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Abstract: With today’s importance of distributed applications, their verification and analysis are still challenging.
They involve large combinational states, interactive network communications between peers, and concurrency. Al-
though there are some dynamic analysis tools for analyzing the runtime behavior of a single-process application, they
do not provide methods to analyze distributed applications as a whole, where multiple processes run simultaneously.
Centralization is a general solution which transforms multi-process applications into a single-process one that can
be directly analyzed by existing tools. In this paper, we improve the accuracy of centralization. Moreover, we ex-
tend it as a general framework for analyzing distributed applications with multiple versions. First, we formalize the
version conflict problem and present a simple solution, and further propose an optimized solution to resolving class
version conflicts during centralization. Our techniques enable sharing common code whenever possible while keep-
ing the version space of each component application separate. Centralization issues like startup semantics and static
field transformation are improved and discussed. We implement and apply our centralization tool to some network
benchmarks. Experiments, where existing tools are used on the centralized application, prove the usefulness of our
automatic centralization tool, showing that centralization enables these tools to analyze distributed applications with
multiple versions.
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1. Introduction

With today’s importance of distributed applications, analyzing
them is still challenging. Multiple processes run concurrently and
use asynchronous communication over a network. Activities of
processes can be arbitrarily interleaved and no two executions of
the same application need to be identical. Such nondeterminism
from concurrency makes the run-time behavior of distributed ap-
plication difficult to understand, predict, debug, and verify. This
problem becomes more exacerbated if multiple threads inside a
process are involved, creating concurrency inside a process as
well as between processes. Considering most non-trivial appli-
cations nowadays are implemented as distributed, networked ap-
plications where multiple processes are combined into a com-
plex system, analysis and verification of such distributed applica-
tions are very important. Although many existing tools like Java
PathFinder (JPF) [20], Java Interactive Profiler (JIP) [19] work on
single-process applications, they do not support multi-process ap-
plications. If powerful analysis tools that support a single process
were available to multiple processes, development and analysis
of distributed systems would become easier.

Process centralization [1], [17] is a solution to enable exist-
ing tools to analyze multi-process applications without a version
conflict. It transforms a multi-process application into a sin-
gle process one with the equivalent runtime behavior. Figure 1
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Fig. 1 Process centralization example.

shows the centralization of a distributed application containing
three components: one server and two clients. Before centraliza-
tion, each component runs as a process. Inside the server pro-
cess, three threads run concurrently. Thread main creates two
Worker threads to separately serve each connected client. After
centralization, all processes are wrapped as threads and run as
one process. Centralization was initially proposed to verify dis-
tributed applications exhaustively. However, the large combina-
tional states limit possible analysis to small applications. We pro-
pose using centralization for a general (not necessarily exhaus-
tive) analysis of distributed applications.

Centralization enables many distributed applications to be
available to existing tools and reduces the difficulty for analyzing
them. For example, in a single-process debugger, a distributed
application cannot be paused in a single step; when centralized
this becomes possible. Other dynamic verification tools such as
Java Race Detector [14] and JCarder [10] detect data races and
deadlock bugs for single-process applications. However, they
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do not support multi-process applications. Meanwhile, profiling
tools [8], [19] are useful for gathering the runtime performance of
distributed applications. They only provide methods to separately
analyze each component. This brings additional overhead by cre-
ating and destroying multiple VMs and lacks scalability. Because
a centralized application runs on one single VM, these profiling
tools can collect all the related profiles and scale to larger dis-
tributed applications. Finally, visualization tools [11], [18] are
useful for understanding the runtime behavior of applications.
They extract call graphs of distributed applications automatically,
which helps to understand how its multiple components interact.
Centralization makes it possible to visualize distributed systems
also in this case.

There are currently no automatic centralization tools available.
Previous centralization tools [1], [17] are outdated and unable to
work on current Java applications. Previous works mainly use
centralization to verify multi-process applications with JPF [20].
Certain aspects of the implementation such as system startup and
shutdown are targeted to JPF and not able to work with other anal-
ysis tools [1]. When moving beyond JPF, larger systems can be
supported, making tool automation all the more important.

Furthermore, one essential centralization issue, the problem of
classes with multiple versions in different components, is not ad-
dressed by previous work. This commonly occurs in component-
based systems, where different parts are developed independently
and thus may use different versions of component classes. Lack-
ing the support of such features essentially limits the application
scope of centralization.

In this paper, we improve centralization as a framework for an-
alyzing distributed applications with multiple versions. We for-
malize the class version conflict issue and address it with a sim-
ple algorithm and an optimized algorithm. Our technique shares
common code whenever possible while keeping the version space
of each application separate. In addition, centralization issues like
process startup semantics and static fields are also refined and dis-
cussed. The solution is implemented in an automatic centraliza-
tion tool. Experiments prove the effectiveness of tool automation,
showing that the centralized application is more efficient in terms
of run time and memory compared with the counterpart without
centralization. Experiments with JPF demonstrate that out ap-
proach enables existing tools to verify a distributed application
with multiple versions, showing that some defects can be found
with centralization that are missed with single-process analysis.

The remainder of this paper is organized as follows. Section 2
summarizes centralization issues. Section 3 formalizes issues
with multiple versions of a class, and explains our solution to
resolve a version conflict in centralization. Section 4 explains the
implementation of the centralization tool. Section 5 illustrates the
experiments by using our tool. After discussing related work in
Section 6, Section 7 concludes and discusses future work.

2. Centralization Issues

The term distributed application contains three aspects [3]:
firstly, it means an application whose functionality is split into a
set of cooperating, interacting functional units. Each unit runs as
a process that has its internal state (data) and operations to manip-

ulate the state. Secondly, these functional units can be assigned
to different machines. A single machine, however, may host sev-
eral functional units at the same time. Finally, the functional units
communicate with each other through a network.

On modern operating systems, distributed applications are im-
plemented as a system using multiple processes. They usually
run on different hosts and communicate over a network. Pro-
cess centralization transforms such a multi-process system into a
single-process one, while preserving the semantics of the com-
bined system. The transformed system runs on a single host, and
all communications between the transformed processes are inter-
nalized.

This paper is concerned with the centralization of programs
written in Java [7], a popular programming language that is de-
signed to facilitate the creation of networked applications. The
concepts presented in this paper generalize to other platforms us-
ing threads, shared memory, and inter-process communications,
although their implementation may differ. A centralized program

is the program after centralization. Centralization must preserve
the semantics of original program. For each execution in the
original program, there exists an execution trace in centralized
program with the same behavior, and vice versa. To satisfy this
requirement, the following issues must be resolved.

(1) Version separation. A component-based system consists
of multiple components (including the application main compo-
nent and library components), where each component is devel-
oped and managed independently. In software maintenance and
evolution, each component of a component-based system needs
to be continually changed over its lifetime to improve its func-
tional capability to satisfy the users’ requirements [13]. This may
result in conflicts between different versions of the same prod-
uct that are active at the same time. The problem becomes more
exacerbated in a distributed system, where installations are du-
plicated over many peers. Each application is asynchronously
updated in a “rolling update.” This creates multiple versions of
the components in a system, including both their used libraries
and application code. Dumitraş et al. [4], [5] point out that most
update failures are not caused by a software defect, but by ver-
sion conflicts during the update procedure where the main code
or library code changes.

