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Abstract

For software executing several threads in parallel, test-
ing is unreliable, as it cannot cover all thread schedules.
Model checking, however, can cover all possible thread in-
terleavings. Software model checkers can directly verify
an implementation, but typically cannot handle network in-
put/output operations, which most programs require. This
shortcoming can be addressed by a special model checker
designed for multiple processes, or by different kinds of
extensions and preprocessors for existing model checkers.
This paper surveys currently existing approaches and tools.

1. Introduction

Networked software is complex. It is often implemented
as a concurrent program, using threads [29] to handle mul-
tiple active communication channels. This introduces two
dimensions of non-determinism: Both the thread schedule
of the software, and the order in which incoming requests
or messages arrive, cannot be controlled by the application.
As software testing only covers one particular instance of
such a schedule, it is desirable to model check networked
software, to ensure that no schedules cause a failure.

Model checking explores the entire behavior of a system
under test by investigating each reachable system state [12],
accounting for non-determinism in external inputs, such as
thread schedules. Recently, model checking has been ap-
plied directly to software [3, 6, 10, 13, 15, 16, 30]. How-
ever, conventional software model checking techniques are
not applicable to networked programs. The problem is that
state space exploration involves backtracking. After back-
tracking, the model checker will again execute certain parts
of the program, and thus certain input/output (I/O) opera-
tions. However, external processes, which are not under
the control of the model checking engine, cannot be kept in
synchronization with backtracking.

Figure 1 illustrates the problem. In this example, two
threads write a message to their communication channel and

Thread 1 Thread 2
void run() {

conn1.write("1");
r1 = conn1.read();

}

void run() {
conn2.write("2");
r2 = conn2.read();

}

Figure 1. Example program communicating
with peer processes.
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Figure 2. State space exploration inside a
software model checker.

then read from it. Both communication channels interact
with external processes. Both threads run concurrently, so
any interleaving of their operations is possible. Their com-
bined state space is explored inside the model checker, as
shown in Figure 2. In that figure, write and read operations
are abbreviated by wi and ri, respectively, with i denot-
ing the thread ID. As can be clearly seen, execution of all
possible interleavings results in multiple backtracking oper-
ations, and each communication operation is repeated sev-
eral times. However, backtracking operations do not apply
to peer processes. This results in two problems:

1. The application being model checked will re-send data
after backtracking. This will interfere with the correct
functionality of external processes.

2. After backtracking, the application will expect external
input again. However, an external process does not re-
send previously transmitted data.
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Single-process model checkers are therefore incapable of
directly handling actions that affect external processes. To
address this problem, four approaches are possible:

1. Use stubs to model I/O operations. I/O operations are
replaced by stubs that return the same result as the
original operation under a given input.

2. Lift the power of a model checker from process level
to multiple processes. This way, the entire state of all
involved processes is backtracked.

3. Transformation of all involved processes into threads.
The transformed, “centralized” program consists of a
single process and can be executed in a conventional
software model checker.

4. Usage of a special I/O cache that hides backtracking
operations in the model checker from external pro-
cesses. The cache serializes the communication traces
in the state space exploration tree.

This paper is organized as follows: Section 2 introduces
software model checking. Section 3 surveys existing ap-
proaches and tools; Section 4 concludes.

2. Software Model Checking

Model checking [12] explores the entire behavior of a
system by investigating each reachable system state. In a
classical model checker, both the system and the properties
to be checked are translated into finite state machines. Prop-
erties are negated, such that the analysis of the state space
can detect whether undesired states are reachable. The sys-
tem starts from an initial state, from which iteration pro-
ceeds until an error state is reached, or no further states
can be explored. Whenever a non-deterministic choice is
reached, all possible successor states are investigated. This
iteration can also be performed in the reverse manner, where
iteration starts from the set of error states and proceeds
backwards, computing whether one of these error states is
reachable from an initial state.

