
Analyzing Distributed Java Applications by Automatic Centralization

Lei Ma
Graduate School of Engineering

The University of Tokyo
malei@satolab.itc.u-tokyo.ac.jp

Cyrille Artho
Research Institute for Secure Systems

AIST
c.artho@aist.go.jp

Hiroyuki Sato
Information Technology Center

The University of Tokyo
schuko@satolab.itc.u-tokyo.ac.jp

Abstract—The verification and analysis of distributed appli-
cations are difficult. They involve large combinational states,
interactive network communication between peers, and concur-
rency. Some dynamic analysis tools can analyze the runtime
behavior of a single-process application. However, they do not
support the analysis of a whole distributed application, where
multiple processes run simultaneously.

Centralization is a general solution, which transforms multi-
process applications into a single-process one that can be
directly analyzed by such existing tools. In this paper, we
adopt centralization as a general framework for analyzing
distributed applications. We propose and solve the essential
issue of a class version conflict during centralization. We
also propose a clean solution for the shutdown semantics. We
implement and apply our centralization tool to some network
benchmarks. Experiments, where existing tools are used on
the centralized application, support the usefulness of our
automatic centralization tool. Centralization enables existing
single-process tools to analyze distributed applications.

Keywords-Distributed application; dynamic analysis; soft-
ware model checking

I. INTRODUCTION

Analyzing distributed applications is challenging. Multi-
ple processes run concurrently and use asynchronous com-
munication over a network. Activities of processes can be
arbitrarily interleaved and no two executions of the same ap-
plication need be the same. Such nondeterminism causes the
run-time behavior of distributed applications to be difficult
to predict, debug, and verify. This problem gets exacerbated
if multiple threads inside a process are involved, creating
concurrency inside a process as well as between processes.
Most non-trivial applications nowadays are implemented as
distributed, networked applications where multiple processes
are combined into a complex system. Analysis and verifica-
tion of such distributed applications are therefore very im-
portant. Some existing tools like Java PathFinder (JPF) [12],
Java Runtime Analysis Toolkit (JRAT) [7] work on single-
process applications, but they do not support multi-process
applications. If powerful analysis tools that support a single
process were available for multiple processes, development
and analysis of distributed systems would become easier.

Process centralization [11], [1] is a solution to enable
existing tools to analyze multi-process applications. It trans-
forms a multi-process application into a single one with the
equivalent runtime behavior. Fig. 1 shows the centralization

Figure 1: Process Centralization Example

of a distributed application containing three components:
one server and two clients. Before centralization, each
component runs as a process. Inside the server process,
three threads run concurrently. Thread main creates two
Worker threads to serve each connected client, separately.
After centralization, all processes are wrapped as threads
and run as one process.

Centralization was initially proposed to verify distributed
applications exhaustively. However, the large combinational
states limit such an analysis to small applications. We
propose to use centralization for general (not necessarily ex-
haustive) analysis of distributed applications. Centralization
enables many existing tools for integrated analysis and re-
duces the difficulty of analyzing distributed applications. For
example, in a single-process debugger, the entire centralized
system cannot be paused simultaneously; when centralized
this becomes possible. Some dynamic verification tools
such as JCarder [8] detect deadlock bugs for single-process
applications, but they do not support multi-process applica-
tions. Meanwhile, profiling tools [7] are useful for analyzing
the runtime performance of distributed applications. As a
centralized application runs on a single VM, centralization
enable these tools for integrated profiling of the whole
distributed application.

There are currently no automatic centralization tools
available. A previous centralization tool [1] is outdated and
unable to work on current Java applications. Previous work
mainly used centralization to verify multi-process applica-
tions with JPF [12]. Certain aspects of the implementation
such as system startup and shutdown are targeted to JPF
and not applicable to other analysis tools. When moving
beyond JPF, larger systems can be supported, making tool
automation all the more important.

Furthermore, one essential centralization issue, classes
with multiple versions in different components, is not cov-
ered by previous tools. This is a common occurrence in
component-based systems, where different parts are devel-
oped independently and thus may use different versions of
library classes.

In this paper, we improve centralization to support the
general analysis of distributed applications. We propose a
general solution to handle classes with multiple versions,
and also a solution for the shutdown semantics.

Several existing tools can benefit from our tool for analyz-
ing distributed applications, as demonstrated by experiments.
We discuss and verify some network fault models with
JPF, allowing some defects to be found that are missed
with a single-process analysis. We also discuss how existing
profiling tools can be used for analyzing multi-process
applications by centralization.