Before centralization, each component application runs as a
process (a functional unit in the distributed system) on its own
Virtual Machine (VM) and locally holds its own version of each
class. Because a centralized program runs on a single VM and
each class is loaded and defined once, naive centralization may
cause some processes to work incorrectly, if multiple versions of
a class with the same name exist. We formalize the version con-
flict problem and address it by using two approaches: a simple
solution and an optimized solution. They are explained in Sec-
tion 3, with experimental evaluations in Section 5.

(2) Memory space separation. In a multi-process system, the
operating system separates the memory spaces of all processes.
This separation is absent in the centralized program but can be
emulated by program transformation. In Java-like systems, mem-
ory space separation is only necessary on static data, which exists
once per VM. Static fields and class descriptors are shared as a
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single instance of a given class. Accessing these data by different
processes without proper separation in the centralized program
would cause data races. Therefore, centralization should keep the
memory space of each process separate. Previous work addresses
these issues; we discuss our refinement in Section 4.

(3) Runtime behavior: Startup and shutdown. Centralization
wraps each process of an original program as a group of threads
and starts them in the same way before the centralization. We
denote each group of such threads by a centralized process which
has the same runtime behavior as its corresponding process be-
fore centralization. Multiple centralized processes run on a sin-
gle VM after centralization. To manage different centralized pro-
cesses, Stoller [17] proposes a solution by defining the additional
class CentralizedProcess. Each application in the original pro-
gram is wrapped as a CentralizedProcess by centralization. This
class holds a unique field as the process ID, which is used to iden-
tify each application at runtime.

The main issues are to start centralized processes in a required
order and to preserve the shutdown semantics after centralization.
For the analysis of network applications, ensuring that a server is
initialized before clients try to connect is important. Otherwise,
the client exits prematurely after failing to connect to the server.
Previous work [1] solves this issues by modeling the network li-
brary. That solution is specific to JPF and difficult to generalize.
We discuss our solution in Section 4.

Shutdown semantics [1] concern the termination of the central-
ized application. In the Java standard library, invoking meth-
ods like Runtime.exit and Runtime.halt [9] terminates the en-
tire VM: the first one runs any previously registered shutdown

hooks, and tasks that free resources during application shut-
down; the second one halts the VM abruptly, without freeing
any resources [7]. Each process in the original program runs
on a different VM. If one process calls Java library meth-
ods Runtime.exit and Runtime.halt to terminate, other processes
could continue running. After centralization, all processes are
wrapped as threads and run on one single VM. A process that
invokes a shutdown method terminates the entire VM and all the
other processes. This changes the shutdown behavior of the orig-
inal program. Centralization should preserve the shutdown be-
havior of the original program by proper transformation. This
involves two issues:
( 1 ) If a process exits, it only terminates its own threads.
( 2 ) All resources held by the process are released and the shut-

down hooks are executed if necessary.
The second issue is discussed by Ref. [1]. The resources for

each centralized process need to be registered at a few key func-
tions that allocate resources. Similarly, a shutdown hook should
also be registered as a wrapped thread for each centralized pro-
cess through code instrumentation. Whenever a centralized pro-
cess calls Runtime.exit to exit, it invokes all the registered shut-
down hooks and closes all the resources of the process that are
not closed. We discuss the first issue in Section 4.

3. Version Separation

The usage of slightly different versions of components is com-
mon in component-based systems. Centralization is incorrect

without properly separating the class namespace for each com-
ponent application. In this section, we first formalize the version
separation problem and propose a simple algorithm to solve this
issue. Furthermore, we propose an optimized algorithm that is
more effective in sharing common code and saving storage.

3.1 Class Abstraction and Classification
A Java class can be uniquely identified by its name (includ-

ing package name) and implementation. For a class cl, we use
cl.name and cl.code to denote the class name and its implementa-
tion, respectively. Given two classes cl1 and cl2, cl1 is equivalent
to cl2, denoted by cl1 = cl2, iff cl1.name is identical to cl2.name

and cl1.code is identical cl2.code.
Definition 1 A project is a set of classes. Given a project p,

we write #p as its cardinality, and denote a class cl in a project p

by p.cl. No two classes in a project have the same name.
A project presents an abstract view of the class repository of

a component. The code repository of a component application is
composed by multiple components, each of which can be repre-
sented by a project. Furthermore, the combination of all compo-
nents can be represented by one centralized project by merging
small projects. This paper considers the code repository of each
component application in a distributed system as one project.
Two component applications may use the code from either the
same project or different projects.

Definition 2 Let p be a project. We define NAME(p) =
{cl.name|cl ∈ p} as the set of all class names in p. For a class
name cln ∈ NAME(p), we define GetClass(p, cln) = p.cl, where
p.cl.name = cln, as a function get the class named cln in the
project p. Similarly, let P be a set of projects. We define
NAMES(P) = ∪p∈PNAME(p) as the set of all the class names
in P, and P ↑cln = {p ∈ P|cln ∈ NAME(p)} as the set of all those
projects that contain the class named cln.

Definition 3 Let p be a project, and cln1 and cln2 be two
class names. Project renaming substitution p[cln1/cln2] is de-
fined as a project in which cln1 in p is substituted for cln2, in-
cluding both class names and their references in the code. A re-
naming substitution p[cln1/cln2] for p is a normal substitution iff
cln1 � NAME(p) and cln2 ∈ NAME(p).

Definition 4 Given two projects p1 and p2, p1 is equivalent
to p2, denoted by p1 = p2, iff they can be renamed to the identical
projects by normal renaming substitutions.
It is not difficult to prove that it is reflexive, symmetric, and tran-
sitive.

Definition 5 Project centralization of a project set P trans-
forms P into one single project pcentra such that ∀p ∈ P.∃p′ ⊆
pcentra. p = p′. We denote all the centralized results of P that
satisfy such a condition by CENTRA(P).

Project centralization requires preservation of class name and
version space for each project. Each project consists of sev-
eral small projects, each of which represents the code reposi-
tory of a component in the component application. Each com-
ponent application that runs on the its original project can also
run on the centralized project with the same runtime behavior.
The projects (representing the code repositories of multiple com-
ponent applications) to be centralized can either be the same or
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different in their internal components.
The term process centralization is defined as follows.
Definition 6 Process centralization is the transformation of

multiple processes into a single one with the equivalent runtime
behavior.

Different from project centralization, process centraliza-
tion [1], [17] simulates runtime behavior of multiple component
applications by a single application with equivalent runtime be-
havior by program transformation. They assume that all the ap-
plications run under the same project, where each class has only
one version and no version conflict occurs.

On the other hand, project centralization considers sharing the
common code repository of component applications to save stor-
age while keeping their version space of each application separate
so that no version conflict occurs. We propose using project cen-
tralization to enable process centralization to analyze component
applications with multiple versions of the same component.

Definition 7 Given two classes cl1 and cl2 in a project p,
cl1 depends on cl2, denoted by cl2 → cl1 if cl1.code references
cl2.name. For a class cl ∈ p, we define DEPENDS(cl, p) = {cl′ ∈
p|cl→ cl′} to be the set of all classes in p that depend on cl.

The class dependency represents the class reference relation
in a project. Given two classes cl1 and cl2 with the relation
cl1 → cl2, if cl1 is renamed, all its references in cl2 must also
be renamed to preserve the dependencies.

Let P be a set of projects to be centralized. To separate the
version space of each project, we classify the classes of a project
p ∈ P into the following categories:
( 1 ) Unique Class. UNIQUE(p, P) = {cl ∈ p|∀q ∈ P. (p � q ⇒

cl.name � NAME(q)). A unique class of project p ∈ P is the
class has a unique name in p, and this name does not occur
in any other projects.