Model checking is commonly used to verify algorithms
and protocols [18]. However, more recently, model check-
ing has been applied directly to concrete software sys-
tems [3, 6, 10, 13, 15, 16, 30]. Software model check-
ing investigates the effects of all possible interleavings be-
tween threads and processes involved. The number of in-
terleavings is exponential in the number of operations and
threads, resulting in a state space explosion for any non-
trivial system. For more efficient system exploration, a
number of partial-order reduction techniques have been pro-
posed which all have in common that they do not analyze
multiple independent interleavings when it can be deter-
mined that their effect is equivalent [9, 18]. In software

verification, model checking has the advantage that it can
automatically and exhaustively verify systems up to a cer-
tain size. This contrasts with manual techniques such as
theorem proving, which can analyze infinite-state systems
but requires human intervention [25].

Properties typically verified in model checking include
temporal properties, typically expressed in linear temporal
logics [26] or similar formalisms such as state machines [8].
For software, typically checked constructs include pre- and
post-conditions such as specified by contracts [21] and as-
sertions. Furthermore, model checkers for modern pro-
gramming languages typically regard uncaught exceptions
and deadlocks as a failure.

3. Approaches and Tools

Different approaches exist that mediate between the
model checker and its environment (external processes).

3.1. Stubs

Stubs model I/O operations as open operations that re-
turn the same result as the original operation under a given
input, or a superset of the original result. This abstraction is
elegant but may generate spurious behaviors.

Figure 3 shows how stubs are used in a client-server ex-
ample. The main process (either client or server) runs in the
model checker. Any library functions that interact with the
environment are replaced with stubs [6, 10, 14]. The diffi-
culty lies in modeling the environment. In order to produce
accurate results, stubs should approximate the behavior of
the environment well. At the same time, stubs should be
kept simple, lest the complexity of the stubs approaches the
complexity of the original program to be abstracted from.
However, an abstract stub usually cannot model the out-
come of a given operation precisely, and has to allow for a
range of possible results. This introduces non-determinism
into the system, and may produce spurious outcomes, which
are generated by the abstract model but not feasible in the
actual (concrete) implementation.

For checking program behavior on a higher level, this
approach can be quite successful. High-level properties in-
clude robustness of resource management under different
outcomes of non-deterministic actions [6, 10, 20]. The ex-
act data transmitted does not have to be modeled for verify-
ing that property. Instead, only a limited range of outcomes,
usually success or failure, is assumed. In the extreme case,
all control flow constructs dealing with different outcomes
are modeled non-deterministically, removing any data in-
volved. In modern programming languages such as Java,
control flow includes exceptions. I/O operations either pro-
duce a normal outcome, or throw an exception [17]. In con-
ventional testing, the network usually is available, making
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Figure 3. Model checking a client-server sys-
tem using stubs.

intermittent network failures difficult to test. A stub model
focusing on this aspect can find faults in exception handlers
that cannot be found through conventional testing [20].

Stubs normally do not interact with the environment.
They typically represent a small subset of the functionality
of the peer process. While results returned by stubs are usu-
ally an approximation, it may be possible to record results
of a given test case, as long as operations are determinis-
tic. Recent work has gone into automating this process by
a tool that captures communication in a corresponding stub
program [7]. For recording, the test run is first executed in
a normal environment with all peer processes involved. In-
formation captured in that test run is then replayed by the
stub when the target application is run in a model checker.1

Stubs can also be approximated iteratively by starting
with a very coarse (abstract) version. This version then
generates a spurious behavior, which is recognized as such
when verifying it on the concrete code. Spurious behav-
iors are gradually eliminated in a process called abstraction
refinement. Tools automate such abstraction refinement us-
ing a detailed description of the environment and a theorem
prover to generate the initial abstract behavior [6, 10, 16].

3.2. Multi-process Model Checkers

Multi-process model checkers allow all involved pro-
cesses to be the target of model checking (see Figure 4).
As the entire state of all involved processes is backtracked,
any effects of inter-process communication are backtracked
as well. I/O is wrapped by special functions and occurs en-
tirely inside the model checking environment. The general-
ity of the approach makes it very difficult to exploit program
properties such as heap symmetry for partial-order reduc-
tion. For analysis of Java programs, the Java virtual ma-
chine itself would have to be run inside the model checker,
which is beyond the capability of current implementations.

