finite subsets
by constraining the number of times each dispatched packet may appear in a
delivery, using a set of multiplicity choices:

Definition 4 (Multiplicity-Bounded Deliveries).
Let M ⊂ N be a non-empty, finite set of natural numbers, called multiplicity

choices. Let Dp be the delivery set of dispatch p ∈ Pn. Then

Dp,M =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1, n]. |{j ∈ [1,m] : qj = pi}| ∈M}
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is the set of multiplicity-M -bounded deliveries of p.

For instance, {1, 2} is the set of multiplicity choices that permits each packet to
be delivered once or twice. Hence (p1, p2, p1) ∈ D(p1,p2),{1,2} but (p1, p2, p1, p1) 6∈
D(p1,p2),{1,2} and (p1, p1) 6∈ D(p1,p2),{1,2}. In general, we consider the deliveries
that are both multiplicity- and capacity-bounded:

Definition 5 (Multiplicity-and-Capacity-Bounded Deliveries).
Let p ∈ Pn be a dispatch, M ⊂ N a non-empty, finite set of multiplicity

choices, and c ∈ N1 a network capacity. Then

Dp,M,c =def Dp,M ∩Dp,c

is the set of multiplicity-M -and-capacity-c-bounded deliveries of p.

3.2 Cardinality of Unreliable UDP Transmissions

We analyze the cardinality of the delivery set Dp,M,c by splitting it into parti-
tions whose cardinality can be determined easier. This partitioning also provides
the formal ground for a sound, complete, and optimal algorithm for generating
delivery sets (Section 4).

Delivery sets are partitioned along the two independent dimensions of vari-
ation: 1) the number of delivered instances of each dispatched packet, called
multiplicity vector and 2) reordering as permitted by the network’s capacity.

For instance, (p2, p4, p2, p1, p4) is a delivery of (p1, p2, p3, p4) with multiplicity
vector (1, 2, 0, 2), meaning that p1 is delivered exactly once, p2 and p4 are deliv-
ered exactly twice, and p3 is not delivered. Other instances with this multiplicity
vector are obtained by reordering, e.g., (p1, p2, p2, p4, p4), (p1, p2, p4, p2, p4), ...
For determining the number of such permutations with repetition, we can apply
known results of combinatorics.

Formally, we divide Dp,M,c into partitions using multiplicity vectors as fol-
lows:

Definition 6 (Multiplicity-Vector-Bounded Delivery Sets).
Let p ∈ Pn be a dispatch. Then µ ∈ Nn is a multiplicity vector for p and

Dp,µ =def {(q1, ..., qm) ∈ Dp : ∀i ∈ [1, n]. |{j ∈ [1,m] : qj = pi}| = µi}

is the set of multiplicity-vector-µ-bounded deliveries of p.
For c ∈ N1, Dp,µ,c =def Dp,µ ∩ Dp,c is the set of multiplicity-vector-µ-and-

capacity-c-bounded deliveries of p.

A multiplicity vector µ defines for each individual packet pi of a dispatch
p ∈ Pn, how often it appears in a delivery of Dp,µ. For instance, the multiplicity
vector (2, 1) permits such deliveries of dispatch (p1, p2) where p1 appears twice
and p2 once. Thus (p1, p2, p1) ∈ D(p1,p2),(2,1) but (p2, p1, p2) 6∈ D(p1,p2),(2,1).

Multiplicity vectors partition the set of multiplicity-M -and-capacity-c-bounded
deliveries Dp,M,c into pairwise disjoint sets. By Definitions 4 and 6, it holds for
µ ∈ Mn and µ′ ∈ Mn \ {µ} : Dp,µ,c ∩Dp,µ′,c = ∅ and

⋃
µ∈Mn Dp,µ,c = Dp,M,c.

This gives the following Lemma:
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Lemma 1 (Partitioning of Delivery Set).
For a dispatch p ∈ Pn, a non-empty, finite set of multiplicity choices M ⊂ N,

and a network capacity c ∈ N1 it holds:

Dp,M,c =
⊎

µ∈Mn

Dp,µ,c (1)

|Dp,M,c| =
∑
µ∈Mn

|Dp,µ,c| (2)

Next we derive the cardinality of Dp,µ,c, using the following operations:

Definition 7 (Vector Operations).
Let p ∈ Pn be a dispatch, c ∈ N1 a network capacity, and µ ∈ Nn a multi-

plicity vector. Then

– |µ| =def |{i ∈ [1, n] : µi 6= 0}| denotes the number of packets that appear at
least once in any delivery q ∈ Dp,µ,c.

– ui denotes the i-th unit vector in Nn for i ∈ [1, n]. I. e., with x = ui it holds:
xi = 1 and xj = 0 for all j ∈ [1, n] \ {i}.