( 2 ) Conflict Class. CONFLICT(p, P) = {cl ∈ p|∃q ∈
P. (cl.name ∈ (NAME(p) ∩ NAME(q)) ∧ p.cl �
GetClass(q, cl.name)}. The name of a conflict class
appears in multiple projects including p, but with different
implementations.

( 3 ) Shared Class. SHARED(p, P) = {cl ∈ p|∃q ∈ P. (cl.name ∈
(NAME(p) ∩ NAME(q)) ∧ p.cl = GetClass(q, cl.name)}. A
shared class of p shares both its name and implementation
with other projects.

3.2 Example
Figure 2 (a) shows an example for centralizing three projects.

The edges in a project represent the class dependencies. In a
project, we draw a directed edge from class cl1 to cl2 if there
exists a dependency relation cl1 → cl2. Project1 and Project2
share most of the classes except different versions of class C are
used. Compared with Project2, Project3 holds a different version
of class Main and a new class Unique.

In this example, classes A and B are shared classes in all
projects. The cases of classes C and Main are more complex:
the class C is a conflict class in Project1, but it is both a shared
and conflict class in Project2 and Project3. Similarly, class Main

is a conflict class in Project3, and it is both a shared and conflict
in Project1 and Project2.

Fig. 2 Project centralization example.

3.3 Project Centralization and Class Renaming
Consider a general scenario of centralizing processes using the

project set P = {p1, p2, . . . , pn}, where one or more processes start
from each project. Direct centralization of these processes is in-
correct if ∃pi ∈ P.CONFLICT(pi,P) � ∅. We therefore propose
to make project centralization before process centralization. Af-
ter project centralization of P, all its projects are represented by
one single project, where each class has only one version and no
version conflicts exist for process centralization. The main issue
of project centralization is to properly separate class version and
name space for each project. To scale up to practical applications,
we adopt the class renaming approach.

A trivial solution would entail renaming all classes, duplicating
all code for each project. However, code duplication would cost
more storage to represent the code repository and consumes large
runtime memory by loading more classes into Java VM. This
causes such an approach difficult to scale up to larger applica-
tions. For example, when analyzing a distributed system contain-
ing 20 peers, duplicating all projects from these peers is not nec-
essary as they can reuse some shared classes with proper transfor-
mation, saving both storage and runtime memory. Therefore, it is
beneficial to share the common class codes. Our goal is to resolve
the class version conflict where necessary while sharing equiva-
lent classes among projects. Figure 2 (b) shows a project central-
ization result without duplicating the code that can be shared. The
trivial solution produces 13 classes. However, it is only necessary
to keep one version of class A after project centralization. Simi-
larly, we can keep two versions of class B and C. One version is
shared by Project2 and Project3, and the other version is used for
Project1. In Fig. 2(b), we need only 9 classes.
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3.4 The Simple Project Centralization Algorithm
The main issue of resolving version conflict is to properly sep-

arate the class version for each project. This entails renaming
the conflict classes and all their references to separate their ver-
sions. However, such renaming may cause shared classes not
shareable anymore, as their internal references to other classes
are renamed differently across projects. Consider the example
in Fig. 2: Project1 and Project2 can share class B before project
centralization. They have to rename their class C to a different
name to solve version conflict, though. After that step, B cannot
be shared anymore as it references C. Therefore, it is necessary
to rename the conflict classes and propagate their renaming effect
in each project.

In this section, we propose a simple project centralization al-
gorithm as shown in Fig. 3. The input of this algorithm is a set of
projects to be centralized. The output is the renamed projects con-
taining no conflict classes, and each of them is equivalent to the
project before renaming. Given a project set P with #P = n, the
algorithm iterates and renames each of the first (n − 1) projects.
We use the worklist w for traversing the class dependency rela-
tion, and the queue q for storing the classes needing renaming,
respectively.

For each project, the algorithm first calculates all the conflict
classes of the current project and put them into q for renaming.
For each conflict class, its renaming effect then propagates to all
the shared classes. The renaming effect fully propagates until the
worklist w becomes empty. After finding all the classes needing
renaming, renameProject(q, pi) in Fig. 3 performs normal renam-
ing substitution on project pi according to the renaming queue
q.

This algorithm is guaranteed to terminate. Each class of a
project pi is added to the worklist at most once and only those
classes that are either shared or conflicting can be added to the
worklist. The output condition is also guaranteed to hold. There
is no class version conflict because all conflict classes and their

1: procedure SimpleProjectCentralization
Input: A project set P = {p1, p2, . . . , pn}
Output: A renamed project set P′ = {p′1, p′2, . . . , p′n},

where ∀i ∈ {1, . . . , n}.pi = p′i ∧ Conflict(p′i , P
′) = ∅

2: for i← 1, n − 1 do
3: P← P/pi

4: worklist w← ∅
5: queue q← ∅
6: w← Conflict(pi,P)
7: � add the conflict classes of pi into worklist
8: q← w � add each element of w to q for renaming
9: while w � ∅ do

10: Pick and Remove cl from w
11: for all cl′ ∈ depends(cl, pi) do
12: if cl′ ∈ Shared(pi,P)
13: ∧ cl′ � q then
14: q.enque(cl′)
15: w← w ∪ {cl′}
16: end if
17: end for
18: end while
19: p′i = renameProject(q, pi)
20: � make normal renaming substitution of pi for all classes in q
21: end for
22: P′ ← ∪n

i=1 p′i
23: end procedure

Fig. 3 Simple project centralization algorithm.

propagation effect are resolved. In addition, projects before and
after renaming are equivalent by normal substitution.

For complexity, we consider analyzing a project set P with
#P = n which includes m class names in total. All input projects
are internal data structures that represent class raw files. The class
classifications and dependency relations are pre-calculated during
the preprocessing phase. The complexity for checking the exis-
tence of a class in set Conflict(p, P) or Shared(p, P) is O(m). The
dependency relation set DEPENEDS(cl, pi) for class cl in project
pi contains at most (m−1) classes (excluding the class self depen-
dency). In the worst case, the complexity for traversing the class
dependency relation in the loop of worklist is O(m2). Therefore,
the complexity for calculating the renaming decision of project
set P is O(m2 ·n). After class renaming, no two projects hold con-
flict classes and all projects can be centralized into one project by
taking the union of all their classes.

This algorithm correctly separates the version space of all input
projects. However, it does not always output a satisfactory solu-
tion. The optimized solution separates the project version space
while sharing classes whenever possible. A class in a project can
be both a conflict class and a shared class. This algorithm does
not distinguish a conflict class and a class that is both shared and
conflicted. It simply renames the class as long as it is a conflict
class.

Consider the example in Fig. 4 (a). P is a project set to be cen-
tralized, where P = {p1, p2, p4, p3} and each project pi ∈ P has
one class A. There exist two versions of A in P, where p1, p2

hold one version, and p3, p4 hold the other version. We represent
different versions of a class by different colors. The simple algo-
rithm renames all A’s in p1, p2, p3, but not in p4, resulting three
classes after project centralization as shown in Fig. 4 (b). How-
ever, the optimized solution produces only two classes (the two
versions of A): one is shared by p1 and p2 and the other is shared
by p3 and p4 as shown in Fig. 4 (c).

