GRT: Program-Analysis-Guided Random Testing

Lei Ma*, Cyrille Artho†, Cheng Zhang§, Hiroyuki Sato*, Johannes Gmeiner‡ and Rudolf Ramler‡

* University of Tokyo, Japan {malei, schuko}@satolab.itc.u-tokyo.ac.jp
†AIST / ITRI, Japan c.artho@aist.go.jp
§ University of Waterloo, Canada c16zhang@uwaterloo.ca
‡Software Competence Center Hagenberg, Austria {johannes.gmeiner, rudolf.ramler}@scch.at

Abstract—We propose Guided Random Testing (GRT), which uses static and dynamic analysis to include information on program types, data, and dependencies in various stages of automated test generation. Static analysis extracts knowledge from the system under test. Test coverage is further improved through state fuzzing and continuous coverage analysis. We evaluated GRT on 32 real-world projects and found that GRT outperforms major peer techniques in terms of code coverage (by 13%) and mutation score (by 9%). On the four studied benchmarks of Defects4J, which contain 224 real faults, GRT also shows better fault detection capability than peer techniques, finding 147 faults (66%). Furthermore, in an in-depth evaluation on the latest versions of ten popular real-world projects, GRT successfully detects over 20 unknown defects that were confirmed by developers.

Keywords—Automatic test generation, random testing, static analysis, dynamic analysis

I. INTRODUCTION

A unit test for an object-oriented program consists of a sequence of method calls. Manually crafting test sequences is labor-intensive. Random testing automatically generates test sequences to execute different paths in a method under test (MUT) [25]. To optimize coverage of test cases, feedback-directed random testing (FRT) [42], [44] uses information generated in earlier iterations of test generation to direct latter iterations. Techniques adopting FRT, such as Eclat [42] and Randoop [44], incrementally build more and longer test sequences by randomly selecting an MUT and reusing previously generated method sequences (that return objects) as input to execute the MUT until a time limit is hit.

While having greatly improved random testing, FRT still suffers low code coverage in many cases [23], [55], [65], [66]. With the advancement of other testing techniques (e.g., search-based testing [16]), random testing and FRT seem to become less competitive [5], [50], [32], [19]. We show that combined static and dynamic analysis can guide random testing and significantly improve its effectiveness.

In this paper, we propose Guided Random Testing (GRT). GRT extracts both static and dynamic information from the software under test (SUT) and uses it to guide random testing. GRT works in two phases: (1) A static analysis over the classes under test (CUT) extracts knowledge, such as possible constants during execution, method side effects, and their dependencies. Based on these analysis results, GRT creates comprehensive pools of initial constant values and determines the properties of methods that form the basis of method sequence generation. (2) At run-time, the static information is intelligently combined with dynamic feedback, such as exact type information and test coverage information, to support demand-driven object construction and to guide testing to those MUTs with low coverage.

We implemented the proposed approach of GRT as a test generation tool based on the random testing framework of Randoop [44]. GRT is fully automatic and does not require input specifications or existing test cases. We perform a thorough evaluation of GRT on a large set of benchmarks containing 32 popular real-world applications. The experiments demonstrate the effectiveness of GRT with respect to code coverage, mutation score, and the ability to detect real, known and unknown defects in open source projects. Furthermore, GRT obtained the highest overall score in a contest of automatic test tools, competing with six other well-known testing tools [50], [36]. In summary, this paper makes the following contributions:

1) We propose GRT, a fully automatic testing technique using six collaborating components that extract and use static and run-time information to guide test generation.
2) We evaluate GRT on 32 real-world programs in terms of code coverage and mutation score, comparing it with major peer techniques (i.e., Randoop [44] and EvoSuite [19]) by using multiple time budgets and scenarios.
3) We investigate the defect detection ability of our proposed technique on real bugs in Defects4J [31], [32].
4) We perform an in-depth investigation of the usefulness of GRT in detecting new, previously unknown bugs on ten widely used open source projects. GRT successfully found 23 unknown (and now confirmed) bugs.

This paper is organized as follows: Section II provides relevant background information and presents an overview of GRT. Section III describes each of GRT’s components in detail. Section IV shows the evaluation results. Section V compares GRT with related work and Section VI concludes and discusses future work.

II. BACKGROUND AND OVERVIEW

A. Random Testing

The general process of software testing consists of three major steps: creating test inputs, executing tests, and checking test outputs. Test automation techniques aim at automating one or more of these steps.