– µ− ui denotes the vector subtraction of ui from µ. I. e., with x = µ− ui it
holds: xi = µi − 1 and xj = µj for all j ∈ [1, n] \ {i}.

– Fµ,c =def {i ∈ [1, n] : µi > 0 ∧ |{j ∈ [1, i] : µj > 0}| ≤ c} denotes the first
c indices where µ has a value greater than zero. These are the indices of
the first c packets of a dispatch p which appear at least once in any delivery
q ∈ Dp,µ,c.

Lemma 2 (Partitioning of Multiplicity-Vector-Bounded Deliveries). For
a dispatch p ∈ Pn, capacity c ∈ N1, and multiplicity vector µ ∈ Nn it holds:

Dp,µ,c =

{
{ε} if |µ| = 0⊎

i∈Fµ,c{pi} ×Dp,µ−ui,c if |µ| > 0
(3)

Proof (Sketch).
Dp,µ,c = {ε} for |µ| = 0 follows directly from Definitions 2 and 6.
Assume |µ| > 0. On a network with capacity c, the first packet q1 of a delivery

q ∈ Dp,µ,c of length m ∈ N is one of the first c packets of dispatch p which appear
at least once in q, i. e., q1 = pi for some i ∈ Fµ,c. Packet pi appears µi − 1 times
in the remaining delivery sequence (q2, ..., qm) Thus the multiplicity vector of
(q2, ..., qm) is µ− ui and we get Equation (3) for |µ| > 0. ut

Proposition 1 (Cardinality of Multiplicity-Vector-Bounded Deliver-
ies).

For a dispatch p ∈ Pn, capacity c ∈ N1, and multiplicity vector µ ∈ Nn with
|µ| > 0 it holds:

|Dp,µ,c| =
∑
i∈Fµ,c

|Dp,µ−ui,c| (4)

For |µ| ≤ c it holds:

|Dp,µ,c| = |Dp,µ| =
(
∑n
i=1 µi)!∏n
i=1 µi!

(5)
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Proof.
Equation (4) is direct consequence of Lemma 2.
Equation (5) is shown as follows. For |µ| ≤ c we get: Dp,µ,c = Dp,µ since

reordering is not limited by c if less than c packets are delivered.
Dp,µ is the set of permutations of n packets where each packet pi with i ∈

[1, n] appears µi times (multiset permutation [4]). Its cardinality is given by the
multinomial coefficient

(
m

µ1,...,µn

)
with m =

∑n
i=1 µi [4, 9]. We get:

|Dp,µ,c| = |Dp,µ| =
(∑n

i=1 µi
µ1, ..., µn

)
=

(
∑n
i=1 µi)!∏n
i=1 µi!

ut

Lemma 1 and Proposition 1 enable the calculation of |Dp,M,c| with p ∈
Pn, by unfolding the recursive Equation (4) until |µ| ≤ c and then applying
Equation 5. Table 2 displays the numbers for M = {0, 1, 2} (packet loss/normal
delivery/duplication), n ∈ [1, 5], and c ∈ [1, 6].

Table 2. Cardinality of delivery sets Dp,{0,1,2},c with p ∈ Pn, n ∈ [1, 5] and c ∈ [1, 6];
Numbers in blue are referred in the beginning of Section 3 and in Section 5.

n \ c 1 2 3 4 5 6

1 3 3 3 3 3 3
2 9 19 19 19 19 19
3 27 135 271 271 271 271
4 81 955 3825 7365 7365 7365
5 243 6711 51331 176011 326011 326011

4 Generating UDP Transmission Outcomes

According to Lemmata 1 and 2, the delivery set Dp,M,c for a given dispatch
p ∈ Pn, a non-empty, finite set of multiplicity choices M ⊂ N, and a network
capacity c ∈ N1 is partitioned as

Dp,M,c =
⊎

µ∈Mn

Dp,µ,c

Dp,µ,c =

{
{ε} if |µ| = 0⊎
i∈Fµ,c{pi} ×Dp,µ−ui,c if |µ| > 0

Algorithm 1 is a direct operational reformulation of these equations. This en-
sures its soundness, completeness, and optimality in the sense that each element
in Dp,M,c is calculated exactly once.

Function delivery of Algorithm 2 returns an arbitrary element of the deliv-
ery set Dp,M,c. Function chooseOneOf, similar to JPF’s Verify.getInt (see
Section 2), performs a non-deterministic choice, returning an arbitrary element
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of a non-empty set. The combination of all non-deterministic choices in Algo-
rithm 2 yields the delivery set Dp,M,c. Parameters M and c of function delivery
are configuration settings chosen by the user according to the test goals for a
given SUT [23,24].