The limitation of this algorithm is caused by a lack of version
linkage of classes among all projects. Suppose there exists a class
A in P′ = {p′1, p′2, . . . , p′n} with n versions. Theoretically, renam-
ing any (n − 1) versions of A can resolve version conflict. How-
ever, properly selecting the (n − 1) versions for renaming is a
difficult problem. Whenever a class is renamed, its effects prop-
agate in the project, which may result in more classes that must
be renamed. To approach an optimal solution, we need to search
all possible version combinations of classes in all projects for re-
naming. When centralizing a project with m names each with n

Fig. 4 Simple algorithm example.
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versions, the complexity for searching the optimal combination
of class renaming actions is O(nm). Algorithm in Fig. 3 approxi-
mates this by simply renaming all classes that are both shared and
conflicting.

3.5 The Optimized Project Centralization Algorithm
To obtain an optimized solution, we adopt a P-graph to rep-

resent the project set to be centralized. Compared to the sim-
ple project centralization algorithm that propagates the renaming
effect by using the classification of a class, the graph based al-
gorithm propagates version constraint by using set partition and
conflict edges.

Definition 8 A partition of a project set P is a set of disjoint
project sets T = {t1, t2, . . . , tk} satisfying:
( 1 ) ∀ti, t j ∈ T.i � j⇒ ti ∩ t j = ∅.
( 2 )
⋃k

i=1 ti = P.
( 3 ) ∀t ∈ T. t � ∅.

Let T be a partition of project set P. We write T as the project
set by ignoring its partition. That is T = P.

Definition 9 Let T = {t1, t2, . . . , ti} and Q = {q1, q2, . . . , q j}
be two partitions of a project set P. T is finer-equal than Q de-
noted by Q �p T iff ∀q ∈ Q.∃S ⊆ T. S = q. We define the least
upper bound of T and Q as T�pQ = {t∩q|t ∈ T∧q ∈ Q∧t∩q � ∅},
which is also a partition of P.

Definition 10 Let P be a project set. A partition struc-

ture PS in P consists its name, denoted by PS.name where
PS.name ∈ NAMES(P), and a partition of P ↑PS.name , denoted
by PS.partition. We write 〈PS.name,PS.partition〉 for the parti-
tion structure.

Definition 11 Let PS1 and PS2 be two partition structures.
We define partial order PS1 �ps PS2 iff PS1.name = PS2.name

and PS1.partition �p PS2.partition. We define the least up-
per bound of PS1 and PS2, where PS1.name = PS2.name, as
PS1 �ps PS2 = 〈PS1.name,PS1.partition �p PS2.partition〉.

We define the P-graph of a project set P which uses the project
set partitioning to represent the version constraint relations.

Definition 12 A P-graph 〈N, E〉 of a project set P is consisted
of a node set N of partition structures, and an edge set E with
each edge e = (l,m) ∈ E (an edge from node l to m) associ-
ated with a project set denoted by e.pset = {p ∈ (P ↑l.name ∩
P ↑m.name )|GetClass(p, l.name) → GetClass(p,m.name)} such
that:
( 1 ) NAMES(P) = {n.name|n ∈ N}.
( 2 ) ∃e ∈ E. e = (m, n) where m, n ∈ N iff e.pset � ∅.

Let G = 〈N, E〉 be a P-graph of project set P. Each node n ∈ N

is a partition structure 〈n.name, n.partition〉 that represents all the
versions of the class named n.name in P. Its partition n.partition

keeps the version relation of these classes so that if two projects
are in the different sets in n.partition, they hold a different version
of the class named n.name. We denote all successors of a node n

in G by Succ(n) = {m|(n,m) ∈ E}. For two nodes m, n ∈ N, the
existence of an edge e = (m, n) from m to n entails that the classes
named m.name and n.name have a dependency relation in some
project p ∈ P, and p occurs in both P ↑m.name and P ↑n.name .
Note that (m, n) and (n,m) represent different edges in E.

Figure 5 (a) shows the corresponding initialized P-graph to the

Fig. 5 Optimized algorithm example.

project set in Fig. 2 (a). The larger node is the partition structure
node, inside which its name and partition are shown. For exam-
ple, the node named A with its partition indicates that its name A

exists in three projects P1, P2 and P3. They all occur in the same
set of partition, meaning all these projects have the same version
of class named A. The label of an edge e in a P-graph shows its
e.pset. For example, the edge from node B to Main indicates that
classes named B and Main have a dependency relation in both P1

and P2, but not in P3.
Correct project centralization requires keeping the version

spaces of each project separate by renaming. Renaming a class
also entails renaming all references to it accordingly. We define
conflict edges to capture the effect that different versions of a class
are not separated due to the version separation of another class
that this class depends on.

Definition 13 Let G = 〈N, E〉 be a P-graph of P and e ∈ E

be an edge where e = (m, n) and m, n ∈ N. The edge e

is a conflict edge if ∃p, p′ ∈ e.pset. p � p′ ⇒ ((∃ti, t j ∈
m.partition. i � j ⇒ p ∈ ti ∧ p′ ∈ t j) ∧ (∃tk ∈ n.partition. p ∈
tk ∧ p′ ∈ tk)). We write IsConflictEdge(e) as a function to check
whether e is a conflict edge in G. It returns true if e is a conflict
edge, otherwise it returns false.

An edge e = (m, n) in a P-graph of P is a conflict edge, if there
exist two projects p and p′ in e.pset such that they occur in a dif-
ferent set of m.partition but the same set of n.partition. A conflict
edge captures cases where classes must be renamed to separate
the version space of each project. For example, the dashed edges
in Fig. 5 (a) is a conflict edge, where P1 and P2 occur in different
sets in the partition of node C, but in the same set in the partition
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of node B.
A conflict edge e = (m, n) can be resolved by refining

n.partition into a finer partition such that e becomes a non-conflict
edge. After a conflict edge is resolved, it may introduce additional
conflict edges. To correctly separate the version space of each
project, we need to ensure no unresolved conflict edges remain.

We propose an optimized project centralization algorithm by
resolving conflict edges as shown in Fig. 6. The main proce-
dure OptimizedProjectCentralization first initializes a P-graph
by collecting all the class names, creating nodes and edges from
an input project set (line 3–18).

1: procedure OptimizedProjectCentralization
Input: A project set P = {p1, p2, . . . , pn}
Output: The centralized project pcentra, where ∀p ∈ P.∃p′ ⊆ pcentra.p = p′
2: pcentra ← ∅
3: PGraph← ∅
4: nameSet ← collectName(P) � Collect all class names
5: PGraph.nodeSet ← ∅
6: for all name ∈ nameSet do � Build a node for each name
7: PGraph.nodeSet← PGraph.nodeSet

∪ {createNode(name, P)}
8: end for
9: for all src ∈ PGraph.nodeSet do � Add edges

10: for all targ ∈ PGraph.nodeSet/src do
11: tempSet ← {p|p ∈ (P ↑src.name ∩ P ↑targ.name )
12: ∧GetClass(p, src.name)→ GetClass(p, targ.name)}
13: if tempSet � ∅ then
14: (src, targ).set = tempSet
15: Pgraph.edgeSet ← Pgraph.edgeSet ∪ {(src, targ)}
16: end if
17: end for
18: end for
19: components←connectionCalculation(PGraph)

� Calculate all connected components of PGraph
20: for all component ∈ components do
21: resolveConflict(component)

� Resolve version conflicts for each connected component
22: for all node ∈ component do
23: pcentra ← pcentra ∪ renameByPartition(node)