The rest of this paper is organized as follows. Section II
summarizes the centralization issues. Section III formalizes
the multiple class version issue and explains our solution.
Section IV proposes our solution to the shutdown semantics.
Section V describes the implementation and experiments
using our tool. Section VI presents related work. Section
VII concludes and discusses future work.

II. CENTRALIZATION ISSUES

This section summarizes the problems that have to be
solved to the implement centralization of distributed appli-
cations correctly.

Definition 1: The term distributed application contains
three aspects [3]: Firstly, it means an application whose
functionality is split into a set of cooperating, interacting
components; each component has an internal state and
operations on its state. Secondly, these components can
be assigned to different machines. Finally, the functional
components exchange information through the network.

On modern operating systems, distributed applications are
implemented as a system using multiple processes, which
usually run on different hosts and communicate over a net-
work. Centralization transforms such a multi-process system
into a single-process one, while preserving the semantics of
the combined system. The transformed system runs on a
single host, and all communication between the transformed
processes is internalized.

This paper is concerned with the centralization of pro-
grams written in Java [5], a very popular programming lan-
guage that is designed to facilitate the creation of networked
applications. The concepts presented in this paper generalize
to other platforms using threads, shared memory, and inter-
process communication, although their implementations may
differ. A centralized program is the program after centraliza-
tion. Centralization must preserve the semantics of original
program. For each execution in the original program, there
exists an execution trace in centralized program with the

same behavior, and vice versa. To satisfy this requirement,
the following issues must be addressed:

1) Version separation: Multiple versions of a class may
occur in different components of a distributed application.
Before centralization, each component runs as a process on
its own Virtual Machine (VM) and holds its own version
of each class locally. Because a centralized program runs
on single VM, each class is loaded and defined once. Direct
centralization is incorrect, if multiple versions of a class with
the same name exist. We propose our solution in Section III.

2) Memory space separation: In a multi-process system,
the operating system separates the memory spaces of all pro-
cesses. This separation is absent in the centralized program
but can be emulated by program transformation. In Java-
like systems, memory space separation is only necessary on
static data, which exists once per VM. Static fields and class
descriptors are shared as a singleton instance of a given
class. Accessing these data by different processes without
proper separation in the centralized program will cause data
races. Therefore, centralization should keep the memory
space of each process separate [11], [1].

3) Runtime behavior: Startup and shutdown. Centraliza-
tion wraps each process of original program as a group
of threads and starts them as such. We denote each group
of such threads as a centralized process. For the analysis
of network applications, ensuring the server is initialized
before clients try to connect is important. Otherwise, a
client exits prematurely after failing to connect to the server.
Regarding the shutdown semantics of the original program,
if a process exits it terminates all its threads. It also releases
all the resources like socket ports. Its VM is shut down
while other processes might continue running. Centralization
should preserve the startup order of each centralized process
and the shutdown semantics. A solution given in previous
work [1] is specific to JPF. We discuss our general solution
in Sections IV and V, respectively.

III. VERSION SEPARATION

The usage of slightly different versions of library classes
is common in component-based systems, where each com-
ponent is developed and managed independently. Central-
ization is incorrect without properly separating the class
namespace for each component. In this section, we formalize
and propose our solution to this issue.

A. Class Abstraction and Classification

A Java class can be uniquely identified by its name
(including package name) and implementation. For a class
cl , we use cl .name and cl .code to denote the class name
and its implementation, respectively. Given two classes cl1
and cl2, cl1 is equivalent to cl2, denoted by cl1 = cl2, iff
both of their names and codes are identical.

Definition 2: A project is a set of classes. We denote a
class cl in a project p by p.cl .

Definition 3: Given a project p, we define NAME(p) =
{cl.name|cl ∈ p} as the set of all class names in p.

A project abstracts the implementation of a component
in distributed applications. Each process may use code from
a different project but code from a given project may also
be shared among processes.

Definition 4: Process centralization is the transformation
of multiple processes into a single one with equivalent
runtime behavior.

Previous work [1] assumes all the processes run under
the same project, where each class has only one version.
To centralize processes containing classes with multiple
versions, we propose to perform project centralization. Be-
fore defining project centralization, we first define project
renaming substitution and project equivalence.

Definition 5: Given a project p, and class names n1,n2,
project renaming substitution p[n1/n2] is defined as a project
in which n1 in p is substituted for n2. A renaming sub-
stitution p[n1/n2] is normal iff n1/∈NAME(p) and n2 ∈
NAME(p).