Function deliveries(p, M , c)
n← arity(p);
D ← ∅;
for µ ∈Mn do

D ← D ] delivsRec(p, µ, c);

return D;

Function delivsRec(p, µ, c)
if |µ| = 0 then

return {ε};
F ← getFirst(µ, c);
D ← ∅;
for i ∈ F do

µ′ ← µ;
µ′
i ← µ′

i − 1;
D′ ← delivsRec(p, µ′, c);
D ← D ] ({pi} ×D′);

return D;

Function getFirst(µ, c)
F ← ∅;
i← 1;
while i ≤ arity(µ) ∧ |F | < c do

if µi > 0 then
|F | ← |F | ] {i};

i← i+ 1;

return F ;

Algorithm 1: Delivery set generation.

Function delivery(p, M , c)
n← arity(p);

for i ∈ [1, n] do
µi ← chooseOneOf(M);

return delivRec(p, µ, c);

Function delivRec(p, µ, c)
if |µ| = 0 then

return ε;

F ← getFirst(µ, c);

i← chooseOneOf(F );
µ′ ← µ;
µ′
i ← µ′

i − 1;
(q1, ..., qm)← delivRec(p, µ′, c);

return (pi, q1, ..., qm);

Algorithm 2: Non-deterministic
generation of a single delivery.

5 Experimental Results

We implemented an adapted version of Algorithm 2 in net-iocache [23]: It gen-
erates packet perturbation for individually sent and received packets rather than
for packet sequences.

In a scenario inspired by the UDP-based file transfer protocols TFTP [27]
and MFTP [20], we determine the number of cases generated by net-iocache
and compare them with the analytical results on the cardinality of delivery sets
(Proposition 1). In addition, we evaluate the impact of JPF’s state matching
(Section 2) on the performance. The source repository of net-iocache v2 [30]
comprises this and other experiments.
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File  ServerClient
 getFile(fileId) 

 file size
TCP Socket

UDP Socket  file data

pkt 1 pkt 2 ...

TCP Socket

UDP Socket

Fig. 4. Components of the file transfer application.

Fig. 4 shows the setting: A client connects to a TCP port of a file server for
exchanging control information and listens on a UDP port for receiving files. The
server adds a sequence number to each UDP packet, allowing the client to detect
missing or duplicated packets, and to restore their original order. The server does
not read files from the disk but synthesizes them on demand in such a way that
each packet of each file is distinct. This maximizes the number of program states
of the client (cf. scenario in Fig. 2). The client checks the validity of the received
file content but does not store it to the file system. This avoids effects of file
I/O on the runtime behavior. Dropped packets are not retransmitted to keep
the number of packets sent by the server independent from the generated packet
perturbation.

We analyze the runtime behavior of JPF when checking the client, receiv-
ing files with increasing number of packets (packet size: 512 bytes), for UDP
transmissions with possible packet loss, duplication and reordering, according to
multiplicity choices M = {0, 1, 2} and capacity c = 2.

JPF does not detect any errors and thus explores the entire state space of
the SUT. Both the client and file server were executed on the same 8 core Mac
Pro workstation with 24 GB of memory running Ubuntu 14.04.2 LTS (64 Bit),
Java RTE 1.8.0 45-b14, JPF v8.0 (rev 25), and net-iocache v2 (rev 76) [30].

Table 3. File transfer client explored by JPF for one file with n ∈ [1, 12] packets and
delivery set Dp,{0,1,2},2, permitting packet loss, duplication, and reordering.

no state matching state matching speed-up
packets cases branches time[s] mem[MB] branches time[s] mem[MB] factor

1 3 3 0.3 362 3 0.3 362 1.00
2 19 19 0.5 362 19 0.4 362 1.25
4 955 955 3.4 457 303 0.8 362 4.25
8 2,305,819 2,305,819 5437.3 1,782 17,383 11.4 1,021 476.96

16 13.9· 1012 – – – 12.2· 106 6693.7 1,782 –

Table 3 shows the runtime results when transferring one file with an increas-
ing number of packets. Column ‘cases’ refers to the cardinality of the delivery
set Dp,{0,1,2},2 (second data column of Table 2) while ‘branches’ refers to num-
ber of combined choices actually explored by JPF (cf. Section 2, especially Ta-
ble 1). When state matching is disabled, the number of cases is identical with
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the number of branches JPF explores. This confirms the consistency of the im-
plementation with the analytical results for the cardinality of delivery sets in
Section 3.2. Enabled state matching, however, reduces the number of explored
execution branches significantly and enables the exhaustive exploration of much
larger problems than the analytical results suggest.

Equivalent states detected by JPF’s state matching arise from the reaction
of the SUT on packet duplication and reordering. Duplicated packets are dis-
carded immediately [23] and do not lead to a new program state. Similarly, the
compensation of packet reordering eventually leads to the same program state
for all generated packet permutations. A similar speed up by state matching
can be expected for applications such as multimedia streaming that cope with
duplicated and reordered packets in this way.