A software under test is often called an SUT for short. Similarly, class and method under test are abbreviated to CUT and MUT, respectively. Testing an MUT with method signature \(m(T_{in1}, v_1, T_{in2}, v_2, \ldots, T_{inn}, v_n) : T_{out} \) requires creating objects with types of \(T_{in1}, \ldots, T_{inn} \) as the inputs of \(m \), and...
the execution of \(m \) returns an object with type \(T_{\text{out}} \). The returned object can be further used as input to test another method that requires an argument of type \(T_{\text{out}} \). A method sequence in testing consists of a sequence of statements \(m\text{Seq} = \{ s_1, s_2, \ldots, s_n \} \), where each \(s_i \in m\text{Seq} \) is either an assignment statement \(v_{\text{out}} = v_{\text{in}} \) or method invocation statement \(v_{\text{out}} = m(v_{\text{in}_1}, \ldots, v_{\text{in}_n}) \) that invokes \(m \) with inputs \(v_{\text{in}_1}, \ldots, v_{\text{in}_n} \) and assigns the output to variable \(v_{\text{out}} \).

In the context of testing object-oriented programs, test inputs are either primitive values or objects with particular states. To construct useful object states, object-oriented testing often starts with a set of primitive values, and uses them as arguments for specific constructors or methods. In this way, the object states are not directly specified as a set of (primitive) values, but created through the combination of initial values and the execution of method sequences. Objects obtained from a method sequence can be used as input for other methods. When using such an approach, method sequences are conceptually equivalent to input objects.

It is usually impossible to exhaustively enumerate all possible initial values and combinations of method calls. Various methods, such as systematic white-box testing and search-based testing, are proposed to select or create a relatively small number of initial values and method sequences. One of the early ideas is random testing [25], which feeds the SUT with randomly generated inputs. It is easy to use, straightforward to automate, and scalable. Random testing has been found effective in detecting program errors [15], [12], [41], [44]. However, randomness without additional guidance is not optimal in practical settings, where testing resources are often limited. A number of techniques have been proposed to improve the effectiveness of random testing using extra information, such as run-time feedback, to control the test generation process, while allowing certain degrees of randomness [44], or to study method sequence patterns from manually written test cases to guide random test generation [65].

B. Guided Random Testing

GRT leverages knowledge extracted from the software under test to guide each step of run-time test generation. As shown in Fig. 1, the overall process of GRT begins with extracting constant values from classes under test through a lightweight static analysis. The extracted constant values are used throughout the entire process as “seeds” to create complex object states. Furthermore, a static purity analysis (see Section III-B) categorizes all MUTs into pure and impure methods. The result of the purity analysis is used to generate unseen object states efficiently. The third static analysis focuses on dependencies between parameter types of methods (input types) and return types of methods (output types). The purpose is to identify the types of objects that are essential for testing MUTs. Since exact types may be determined only at run-time, GRT also performs dynamic analysis to capture type dependencies.

GRT’s run-time phase is executed in two or more iterations. In each iteration, run-time information is collected to guide subsequent iterations. The first step of each iteration is selecting a method to be tested from all MUTs in the method pool. GRT guides the method selection using code coverage information obtained during the test execution of previous iterations. For the execution of the selected MUT, GRT chooses method inputs from two object pools. Method inputs are maintained in the form of generated method sequences. The main object pool contains method sequences that have been successfully executed in previous iterations, while the secondary object pool contains method sequences generated on demand. When selecting input objects, GRT takes the cost of creating each object (i.e., the cost of executing the corresponding method sequence) into account. Costs are extracted from executions in previous iterations. After the necessary inputs have been selected, GRT combines MUTs with their inputs to generate new method sequences. These method sequences are executed to test the SUT. The execution completes the current iteration of the run-time phase. GRT continues with further iterations.
until certain stop criteria (e.g., test coverage) are met or the test time budget is exhausted.

GRT consists of six collaborative components, each of which is briefly described in Table I. We use the component names shown in Table I for brevity. The components closely work together as they extract useful static and dynamic information at specific points and then pass it to other components to facilitate their tasks. The overall effectiveness of GRT results not only from the individual components, but also from their orchestration.