Definition 6: Given two projects p1and p2, p1is equiva-
lent to p2, denoted by p1 = p2 iff they can be renamed to
the identical projects by normal renaming substitutions.

Definition 7: Project centralization transforms a project
set P into one single project pcentra such that ∀p ∈ P.∃p′ ⊆
pcentra .p = p′.

Project centralization requires preservation of the class
namespace and implementation for each project. Each pro-
cess that runs on one of original projects can also run on
the centralized project with the same runtime behavior.

Definition 8: Given two classes cl1 and cl2 in a project
p, cl1 depends on cl2, denoted by cl2 → cl1 if cl1.code
references cl2.name . For a class cl ∈ p, we define
DEPENDS(cl , p) = {cl ′ ∈ p|cl → cl ′}.

The class dependency represents the class reference rela-
tion in a project. DEPENDS(cl , p) is the set of classes in
p that reference cl ;

Let P be a set of projects. To separate the class namespace
of each project p ∈ P , we classify the classes of p into the
following categories:

1).Unique Class . UNIQUE(p, P) = {cl ∈ p|∀q ∈
P.(p 6≡ q ⇒ cl .name /∈ NAME(q)). A unique class of
p is the class that has a unique name in p, and this name
does not occur in any other projects.

2).Conflict Class . CONFLICT(p, P) = {cl ∈ p|∃q ∈
P.(cl .name ∈ (NAME(p) ∩ NAME(q)) ∧ p.cl .code 6=
q.cl .code}. The name of a conflict class in p appears in
multiple projects, but with a different implementation.

3).Shared Class . SHARED(p, P) = {cl ∈ p|∃q ∈
P.(cl .name ∈ (NAME(p) ∩ NAME(q)) ∧ p.cl = q.cl}. A
shared class of p shares both its name and implementation
among multiple projects.

Project
1

Project
3

P
ro

je
c
t 1

P
ro

je
c
t 2

P
ro

je
c
t 3

(a). Before Centralization (b). After Centralization

Figure 2: Project Centralization Example
B. Example

Fig. 2.(a) shows an example to centralize three projects,
where edges represent the class depedencies. Project1 and
project2 share most of the classes except different versions of
class C. Compared with project2, project3 holds a different
version of class Main and a new class Unique . In this
example, classes A and B are shared between all projects.
Class C is a conflict class in project1, but it is both a conflict
and shared class in project2 and project3. Similarly, class
Main is a conflict class in project3, and it is both shared
and conflict in project1 and project2.

C. Project centralization and class renaming

Consider centralizing processes from the project set P =
{p1, p2, . . . , pn}, where one or more processes are started
from within each project. Direct centralization of these
processes is incorrect if CONFLICT(pi, P) 6= ∅. Project
centralization resolves such class version conflicts, while
preserving the semantics of each project. After project
centralization, process centralization is simplified without
having conflict classes. We adopt the class renaming ap-
proach for project centralization.

A trivial solution would entail renaming all classes,
duplicating all code for each project. However, excessive
code duplication will consume much runtime memory and
storage. For example, when analyzing a distributed system
containing 20 peers, duplicating all projects from these peers
is not necessary as they can reuse some shared classes with
proper transformation. Therefore, it is beneficial to share
common class code. Our goal is to resolve the class conflict
where necessary while sharing equivalent classes between

1: procedure CLASSRENAME
Input: A project set P = {p1, p2, . . . , pn}
Output: A renamed project set P ′ = {p′1, p

′
2, . . . , p

′
n},

where ∀i ∈ {1, . . . , n}.pi = p′i ∧ CONFLICT(p′i, P
′) = ∅

2: for i← 1, n− 1 do
3: P ← P/pi
4: worklist w ← ∅
5: queue q ← ∅
6: w ← CONFLICT(pi, P)
7: q ← w . add each element of w to q for renaming
8: while w 6= ∅ do
9: Pick and Remove cl from w

10: for all cl′ ∈ DEPENDS(cl, pi) do
11: if cl′ ∈ SHARED(pi, P)
12: & cl ′ /∈ q then
13: q.enque(cl ′)
14: w ← w∪

{cl ′′ ∈ DEPENDS(cl ′, pi)|cl ′′ /∈ q ∧ cl ′′ ∈ SHARED(pi, P)}
15: end if
16: end for
17: end while
18: p′i = renameProject(q, pi)
19: . make normal renaming substitution of pi for all classes in q
20: end for
21: end procedure

Figure 3: Class Renaming Algorithm

projects. Fig. 2.(b) shows a centralization result without
duplicating the code that can be shared.