6 Related Work

In previous work [23, 24], we created a new version of net-iocache [30] for the
exhaustive exploration of UDP transmission outcomes with JPF and conducted
first experiments to confirm the feasibility and usefulness of the approach. This
paper describes UDP transmissions and their enumeration formally and ana-
lyzes its cardinality. The proposed algorithm for generating the set of possible
outcomes of unreliable UDP transmissions extends existing algorithms for enu-
merating permutations [12] towards a limited reorder window according to the
assumed network capacity. The non-deterministic version of the algorithm can
be considered as a variant of the Fisher-Yates shuffle algorithm [6, 8] for gen-
erating random permutations, extended in two aspects: 1) Instead of choosing
each element exactly once, each element (packet) is chosen a number of times
according to the chosen number of duplications; 2) Instead of choosing an arbi-
trary element from the set of not yet chosen elements, only one of the remaining
first c elements (packets) is chosen in each iteration to account for the network
capacity c.

Rathje and Richards [31] use JPF for exploring non-deterministic outcomes
of UDP I/O. They apply a centralization- and stub-based approach: All commu-
nicating peers are transformed into a single multi-threaded program and network
I/O is replaced by inter-thread communication using message queues. Packet loss
and reordering is generated but packet duplication is not covered. The adopted
approach is not entirely automatic: A small implementation effort is required for
each individual SUT. Stoller and Liu [28] coined the term centralization for merg-
ing multiple processes into one. In their work, Java RMI method invocations are
replaced by local method calls. This has been extended to TCP sockets [2,16]. A
similar approach analyzes the complete state space of all processes by extending
JPF itself [25] rather than pre-processing the SUT.

In contrast to centralization, net-iocache adopts a modular approach [3, 14]:
A single peer is selected as SUT and explored by JPF while the other peers
run as remote processes outside of JPF. Net-iocache stores and replays network
I/O in a cache to synchronize the backtracked SUT with the remote peers. The
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modular approach leads to smaller number of concurrent threads in the SUT,
reducing the state space and increasing scalability. In general, however, only a
part of the state space of the distributed system is covered. For an in-depth
discussion of the differences between centralization and net-iocache, we refer the
reader to previous work [14].

Instead of software model checking, stochastic methods have been applied
for the testing of UDP applications: Farchi et al. [7] propose to instrument Java
bytecode related to the UDP API to introduce a layer for creating “automatic
noise” which subsumes delay, packet loss, duplication, and reordering. In their
approach, each packet is randomly selected to be subject to noise with an equal
probability. The network emulator netem [15] and its extensions [19,26] are Linux
modules that inject stochastically packet delays, loss, duplication, reordering,
and IP packet corruption to simulate non-deterministic unreliable UDP I/O.
Stochastic methods are more scalable but cannot guarantee complete coverage.

The reordering of network packets has been described formally and the im-
pact of re-sequencing on the performance of streaming applications has been
evaluated [18]. Two metrics are considered: reordering density, defining the dis-
tribution of the displacement of packets from their original position, and reorder-
ing buffer occupancy density which is the degree of occupancy of a buffer used
for re-sequencing out-of-order packets. To the best of our knowledge, the number
of outcomes of unreliable UDP I/O has not been addressed in previous work.

Work on verifying programs with unreliable channels [1] shows that the reach-
ability problem as well as safety and eventuality properties become decidable for
communicating infinite state systems when lossy instead of lossless channels are
used. In our work, we address the verification of finite state systems by exhaus-
tively enumerating the outcomes of non-deterministic UDP I/O. The implemen-
tation of the proposed algorithm in the software model checker JPF enables
the direct checking of Java programs without modeling effort, but it cannot be
applied to models of infinite state systems.

7 Conclusion

Based on a formal model of UDP’s unreliable transmission behavior, we analyzed
the number of transmission outcomes and derived a sound, complete, and opti-
mal algorithm for generating them. The algorithm is implemented in the JPF
extension net-iocache. In experiments, the behavior of net-iocache is consistent
with the analytical results: It generates the same number of cases as predicted
by the formal analysis. We observed in addition, that JPF’s state matching re-
duces the state space significantly which enables the exhaustive exploration of
scenarios with trillions of cases.

Future work addresses the following issues: 1) By mapping multiplicity-and-
capacity-bounded delivery sets onto known problems in combinatorics, it may
be possible to derive a non-recursive precise formula and/or tight approxima-
tions of their cardinality. 2) Additional experiments would help to evaluate the
effectiveness and scalability of the approach for a broader range of applications.
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3) Since techniques such as state matching cannot solve the inherent combina-
tional complexity of exhaustive techniques, the combination of software model
checking with other, more scalable methods such as runtime verification, is an
important issue of our future work.
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