Mutual enhancements between different components are summarized in Fig. 2. An arrow from one component to another signifies that the former enhances the latter; a double arrow (shown in blue) shows mutual benefits. Constant mining improves the diversity of the initial object pool by using constants extracted by static analysis. Impurity boosts the effect of constant mining through input fuzzing to create objects with more diverse states. Elephant brain further diversifies the input object types by using dynamic type information to find objects that cannot be generated using static type information alone. Detective constructs necessary objects that cannot be created from the original fixed MUT pool on demand. Orienteering accelerates the overall testing speed of GRT and makes the effect of the other components more apparent. Finally, Bloodhound intelligently selects MUTs that are not well covered. Upon covering more code of an MUT, more program states are reached, which potentially creates more diverse objects to cover even more code. The next section presents each component in detail.

III. PROGRAM ANALYSIS TECHNIQUES OF GRT

A. Constant Mining: Automatic Constant Extraction

Primitive types (booleans, numbers, characters, and strings) are the basis of creating complex objects. However, values chosen purely at random often fail to satisfy branch conditions. Consider the example from class PatternOptionBuilder in Fig. 3: Branches of method getValueClass are not covered by Randoop [42], as Randoop does not start with the required predefined primitive values, and is unable to derive the right values that satisfy these branch conditions at run-time. Although manual constant selection is helpful in covering such branches (e.g., as an option in Randoop), it requires much human effort.

To obtain relevant input values without incurring too much overhead, we perform a lightweight static analysis, called constant mining. Our key observation is that many useful constant values are used as instruction operands. Constant mining extracts constants from the classes under test and performs constant propagation and constant folding [40] to compute input values as candidates for the initial value pool.

Practical software usually contains a large number of constants, and a constant may only be related to specific branches. Simply selecting the extracted constants as inputs (at random) for all MUTs is of little help to cover specific branches. In addition, putting irrelevant constants in the value pool can increase the overhead for test sequence generation and decrease the overall performance. Therefore, we use the extracted constants on two levels: on a global level (among all classes) and on a local level (a constant is only used for the class containing it).

For global usage, we prioritize the extracted constants by weighting them according to their frequency. The weight is computed based on a modified version of term frequency-inverse document frequency (TF-IDF), which is often used to measure the importance of a term in a set of documents [37].

In the context of constant mining, we treat each class of the SUT as a document and each extracted constant as a term resulting in the weight

$$\text{tf-idf}_c(t, D) = \text{tf}(t, D) \times \log \frac{|D| + 1}{|D| + 1 - |d \in D : t \in d|}$$

Here, tf(t, D) represents the frequency of a constant t occurring in a set of classes D. |D| is the total number of classes in the SUT, and |d \in D : t \in d| is the number of classes that contain the constant t. The formula favors a constant if it is used more frequently and in more classes. Each constant has the chance to be picked, although the selection probability is lower for a constant with smaller weight.

Some constants are used locally as they may be only relevant to methods of a class that contains the constants. In this case, we register each extracted constant for the classes containing it, and select the constants by a predefined probability (noted as p_{const}) as inputs for MUTs of the corresponding class. To obtain even more relevant values, we also use state fuzzing (see Section III-B).

B. Impurity: Purity-Based Object State Fuzzing

In order to generate sequences with a broad variety of object states, we randomly alter (or fuzz) the states of existing input objects and pass the fuzzed results to the MUT. We handle primitive numbers based on a Gaussian distribution and non-primitive objects based on method purity analysis.

1) Primitive Value Fuzzing: Primitive inputs are either extracted by constant mining or from method sequence execution results at run-time. To cover a wider range of inputs, we use a heuristic: given values are already close to satisfying some of the branch conditions. When a primitive number c is selected as an input, we adopt a Gaussian distribution to probabilistically fuzz its value and use the altered result as input. Specifically, we use the original value of c and a predefined constant as the mean value μ and standard deviation σ, respectively. We use a Gaussian distribution because it creates new values following our heuristic in that it gives higher probabilities to generate values closer to μ (68.3% of fuzzed values probabilistically lie in [μ−σ, μ+σ]), while still generating values distant from μ.
To fuzz a string value, we randomly choose a string operation among inserting a character, removing a character, replacing a character, and taking a substring of the given string.

2) Purity-Analysis-Based Object State Fuzzing: To test a method m_i, GRT selects the input objects of m_i from the previously generated sequences stored in the object pool. To obtain inputs with more diverse object states, we fuzz non-primitive objects by identifying and using methods that have side effects that alter the state of the receiver instance, method arguments, or (global) static fields.