D. Class renaming algorithm

Fig. 3 shows our renaming algorithm. The input of this
algorithm is a set of projects to be centralized. The output
is the renamed projects containing no conflict classes, and
each of them is equivalent to the project before renaming.
For a project set of size n = |P |, the algorithm iterates and
renames each of the first n− 1 projects. The worklist w is
used for traversing the class dependency relation. The queue
q stores the classes to be renamed.

All the conflict classes of the each project are put into q
for renaming. Their renaming effect then propagates to all
the shared classes. If some class referenced by a shared class
is renamed, the code of shared class changes, and it can no
longer be shared. The renaming effect fully propagates until
the worklist w becomes empty. After finding all the classes
needing renaming, renameProject(q, pi) in Fig. 3 performs
normal renaming substitution on project pi according to the
renaming queue.

The class renaming algorithm is guaranteed to terminate.
Each class of a project pi is added to worklist at most once.
The output condition is also guaranteed to hold. There is
no class conflict because all conflict classes and their prop-
agation effect are resolved. In addition, each project before
and after renaming is equivalent by normal substitution. For
complexity, we consider an analysis of n projects, which
includes m class names in total. In the worst case, each class
name exists in n projects. If the calculation for conflicting
and shared classes uses pairwise comparison, the algorithm
costs O(m ∗ n2). After class renaming, no project holds a
conflict class and all projects can be centralized by taking
the union of all their classes.

IV. SHUTDOWN SEMANTICS

Shutdown semantics [1] concern the termination of the
centralized application. Invoking Java standard library meth-
ods like Runtime.exit and Runtime.halt [6] terminates
the entire VM. In original program, each process runs on
a different VM so that while some process invokes these
methods to terminate, other processes may continue running.
After centralization, all processes are wrapped as threads
and run on one single VM. Some centralized process that
invokes such shutdown methods terminates all the other
processes and the entire VM without proper transformation.
The shutdown behavior preservation of centralized program
involves two issues: (1) If a process exits it only terminates
all its threads. (2) All resources held by the process are
released. The second issue is addressed in [1]. For the
first issue, a simple way for a thread to terminate itself
is to throw an exception of type ThreadDeathException .
However, killing other threads in Java is difficult [6].

We adopt the interruption mechanism to kill a thread.
This needs collaboration between the threads that send and
receive the signal. Given two threads A and B, to kill B from
A, A first calls B .interrupt to send interruption signal to
B. If B has been enabled to run, it can receive the signal
from A and exit according to its status:
(1) When blocked on an interruptible invocation like wait()
or sleep(), the signal triggers an interruption exception by
the JVM. By catching this exception, B can exit safely.
(2) When blocked on uninterruptible actions like IO.read(),
B has to be unblocked by closing the resource it is blocked
on in order to check its interruption flag status to exit.
(3) When not in a blocking state, B can check its interruption
flag to exit. If B is not enabled to run, it does not receive
the interruption signal from A. The interruption caused by
the centralizer and user should also be distinguished. These
issues can be solved by adding additional flags to B.

To correctly kill a thread covering all these cases, we
need to instrument the code of each thread (not necessarily
between each statement) to check its interruption flag to
exit. Note that each wrapped process either performs an
internal operation in its local space that is unobservable
by other processes, or it communicates with other pro-
cesses. The internal operations cannot change the state of
another process. Therefore, code instrumentation to check
the interruption status is only needed before and after some
key communication statements like ServerSocket.accept.
If a thread calls shutdown methods to terminate, it sends
the interruption signal to all other threads of the same
centralized process. When the other threads are scheduled
to run, they can check their interruption status to exit safely.

V. IMPLEMENTATION AND EXPERIMENTS

This section presents the implementation and experimen-
tal results of our centralization tool.