1In this work, stub creation is performed by an add-on tool that builds
on an environment originally designed for centralization [7]. Because of
the dual nature of this tool, it is mentioned again in Section 3.3.

Process

Model checker

Process Process

Figure 4. Architecture of a multi-process
model checker.

Multi-process model checkers typically consist of sev-
eral synchronized backtracking execution environments.
Processes are executed and backtracked each in their own
execution engine, typically implemented using the GNU
debugger (GDB). I/O operations are replaced with tool-
specific functions, and each processes of a system is run
inside a separate debugger that backtracks as needed [11,
16, 23]. These tools have been used to verify system-level
communication programs.

Multiple processes can also be controlled by lifting the
power of the model checker to operating system level. This
way, target processes are allowed to use OS resources or
to communicate with other processes. In the preliminary
work [24], each target process is run under and controlled
by GDB, and the operating system is virtualized using user-
mode Linux. GDB processes communicate with an inter-
nal monitor running inside user-mode Linux, which com-
municates with the external monitor running outside user-
mode Linux. The external monitor stores and restores full
OS states using the snapshot functionality of ScrapBook
for User-Mode Linux (SBUML). Consequently, target pro-
grams can be verified including their system operations,
without any modification.

However, at the time of the preliminary work, many re-
strictions concerning user-mode Linux and GDB existed.
GDB could only control a single thread with the command
interface, so only single-threaded target programs could be
analyzed. Thus was not possible to run the Java Virtual Ma-
chine under user-mode Linux [24].

In addition, in order to make the approach realizable,
many kinds of information needed for model checking have
to be supplied. First, breakpoints should be appropriately
set at target programs where nondeterminism might arise
or processes might be blocked. This setting of breakpoints
could in principle be automated using static analysis. Sec-
ond, some additional functions should be added to target
programs for inspection by GDB. They include functions
to judge whether two internal states of a target process are
equivalent, and functions to tell whether a target process is
blocked or not. In particular, the former functions should
take various properties of a process state, such as heap sym-
metry, into account, and should be written by hand. Target
programs need not be modified, but these functions should
be linked with target programs and called by GDB.
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Figure 5. Centralization example: Transfor-
mation of three processes into one process.

3.3. Centralization

Centralization executes all processes to be analyzed
inside the same model checker. Applications are pre-
processed and transformed into a single-process program.
The original processes are executed by a wrapper process
as threads, inside a single-process model checker (see Fig-
ure 5). Certain program transformations are required to
maintain separate address spaces for the centralized pro-
grams [27]. These transformations can easily be performed
manually for typical applications.2 Centralization covers
all possible application behaviors but suffers from the state
space explosion problem.

Centralization by itself takes care of executing multiple
processes as a single process, but does not handle the under-
lying network communication. To address this, communi-
cation is modeled through a library that provides network-
like data streams. Connection management via accept
and connect also has to be modeled correctly. Recent
work provided an implementation that correctly simulates
TCP/IP connections [1].

Tool support for program centralization of Java programs
is available, transforming either Java source code [27], for
Java versions up to 1.3, or Java bytecode [1]. The latter
tool can be augmented with another transformation simulat-
ing I/O communication failures through fault injection [4].
When applying centralization to Java programs, the target
software does not require any adaptations. The centraliza-
tion tool works at a post-compilation stage, transforming a
given set of Java applications into a target Java program.
The resulting code can directly be executed in any Java run-
time environment, such as the standard virtual machine, a
debugger, or a Java model checker [1, 4, 27].

Other work has implemented in a similar way, but uses
manual instrumentation of communication operations [7].

2Multi-process applications typically have to be abstracted prior to
model checking for performance reasons, making the resulting simplified
application relatively small.
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Figure 6. Cache layer architecture.

The tool presented in that work has a mode in which stubs
representing peer processes can be run as independent en-
tities (constituting very small centralized processes). If
events generated are embedded in the target instead, the re-
sult is a stub-based system with the same performance ad-
vantage of that approach [7].