� All projects in the same set in node.partition share one version
24: end for
25: end for
26: end procedure
27:
28: function resolveConflict(P-graph graph)
29: SCCs← calculateSCC(graph)

� Calculate the strongly connected components
30: TopoSCCs← calculateTopologicalOrder(SCCs)
31: for SCC ∈ TopoSCCs do

� Visit each SCC in topological order
32: resolveIncomingConflictEdge(SCC, TopoSCCs)

� Resolve the incoming conflict edges from other components
33: worklist w← getAllInternalConflictEdges(SCC)

� add all internal conflict edges of SCC into w
34: while w � ∅ do � Iteratively resolve all conflict edges inside the

component
35: Pick and Remove edge from w, where edge = (m, n)
36: if isConflictEdge(edge) then
37: n.partition← n.partition �p (m.partition ↑edge.pset )

� Resolving a conflict edge by refining n.partition according to
m.partition and edge.pset

38: for all l ∈ Succ(n) ∧ l ∈ SCC do
39: if isConflictEdge((n, l)) then
40: w← w ∪ {(n, l)}
41: end if
42: end for
43: end if
44: end while
45: end for
46: end function

Fig. 6 Optimized project centralization algorithm.

To reduce the steps of resolving conflict edges, the algorithm
calculates the connected components of the whole graph, and re-
solves each component separately. The conflict edges of each
connected component are resolved by function ResolveConflict.
To reduce the calculations of dependency cycles in the connected
components of the P-graph, we compute the Strongly Connected

Component (SCC) of the graph and resolve them in a topologi-

cal order so that each SCC is only handled once. For each SCC,
we first resolve the conflict edges from other components to the
current SCC. Then, we resolve internal conflict edges iteratively
by refining the partitions of nodes (lines 31–45) until no conflict
edges exist.

The initialized P-graph of the project set in Fig. 2 (a) is shown
in Fig. 5 (a). Refining the partition of B resolves the conflict edge
from C to B, and it produces another conflict edge from B to Main

as shown in Fig. 5 (b). The final result of this algorithm is shown
in Fig. 5 (c). For classes A and Unique, it outputs one version.
It outputs two versions of classes B and C, and three versions of
class Main, which is also the optimal solution.

This algorithm is guaranteed to terminate. Consider a P-graph
G = 〈N, E〉 built from project set P = {p1, p2, . . . , pn} with its
node set N = {n1, n2, . . . , nm}. We denote the total number sets
in all partitions of N by SET� =

∑m
i=1 #ni.partition. After resolv-

ing each conflict edge of G, SET� increases and SET� reaches its
maximal value when no conflict edge exists. At each iteration of
the algorithm, it either terminates or resolves some conflict edges,
which increases SET�. The maximum of SET� is the finite value
∑n

i=1 #pi. Therefore, the algorithm is guaranteed to terminate in
at most (#E · n) iterations. Each of these steps to resolve a con-
flict edge costs O(n2). To analyze the complexity of resolving
the initialized P-graph G = 〈N, E〉 of P, we need to combine the
complexity of calculating connected components, strongly con-
nected components, topological sorting of G, and the complex-
ity of resolving all conflict edges. Therefore, the complexity is
O(#E · n3 + #N) in total.

4. Implementation

We implement our project centralization solution as a four-pass
transformation tool. The centralization tool transforms the Java
bytecode by using the ASM bytecode library [12]. Before cen-
tralization starts, the centralizer parses a user-defined script into
a Java startup class file which defines how each process starts.
The centralizer transforms all the classes of all projects as de-
scribed in the script, as defined in previous work [1], [17]. After
transformation, the centralized program can be executed from the
synthesized startup program.

4.1 Class Statistics
The first pass reads in the classes from all projects and builds

their internal data structures accordingly. Some statistical infor-
mation like the number of class files, the size of each project,
and the number of static fields, is calculated in this pass. This
provides the user with information about the number of modifi-
cations during transformation.

c© 2014 Information Processing Society of Japan 7



IPSJ Online Transactions Vol.7 1–13 (Jan. 2014)

4.2 Project Centralization
The second pass implements project centralization. It reads

the data structure built in the first pass and performs project cen-
tralization. It provides options to use either the simple algorithm
in Fig. 4 or the optimized algorithm in Fig. 6. After project cen-
tralization, all projects are represented by one single centralized
project data structure for further transformation.

Currently, this phase does not support transforming dynami-
cally computed class names used by reflection. Reflection [7] is
widely used to dynamically load Java classes. For example, Java
standard library methods like Class.forName(String classname)
and ClassLoader.loadClass(String classname) load a class with a
computed name at runtime. To support dynamic class loading by
reflection, a project centralization tool needs to keep a renaming
map (renaming decision) for each project to be centralized. Our
tool implementation to support reflection is left as a future work.

4.3 Static Fields and Class Descriptors
The third pass transforms static fields and class descriptors as

Refs. [1], [17]. For static fields, we transform them into arrays
and add one extra dimension if the field is an array. We refine
the initialization semantics of static fields by analyzing and trans-
forming the static initializer. We also do not transform static final

fields if they store the immutable data. The static final fields that
store mutable data are transformed because they can still cause
data races when multiple threads access such data. We also trans-
form static fields that are generated by the Java compiler (syn-
thetic fields). Previous work transforms all static fields without
such distinctions.

For class descriptors used as locks, they cannot simply be
duplicated like static fields [9]. We adopt the proxy lock ap-
proach [1]. Whenever a class descriptor is used as a lock, we
use the proxy lock instead. The usage of a class descriptor as a
lock or for reflection is distinguished by analyzing instructions of
the bytecode. If the class descriptor is on the top of current stack
frame and the next instruction is monitorenter, it uses the class
descriptor as a lock to enter the critical region. Otherwise, the
class descriptor is used for reflection which should not be trans-
formed.

4.4 Startup and Shutdown Semantics
The last pass implements the startup and shutdown semantics.

For the startup semantics, the main issue is to ensure the cen-
tralized processes start up in the desired order such that depen-
dencies between them are satisfied; for example, a server needs
to be ready to accept connection before its clients are started. A
previous implementation [1] is specialized for Java PathFinder by
modeling the Java network library. It does not work for other
tools than Java PathFinder. Our solution limits the code instru-
mentation to a few key network functions. Whenever a compo-
nent application tries to connect to a port, it creates an external
process to check the port status. If the port is open, it continues to
connect, otherwise it waits until the port is open. This approach
does not modify the Java network library and can be applied to
tools other than Java PathFinder.

Shutdown semantics require that a process that calls Java li-

brary methods Runtime.exit and Runtime.halt to terminate, only
terminates all its threads while other processes may continue run-
ning. This requires killing all its threads belonging to the central-
ized process. In Java, a simple way for a thread to terminate itself
is to throw an exception of type ThreadDeathException. How-
ever, killing other threads in Java is difficult [9]. The interruption
mechanism [6] is a clean way to kill a thread in Java, which needs
the collaboration between the thread that sends the signal and the
one that receives the signal. Currently, our implementation along
this approach is in progress, and tool automation support is left as
future work.

5. Experiments

To evaluate the effectiveness of our proposed centralization ap-
proach, we perform three experiments on existing Java network
benchmarks by using our centralization tool. This section ex-
plains the experimental results. All experiments were run on an
Intel Core i7 Mac 2.4 GHz with 8 GB of RAM, running MAC
OSX 10.8.3 and Oracle’s Java VM, version 1.7.0 21.