Table I: EXPERIMENTAL RESULTS OF CENTRALIZATION

#Classes #Unique cl. Shared Name #Renamed #Static Fields #Static Sync
#Same Code #Diff Code (#Transformed) Method

Netx-0.4 91 12 37 42 57 109 69 0
Netx-0.5 88 9 135 101 0
Kryonet-2.08 79 8 12 59 67 20 4 0
Kryonet-2.20 104 33 23 4 0
Xnio-2.1.0CR1 74 7 21 46 66 46 46 0
Xnio-2.0.0CR2 72 5 46 46 0
Ganymed-ss2-build209 115 0 94 21 75 182 84 3
Ganymed-ss2-build210 133 18 257 45 3
Edtftpj-2.3.0 106 1 80 25 51 367 151 10
Edtftpj-2.4.0 113 8 240 94 10
Mime4j-core-0.7.1 61 0 60 1 26 118 59 1
Mime4j-core-0.7.2 61 0 235 117 1
Jsmpp-2.0 201 0 191 10 134 811 405 2
Jsmpp-2.1 202 1 407 204 2

A. Implementation

We implement a centralization tool by transforming Java
bytecode based on the ASM bytecode library [4]. Before
centralization starts, the centralizer parses a user-defined
script into a Java startup class file, which defines how the
each process starts. The centralizer transforms the classes of
each project as described in the script, as defined in previous
work [11], [1]. After transformation, the centralized program
can be executed from the synthesized startup program.

The centralization tool is implemented into four passes.
The first pass reads the class files to build internal data
structures; the second pass implements project centralization
by the using class renaming algorithm in Fig. 3. The third
pass transforms static fields and class descriptors [11], [1].
We refine the centralization of static fields by transforming
the final static fields that store mutable data. Final static
fields storing immutable data do not cause data races. The
fourth pass performs transformation to preserve startup and
shutdown semantics. For the startup semantics, the main
issue is to ensure components start up in the desired order
such that dependencies between components are satisfied;
for example, a server needs to be ready to accept connection
before its clients are started. We limit our code instru-
mentation to a few key network functions. Whenever some
component tries to connect to a port, it creates an external
process to check whether the port is open. If the port is open,
it continues to connect, otherwise it waits until the port is
open. This approach does not modify Java network library
and it scales up for larger network applications. For the
shutdown semantics, we have manually verified various sit-
uations that a thread successfully terminates after receiving
the interruption signal as described in Section IV. Process
resource registration and release are also implemented as
described in previous work [1].

B. Experiment

We apply our centralization tool on some existing Java
network projects as benchmarks. The experiment centralizes
two versions of the each project as a group. Table I shows
the results. The changes in the number of classes in each

group indicate that some classes are removed, or new
classes are added. The number of Unique classes shows the
details of such changes. Column Shared Name shows the
project version update does not change many class names.
Most class names remains the same; some classes modify
their implementations. These numbers are listed in column
Same Code and Diff Code, respectively. Column Rename
displays the number of classes are renamed for each group
by the renaming algorithm in Fig. 3. This algorithm renames
all the conflict classes. Whether a shared class is renamed
is decided by the class dependency. The experimental result
shows that about half of the shared classes can still be shared
after renaming. The last two columns show the number
of static fields and static synchronized methods. The data
indicates that manually searching and modifying these fields
needs lots of effort even for two projects. Automatic tool
support is therefore very useful for centralization.

C. Applications

We present two applications of the centralization tool
based on our experiments in this section.

1) Centralization with JPF: To show our centraliza-
tion tool performs a correct transformation, we first re-
peat previous experiments using centralization with Java
PathFinder (JPF) [1]. These experiments were run on
the Echo client/server, Daytime client/server, Alphabet
client/server [2], Chat Server as test beds. We can correctly
find the all the described bugs.

We proceed to seed some common faults into these
benchmarks. One of these faults is a program crash caused
by a truncated message. Consider the Echo client/server
example: In the original protocol, the server first initializes
itself and waits for the two clients to connect. When a client
connects to the server, the server sends the same message
back to the client. The client exits after receiving the echo
message from server. The server terminates after it serves
two clients. In the faulty version, we change the code of
one client and server. One client is modified to crash if the
messages it sends and received are not the same length, and
the other client’s code remains the same. On the server side,

we inject a fault to send a truncated message back to the
client with a low probability. A modular verification using
JPF, analyzing either client side or server side separately as
implemented by net-iocache [2], cannot detect such bugs.
Previous centralization tools are not applicable as they do
not support applications with a class conflict. After using
our centralization on all network peers, we can successfully
detect these bugs by JPF.