As centralization processes the program before it is
model checked, any software model checker supporting the
given platform can be used. Centralization is also possible
for non-Java programs and should be straightforward to im-
plement for similar platforms such as C# [22]. For program-
ming languages that allow pointers to stack data [19, 28],
separation of the address spaces of centralized processes
may be more difficult. If centralization is implemented en-
tirely as code transformation, then network functionality
can also be provided in the target language. The tool ap-
proach is therefore the same on other platforms.

3.4. I/O Cache

Unlike approaches that execute multiple (possibly trans-
formed) processes inside the model checker, the I/O cache
approach only runs a single process in the model checker.
A special I/O cache hides backtracking operations in the
model checker from external processes [2, 5]. Commu-
nication with external processes is physically executed on
the host until backtracking occurs. After backtracking, pre-
viously observed communication data is fetched from the
cache (see Figure 6). This cache is aware of backtracking
operations in the model checker [2, 5].

In the I/O cache approach, any communication data sent
to or received from the network is kept throughout the en-
tire state space exploration and is not subject to backtrack-
ing [5]. However, the communication position inside each
data stream is local to the process running inside the model
checker. It is therefore backtracked whenever that process
is backtracked by the model checker [2]. In addition to that,
peer processes are polled after each communication event to
see whether a response has been sent. This information is
used to pair requests and responses correctly, such that the
right amount of data is provided after backtracking [2]. This
idea is applicable to networked software where communica-
tion content does not depend on the global application state.
Most programs, such as web servers, can be verified with
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this I/O cache, as the response to a request only depends on
the request itself, not on previous requests [2].

The I/O cache returns the same communication data that
a previously generated stub [7] would return. Unlike stub
usage, the caching approach combines recording communi-
cation and replaying it in one module, eliminating the need
for generating an intermediary stub program. Furthermore,
it even allows model checking of applications where exter-
nal processes are not running on a platform that the model
checkers supports [2]. The I/O cache approach is fully auto-
mated and can also be adapted to other model checkers and
programming languages.

Recent work has implemented the I/O cache approach
for the Java PathFinder model checker (JPF) [30]. For that
platform, execution of a program inside the model checker
does not require any previous transformation or customiza-
tion. However, a start script that controls all processes in-
volved (outside the model checker) has to be provided. That
script has to ensure that client processes do not execute be-
fore the server is ready to accept requests. Furthermore, for
some applications, the time it takes for a process to respond
to a message may have to be customized [2].

3.5. Summary

Table 1 gives an overview of all the tools cited in this
paper that are capable of handling inter-process communi-
cation. The strengths and weaknesses of each approach can
be summarized as follows:

1. Stubs provide an efficient and elegant abstraction of
I/O operations. They either have to be written manu-
ally, recorded from a previous test run, or generated
through abstraction refinement. Abstraction refine-
ment requires a complex tool chain [6, 7, 10, 16].

2. Multi-process model checkers are very powerful. Ex-
isting implementations are currently limited by the in-
terface of the GNU debugger [11, 16, 23, 24]. Fur-
thermore, it is extremely difficult to implement library
functions or partial-order reduction algorithms such as
heap symmetry in such a model checker.

3. Centralization transforms multiple processes into a
single process [27]. The approach is elegant and can
be fully automated [1]. However, model checking the
resulting system suffers from scalability problems, as
the number of threads in the resulting system is very
large [2].

4. The I/O cache approach is fast, elegant, and applicable
to a large family of programs [5]. However, programs
that do not fit into the paradigm of a service architec-
ture cannot be verified with this approach [2].

4. Conclusions

Due to the inherent complexity of networked applica-
tions, software model checking is tremendously useful for
verification. However, input/output operations affect pro-
cesses outside the model checker. As external processes
are not subject to backtracking, the process being model
checked cannot communicate directly with its environment.
Four solutions to this problem exist: External processes
can be replaced by stubs; a special model checker that can
support multiple processes can be used; multiple processes
can be transformed into a single process; or a special in-
put/output cache can provide a bridge between backtracking
communication operations in the model checker and exter-
nal processes.
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