5.1 Comparisons of Centralization Transformation
To compare the transformation performance of the two pro-

posed algorithm, we apply our centralization tool with their corre-
sponding algorithm options to several existing Java benchmarks.
To measure the effectiveness of a project centralization algo-
rithm in sharing common classes, we define the Sharing Fac-

tor (S.F.) as the ratio of shared classes to output classes: S .F. =

#ClassShared/#OutputClass. The larger of its value, the more
classes are shared by the renaming algorithm. When S.F = 0, no
class is shared by the algorithm; when S.F = 1, all classes of each
project are shared.

The experiment first centralizes each project with one instance
for each version. Table 1 summarizes some statistical results, and
also shows the transformation time and memory consumption of
our tool. Column Bytec. Size lists the size of each benchmark
in bytecodes. The data from column 3 to 6 shows that the class
version conflict is a common problem in all benchmarks. Our
centralization supports the transformation of projects with class
version conflicts. The class number for each benchmark in col-
umn Cl.(*.class files) indicates that some classes are removed, or
new classes are added during version changes. The number of
unique classes in column Uni. shows the details of such changes.
Column Shared Name shows that the project version update does
not change many class names. Most class names remain the same;
some classes modify their implementations. These numbers are
listed in columns Sa. and Dif., respectively. Column Re. lists the
number of classes that are renamed for each group by our renam-
ing algorithm. When centralizing two projects, there does not
exist a class that is both shared and conflict. Therefore, both pro-
posed algorithms produce the same solution. For each benchmark
in this experiment, #ClassShared = #Shared Name − #Re. and
#Output Class = Σ#Classes − #ClassShared. The trivial renam-
ing approach renames all classes and shares no classes, its S.F is
therefore 0. The experimental results show that both proposed al-
gorithms are more effective in sharing common code, with a value
of S.F between 0.01 and 0.97.
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Table 1 Experimental results of centralization.

Proj. versions Bytec.
Size
[KB]

#Cl. #Uni.
Shared Name

#Re. S.F.
#Static
Field

(#Trans.)

#Static
Sync
Method

Simple
Centra.

Optimized
Centra.

#Sa. #Dif. time
[s]

mem.
[MB]

time
[s]

mem.
[MB]

Edtftpj-2.3.0 352.34 106 1
80 25 49 0.34

223 88 10
1.26 96.3 1.55 101.6

Edtftpj-2.4.0 390.49 113 8 240 94 10
Ganymed-ss2-

build209
304.88 115 0

94 21 42 0.42
124 44 3

1.15 92.6 1.37 93.0

Ganymed-ss2-
build210

345.22 133 18 257 45 3

Jsmpp-2.0 456.93 201 0
191 10 134 0.78

407 204 2
1.20 104.2 1.74 115.7

Jsmpp-2.1 458.35 202 1 407 204 2
Kryonet-2.08 205.46 79 8

12 59 67 0.02
20 4 0

1.03 92.9 1.19 87.5
Kryonet-2.20 25.157 104 33 23 4 0

Mime4j-core-0.7.1 153.64 61 0
60 1 1 0.97

118 59 1
0.63 77.4 0.75 86.4

Mime4j-core-0.7.2 153.63 61 0 115 59 1
Xnio-2.0.0CR2 248.92 72 5

21 46 65 0.01
46 46 0

0.91 93.2 1.10 89.6
Xnio-2.1.0CR1 253.94 74 7 46 46 0

Netx-0.4 240.35 91 12
37 43 53 0.17

109 69 0
0.91 81.7 1.19 97.1

Netx-0.5 246.13 88 9 110 179 0

Columns Static Field and Static Synchronized Method show the
number of static fields and static synchronized methods. This in-
dicates that manually searching and modifying these fields need
lots of effort even for two projects. Automatic tool support for
centralization is therefore very useful.

Columns Simple Centra. and Optimized Centra. present the
time and memory consumption of code transformation when
adopting the corresponding algorithm in the tool. We run each
experiment setting 50 times and take the average of result. In this
experiment, we found that the simple algorithm runs faster, and
consumes less runtime memory in most benchmarks.

To further compare the effectiveness of the two proposed al-
gorithm of sharing common code and transformation cost, we
run the experiment to centralize projects of each benchmark with
a different number of instances per version to observe the S.F.

value, transformation time, memory consumption, and the stor-
age to save the centralized results. Each experiment is repeated 50
times and the averaged results are summarized in Table 2. To in-
terpret the data, we take the project centralization of Edtftpj-2.3.0
and Edtftpj-2.4.0 as an example. We have four settings, from cen-
tralizing one Edtftpj-2.3.0 and two Edtftpj-2.4.0 projects, to seven
instances of both Edtftpj-2.3.0 and Edtftpj-2.4.0. The tool trans-
formation performance of the two algorithm options is listed and
can be compared both vertically and horizontally. For the simple
algorithm, as the number of projects increases, its S.F. value de-
creases, which indicates that some classes are not shared as the
number of projects increases. The storage cost after project cen-
tralization increases, showing that it needs more storage to save
centralized result. The concrete project sizes after transformation
are shown in column 8 and 12, respectively. The optimized algo-
rithm is more effective in sharing common code (larger S.F. value)
and saving storage (less storage cost) than the simple algorithm
in each setting.

As the number of projects for centralization increases, the
transformation time and memory consumption of both ap-
proaches increase as listed in columns Time and Mem.. For the
transformation time, the simple algorithm is faster for centraliz-
ing small number of projects such as the first setting with one in-

stance of first version, and two instances of second version. Com-
pared with the simple algorithm, the optimized algorithm takes
more time to initialize the internal data structure and compute
the renaming decision. As the number of projects for central-
ization increases, the simple renaming algorithm produces more
classes to output, and it takes more time to store these files to
disks. The optimized algorithm takes the advantage of sharing
common code (outputting less classes) and runs faster to save the
centralized results. By making similar analysis, we can draw the
same conclusion for other benchmarks in Table 2. Therefore, the
optimized algorithm based tool is more effective in sharing com-
mon code and more efficient to store the centralized results.

5.2 Comparisons of Runtime Performance
The second experiment applies our tool on actual networked

applications to compare the runtime performance (including ex-
ecution time and memory consumption) of the centralized appli-
cations transformed by two proposed algorithms and the corre-
sponding one without centralization.

The networked applications used in this experiment are sum-
marized as follows :
• The Echo server sends all input back to client. The Echo

client is a test client that connects to the server and sends
predefined text to it (RFC 862).

• The Daytime Sever returns the current time back. The Day-
time client requests the current time from the server (RFC
867).

• The Chat server returns the input of one client to all con-
nected clients. The chat client is a test client that connects to
the server, sends predefined text to it, and disconnects after
having received a certain number of lines.

• The alphabet server returns the nth letter of alphabet, and the
client sends fixed requests.

All experiments of each setting are repeated 50 times (includ-
ing both centralization transformation and execution of the cen-
tralized application), and the averaged results are summarized in
Table 3. The column Bytec. Size lists project size of each compo-
nent application in a benchmark in bytecodes. Consider the Echo
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Table 2 Comparison of centralization transformation by two algorithms.