2) Centralization with profiling tools: Profiling is im-
portant for understanding the runtime behaviors of net-
work applications. However, existing profiling tools like
JRAT [7] only support a single process. Although profiling
each process of a network application separately is possi-
ble, such analysis is difficult to automate and introduces
overhead to start and destroy multiple JVMs. Profiling the
centralized program avoids such overhead by running on
single VM. The performance of each component and the
execution traces of the whole network application can also
be retrieved by existing profiling tools. We have performed
some experiments to use the JRAT on centralized distributed
applications. The result shows that centralization automates
such integrated profiling of different components easily.

VI. RELATED WORK

Stoller [11] initially proposes to use centralization for
verifying distributed Java applications. Artho et al. [1] im-
proves the accuracy of centralization for such verification by
JPF. However, the implementation uses the outdated SERP
bytecode library [9], which makes it unable to work on
current Java applications.

Compared with previous work, we intend to build an
automatic centralization tool for a general-purpose analysis
of distributed applications. As resolving class conflicts is
essential for centralizing larger distributed applications, we
propose our solution and implement it in our centralization
tool. Our solution of startup and shutdown semantics does
not depend on specific tools, either. Although the large
state space of distributed applications limits software model
checkers to small cases, our general centralization approach
enables many existing dynamic analysis tools to analyze
larger distributed applications.

Other work on verifying distributed applications includes
net-iocache [2] and modeling the Java class loader [10],
both of which target JPF. Compared with the centralization
approach, net-iocache runs faster by sacrificing the com-
pleteness of verifying all execution traces. However, this
limits net-iocache to not being able to find some bugs that
centralization can.

Modeling multiple processes by using separate class load-
ers is proposed as a new feature in JPF v7 [10]. It models
class loaders to separate process name spaces. Currently,
JPF v7 is under development. We will compare it with our
centralization approach after it is released.

VII. CONCLUSION AND FUTURE WORK

In this paper, we advance centralization as a general
analysis framework for distributed Java applications. We
formalize and solve the class conflict to support centraliza-
tion on applications containing multiple versions of a given
class. We also propose a cleaner and complete solution for
shutdown semantics. We implement an automatic centraliza-
tion tool and validate it empirically. The experiments show
that our tool works correctly, and support the usefulness
of tool automation. The experiment using Java PathFinder
shows that some defects can be detected by analyzing the
centralized program but not without centralization.

Future work includes running experiments on various dy-
namic analysis tools, finishing the remaining implementation
of the proposed shutdown semantics, and optimizing the
class renaming algorithm.

ACKNOWLEDGMENT

This work was supported by Global COE and SEUT
dSecure-Life Electronicsc Program from MEXT, Japan.
Thanks also go to Nastaran Shafiei for her comments.

REFERENCES

[1] C. Artho and P.-L. Garoche, “Accurate Centralization for
Applying Model Checking on Networked Applications,” in
Proc. the 21st IEEE/ACM Int’l Conf. Autom. Softw. Eng.,
Washington, DC, USA, Sep. 2006, pp. 177–188.

[2] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and
M. Yamamoto, “Cache-based model checking of networked
applications: From linear to branching time,” in Proc. the
2009 IEEE/ACM Int’l Conf. Autom. Softw. Eng., Washington,
DC, USA, 2009, pp. 447–458.

[3] U. M. Borghoff and J. H. Schlichter, Computer-Supported
Cooperative Work: Introduction to Distributed Applications.
Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2000.

[4] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A code ma-
nipulation tool to implement adaptable systems,” in Adaptable
and extensible component systems, Grenoble, France, Nov.
2002.

[5] J. Gosling, B. Joy, G. Steele, and G. Bracha, Java(TM)
Language Specification, The (3rd Edition). Addison-Wesley
Professional, 2005.

[6] Java Platform, Standard Edition, V6 API Specification,
“http://docs.oracle.com/javase/6/docs/api/.”

[7] Java Runtime Analysis Toolkit, “http://jrat.sourceforge.net/.”
[8] JCarder, “http://www.jcarder.org/.”
[9] Serp, “http://serp.sourceforge.net/.”

[10] N. Shafiei and P. Mehlitz, “Modeling class loaders in java
pathfinder version 7,” SIGSOFT Softw. Eng. Notes, vol. 37,
pp. 1–5, Nov. 2012.

[11] S. D. Stoller and Y. A. Liu, “Transformations for model
checking distributed Java programs,” in Proc. the 8th Int’l
SPIN workshop on Model checking of software, New York,
NY, USA, 2001, pp. 192–199.

[12] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda,
“Model checking programs,” Autom. Softw. Eng., vol. 10, pp.
203–232, Apr. 2003.