Proj. versions #N. Simple Optimized
S.F.
[%]

Time
[s]

Mem.
[MB]

Storage
[KB]

S.F.
[%]

Time
[s]

Mem.
[MB]

Storage
[KB]

Edtftpj-2.3.0 2.4.0 1 2 69.3 1.43 106.0 632.4 69.3 1.76 112.9 632.4
Edtftpj-2.3.0 2.4.0 3 3 43.0 2.25 138.9 1116.3 69.9 2.30 139.2 632.4
Edtftpj-2.3.0 2.4.0 5 5 31.1 2.49 162.8 1600.2 69.9 2.42 163.9 632.4
Edtftpj-2.3.0 2.4.0 7 7 24.4 2.76 169.7 2084.0 69.9 2.61 206.1 632.4

Ganymed-ss2-build209 build210 1 2 76.0 1.31 105.6 512.2 76.0 1.66 93.2 512.2
Ganymed-ss2-build209 build210 3 3 51.4 1.83 120.3 846.2 76.0 1.91 119.2 512.2
Ganymed-ss2-build209 build210 5 5 38.8 2.40 156.5 1180.2 76.0 2.15 162.6 512.2
Ganymed-ss2-build209 build210 7 7 31.1 2.46 171.1 1514.1 76.0 2.27 168.5 512.2

Jsmpp-2.0 2.1 1 2 89.4 1.42 110.1 542.8 89.4 1.78 106.6 542.8
Jsmpp-2.0 2.1 3 3 73.7 1.84 128.2 711.7 89.4 1.93 120.5 542.8
Jsmpp-2.0 2.1 5 5 62.7 2.09 129.8 880.6 89.4 2.07 143.7 542.8
Jsmpp-2.0 2.1 7 7 54.6 2.19 164.4 1049.4 89.4 2.19 156.6 542.8

Kryonet-2.08 2.20 1 2 58.1 1.09 100.7 453.3 58.1 1.40 118.1 453.3
Kryonet-2.08 2.20 3 3 32.1 1.88 123.8 851.9 62.6 1.88 113.2 453.3
Kryonet-2.08 2.20 5 5 22.1 2.40 144.3 1250.4 62.6 2.20 158.8 453.3
Kryonet-2.08 2.20 7 7 16.9 2.61 160.8 1649.0 62.6 2.34 163.7 453.3

Mime4j-core-0.7.1 0.7.2 1 2 98.4 0.66 74.4 159.9 98.4 0.79 85.3 159.9
Mime4j-core-0.7.1 0.7.2 3 3 95.3 0.82 88.5 172.3 98.4 0.92 91.2 159.9
Mime4j-core-0.7.1 0.7.2 5 5 92.4 1.08 90.7 184.8 98.4 1.19 95.1 159.9
Mime4j-core-0.7.1 0.7.2 7 7 89.7 1.32 106.1 197.3 98.4 1.33 101.9 159.9

Xnio-2.0.0CR2 2.1.0CR1 1 2 51.4 0.98 101.7 501.1 51.4 1.24 98.9 501.1
Xnio-2.0.0CR2 2.1.0CR1 3 3 26.6 1.67 121.1 992.1 54.9 1.53 121.4 501.1
Xnio-2.0.0CR2 2.1.0CR1 5 5 17.9 2.04 132.1 1483.2 54.9 1.77 130.7 501.1
Xnio-2.0.0CR2 2.1.0CR1 7 7 13.4 2.62 171.5 1974.2 54.9 1.91 158.3 501.1

Netx-0.4 0.5 1 2 57.5 1.04 91.5 457.1 57.5 1.32 97.1 457.1
Netx-0.4 0.5 3 3 36.0 1.75 116.3 823.2 65.4 1.74 120.0 457.1
Netx-0.4 0.5 5 5 25.2 1.84 126.6 1189.2 65.4 1.75 125.0 457.1
Netx-0.4 0.5 7 7 19.4 2.07 156.2 1555.3 65.4 1.99 158.1 457.1

Table 3 Runtime performance comparison.

App. Bytec.
Size
[KB]

#cl.
v.1

#cl.
v.2

Simple Optimized Without
Centralization

Tran.
Time
[s]

Trans.
Mem.
[MB]

Exce.
Time

[s]

Exce.
Mem.
[MB]

Stora.
[KB]

Tran.
time
[s]

Trans.
Mem.
[MB]

Exce.
Time
[s]

Exce.
Mem.
[MB]

Stora.
[KB]

Exce.
Time
[s]

Exce.
Mem.
[MB]

Echo 1 1 0.37 33.59 0.14 22.79 5.35 0.40 36.93 0.14 22.77 5.35 0.27 64.08
Server 2.17 2 2 0.37 34.15 0.14 23.33 6.82 0.41 37.37 0.14 23.02 5.35 0.41 107.82
cl.v1 1.49 4 4 0.38 34.34 0.14 24.15 9.79 0.42 37.93 0.14 24.02 5.35 0.68 195.14
cl.v2 1.49 8 8 0.41 36.27 0.14 25.33 15.70 0.43 38.96 0.14 25.27 5.35 1.22 369.93

Daytime 1 1 0.37 33.24 0.15 24.28 3.90 0.40 36.45 0.19 24.36 3.90 0.36 66.03
Server 1.63 2 2 0.38 33.94 0.16 25.13 5.05 0.41 37.32 0.19 24.88 3.90 0.53 109.60
#cl.v.1 1.16 4 4 0.38 34.27 0.16 26.19 7.34 0.41 37.41 0.19 26.19 3.90 0.87 196.93
#cl.v.2 1.16 8 8 0.40 35.66 0.16 28.62 11.92 0.43 38.56 0.19 28.30 3.90 1.53 371.78
Chat 1 1 0.37 33.91 0.14 23.18 8.39 0.41 37.66 0.14 23.13 8.39 0.63 64.23

Server 3.99 2 2 0.38 34.23 0.15 24.18 10.56 0.42 37.96 0.14 23.91 8.39 0.66 108.30
#cl.v.1 1.98 4 4 0.40 36.09 0.15 25.62 14.93 0.44 38.98 0.14 25.38 8.39 0.72 196.85
#cl.v.2 1.98 8 8 0.44 44.62 0.17 30.12 23.64 0.46 46.50 0.17 28.49 8.39 0.96 373.75
Alphabet 1 1 0.38 35.82 0.42 23.41 8.51 0.42 39.14 0.45 23.53 8.51 0.57 64.60
Server 3.20 2 2 0.40 36.14 0.62 23.83 9.99 0.43 39.19 0.65 23.77 8.51 0.94 108.81
#cl.v.1 3.46 4 4 0.41 38.23 1.02 24.67 12.97 0.45 41.23 1.06 24.54 8.51 1.69 196.95
#cl.v.2 3.46 8 8 0.45 52.45 1.83 26.37 18.91 0.49 57.29 1.87 26.04 8.51 3.14 373.60

Server Client benchmark as an example. The size of its server is
2.17KB, and the size of each client version is 1.49KB. For each
benchmark, we have four settings with different number of in-
stances for each version of a client. The total benchmark size
can therefore be calculated by taking size summation for all its
projects. The transformation time and memory of cost for each
algorithm are shown in columns Trans. Time and Trans. Mem..
Compared with benchmarks in Section 5.2, the benchmarks used
in this section are relatively small and the time cost to output the
centralized results is not an important factor. We find that the op-
timized centralization takes more time and memory to perform
transformation.

The execution time and memory cost of the centralized appli-
cation are shown in columns Exec. Time and Exec. Mem.. The
execution time is the averaged real time for program execution
and the memory consumption is the averaged peak memory con-
sumption of the whole VM. They are measured by using GNU
time tool. The storage refers to the memory cost (in KB) to store
all class files of the centralized application. The execution time
of the centralized applications does not show the significant dif-
ference for both transformation algorithms. The execution mem-
ory cost of the simple algorithm is slightly larger than the opti-
mized solution because it produces more classes, which need to
be loaded in to VM during runtime.
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The execution time and memory of the original program are
larger than for their centralized counterpart. Without central-
ization, each application runs on its own VM which produces
additional overhead. Each VM also loads its own version of
classes, many of which are duplicated among different applica-
tions. Therefore, the runtime and memory consumption grows
linearly with the number of applications.

After centralization, the runtime behavior of the centralized
distributed application can also be further analyzed by profiling
tools like JRAT [8], JIP [19], which shows more detailed runtime
behavior like the execution time of each centralized process, the
time consumption of each method and so on. Centralization en-
ables these tools to have a global view of the distributed system.
As the centralized approach simulates the behavior of distributed
application with less execution time and memory consumption, it
could also be helpful for stress testing to find runtime bottlenecks
earlier. We will leave this potential application of centralization
as future work.

5.3 Centralization with JPF
In Section 1, we have discussed that centralization enables ex-

isting tools to analyze multi-process applications. This section
presents our third experiment that applies centralization with Java
PathFinder v6 to verify distributed applications

To show that our centralization tool performs a correct trans-
formation, we repeat previous experiments using centralization
with Java PathFinder (JPF) [1]. These experiments were ran on
the Echo client/server, Daytime client/server, Chat Server and Al-
phabet client/server [2] as the test beds. These benchmarks are
the same as the ones that we used in Section 5.2. We first ap-
ply the optimized centralization approach on these benchmarks.
Each benchmark consists of one server and two clients with dif-
ferent versions. The verification results of JPF on the centralized
application is summarized in Table 4. Column Bytec. Size shows
the total size (including the server and two clients) of each bench-
mark, which can be calculated by summing up the size of each its
application presented in Table 3. For a small application like the

Table 4 Application of centralization to JPF.

App. Bytec.
Size
[KB]

JPF. Opt. Centra.

Time
[h:mm:ss]

Mem.
[MB]

Time
[s]

Mem.
[MB]

Echo Server
Client

5.15 00:00:07 328 0.40 36.92

Chat Server
Client

7.94 01:10:19 471 0.41 37.66

Chat Server
Client v.1

7.94 00:00:01 82 0.42 37.95

Daytime
Server
Client

3.95 00:00:58 343 0.40 36.76

Daytime
LeapSecond

6.13 00:00:14 366 0.41 37.00

Alphabet
Server Client

10.11 N.A. N.A. 0.43 39.20

Alphabet
Server Client

v.1
10.11 05:29:58 1023 0.42 39.28

Echo client/server system, JPF finishes its verification in 7 sec-
onds. Similarly, it takes about 1 minute for the Daytime case. The
other applications are much more complex. The chat server fea-
tures a high degree of internal concurrency because each request
is sent back to all currently connected clients. The state space
therefore contains all possibilities for concurrent client connec-
tions, with all possible permutations for establishing a connec-
tion, and for each message to be interleaved with other messages.
Because of this, it takes more than one hour to finish searching the
state space. The state space of Alphabet is even larger, because
each client is implemented using producer and consumer threads.
For the case with two active clients, this involves three threads
for each application: on the server side, the main thread and two
worker threads are used, and each client uses a main thread, a
producer, and a consumer thread. Because the state space is ex-
ponential in the number of threads, this case is too large for JPF
to handle: After 14 hours, it reports that it has run out of memory
(given 1 GB of heap space). However, while full verification is
out of reach for such applications, finding defects is still possible.

We cover that use case by seeding some faults into these bench-
marks. Chat. v.1 is the buggy version that has a race condition on
a shared array field that stores active connections. In the failure
scenario, one client disconnects, causing the server worker thread
handling that client to remove that entry. Because the “remove”
operation is not synchronized, another worker thread (serving a
different client) checks the contents of that field (which is non-
null at first) before using it. Between the check and use, the un-
synchronized remove operation sets the field to null, causing the
NullPointerException in the other worker thread later. In Daytime
LeapSecond, the server produces a time with leap second with
low probability, and one client checks the format of the time it
receives. The client crashes if the time format is incorrect. These
two bugs could be found by JPF quickly. However, when a large
number of threads is involved, it may take more time to find a de-
fect in a large state space. The benchmarks of Alphabet. v.1 con-
sists more than then threads (including a wrapper thread), and it
takes more than 5 hours to find the seeded bug. Previous work [1]
does not support centralizing distributed applications with mul-
tiple versions. The net-iocache approach [2] analyzes each peer
separately, which cannot find these bugs, either. By using our
centralization approach, we can successfully find these described
bugs.

6. Related Work

Stoller [17] initially proposes to use centralization for verify-
ing distributed Java applications in Java PathFinder (JPF). Artho
et al. [1] improve the accuracy of centralization and implement an
automatic tool for such verification by JPF. However, the imple-
mentation uses the outdated SERP bytecode library [15], which
makes it unable to work on current Java applications.

Compared with previous work, we intend to build an automatic
centralization tool for general purpose analysis of distributed ap-
plications. As resolving class conflicts is essential for centraliz-
ing larger distributed applications, we propose our solution and
implement it in our centralization tool. Our solution of startup
semantics does not depend on specific tools and transformations
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of static fields are also refined. Although the large state space of
distributed applications limits software model checkers to small
cases, our centralization approach enables existing dynamic anal-
ysis tools to analyze practical distributed applications.

Other work on verifying distributed applications in JPF in-
cludes net-iocache [2] and modeling the Java class loader [16].
Both solutions are specific to JPF. Compared with the centraliza-
tion approach, net-iocache analyzes a single peer of a distributed
application, which runs faster by sacrificing the completeness of
verifying all execution traces. However, this limits net-iocache to
not being able to find some bugs that centralization can.

Modeling multiple processes by using separate class loaders
is proposed as a new feature in JPF v7 [16]. It uses class load-
ers to separate process name spaces by a roundtrip collaboration
between JPF and host VM. However, the cost of this roundtrip
switch between JPF and host VM is expensive, which makes such
approaches difficult to scale up for larger applications. Additional
works on startup, shutdown behavior preservation, and modeling
network library are also necessary to verify distributed applica-
tions. Currently, JPF v7 is under development. We will compare
the class loader approach with our centralization approach after
JPF v7 is released.

7. Conclusion and Future Work

In this paper, we have advanced centralization as a general
analysis framework for distributed Java applications. We have
formalized and solved the class version conflict problem to en-
able centralization for applications containing multiple versions
of a given class. Based on the formalization, we have proposed
two approaches: a simple solution and an optimized solution. We
have also refined the centralization issues such as the startup or-
der control of peers, and the transformation of static fields. We
have implemented an automatic centralization tool and empiri-
cally evaluated proposed algorithms. The experiments show that
optimized algorithm is more effective to share common code. It
also shows that the centralized application has a more efficient
runtime performance in terms of execution time and memory than
its counterpart non-centralized one. The experiments using Java
PathFinder demonstrate that centralization enables such an exist-
ing tool to analyze distributed applications, showing that some
defects can be detected by analyzing the centralized program but
not without centralization.

Future work includes running experiments on various dynamic
analysis tools such as deadlock and data race detectors, and vi-
sualization tools for analyzing distributed applications. For the
code instrumentation, we plan to finish the remaining implemen-
tation of the shutdown semantics and extend our tool to support
reflection by using renaming map.
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