Method purity analysis [54] classifies MUTs into pure and impure methods. Methods without side effects are pure, and methods with side effects are impure. Only impure methods can change the state of an object [54]. While invoking pure methods is useful to check object states, selecting such methods often creates long and redundant sequences where object states stay unchanged, slowing down overall growth of coverage. Therefore, impure methods are favored over pure methods in order to frequently mutate object states to satisfy more branch conditions.

Given an input object o_i of type T_i, we perform static purity analysis to gather all impure methods that can change the state of an object (reference) of type T_i. Among these impure methods, we randomly select a method $m(T_1 o_1, \ldots, T_i o_i, \ldots, T_n o_n)$ at run-time, and invoke m on o_i to fuzz the state of o_i (each of the impure methods can be selected multiple times to fuzz different input objects). Since m may also require other input types, we first search and reuse such objects from the method sequence of o_i, and select the remaining missing objects from the object pool. The fuzzed object of o_i is then passed as input to test the target method. For example, when testing class List, impure methods such as add(element) and remove(element) are used to fuzz a List object l for more states. Static [54], [58], [26] and dynamic [59], [64] purity analysis techniques exist. We adopt a static technique [26] to avoid additional overhead at run-time.

C. Elephant Brain: Dynamic Input Sequence Management

Subtyping is pervasive in object-oriented programs. An object reference obj of type T can be assigned to another reference of its super type T' such as $T'' \text{obj}' = \text{obj}$, which makes the usage of the object referenced by obj conform to the interface of T''. Such an assignment brings benefits of simplifying the interface by allowing diverse implementations through dynamic binding. However, it poses a challenge to test case generation, since the exact (run-time) type of an object may not be the same as its declared type. This limits many existing automatic testing techniques that adopt a static type-based method sequence management [12], [42], [44], [65].

In the example shown in Fig. 3, branch coverage in method createVal requires both suitable primitive values and a class descriptor returned by getValueClass method. However, static type management stores the object o returned by getValueClass only as the type Object according to its declaration. An instance of the type Object cannot be used as the input for createVal that requires the argument of the type Class, unless it is aware that the dynamic type of o is compatible with (or can be used as) the type Class and the type cast is performed on o to Class explicitly before using it as the input of createVal. Without the exact type management, many branches (e.g., line 20, 24) in the method createVal cannot be covered, although instances that are able to cover these branches do exist.

GRT stores all successfully executed method sequences in its object pools (see Fig. 1), which can return objects as further inputs to test MUTs. To improve the effectiveness of input object selection, we manage the objects using their run-time types. This increases the type diversity of generated objects (method sequences), and thus the coverage of methods that depend on the exact type of their inputs.

When outputting the generated sequences as test cases, we compare the static type of each method return value with its dynamic type, adding explicit type casts where necessary. Otherwise, the generated tests may fail to compile, because the static types of method parameters (including the receiver) do not match the dynamic types of the objects passed to them.

The dynamic type management identifies many diverse data types and never forgets; we therefore call it elephant brain.
DemandDrivenInputCreation(T)
Input: The type T of an object to create.
Output: A set of generated objects (method sequences) of type T.
1: dependentMethodSet M ← ExtractDependentMethods(T, \emptyset)
2: for each method m ∈ M do
3: seq ← getInputAndGenSeq(mainObjPool, secondObjPool, m)
 Get inputs for method m, and generate new method sequences
4: if $seq! = null$ then
5: execSuccess ← exec(seq) Execute method sequence seq
6: if execSuccess then
7: secondObjPool.add(seq)
8: end if
9: end if
10: end for
11: candidateMethodSeqs ← getMethodSeq(secondObjPool, T)
12: mainObjPool.addAll(candidateMethodSeqs)
13: return candidateMethodSeqs

ExtractDependentMethods(T, $processedSet$)
Input: A dependent type T, and $processedSet$ are types we have performed method extraction on.
Output: A set of methods that constructs objects of type T.
14: $DepTypes ← \emptyset$ Set of dependent types of methods in T
15: $M ← \emptyset$ Set of dependent methods that construct objects of type T
16: if $T $∈ $processedSet $ then
17: if $T \in processedSet \lor T$ is primitive type then
 return M
18: end if
19: for each visible method m in class T do
20: if isConstructor(m) \lor getReturnType(m) $== T$ then
21: $M ← M \cup m$
22: $DepTypes ← DepTypes\cup getInputTypes(m)$
23: end if
24: end for
25: $processedSet ← processedSet \cup T$
26: for each visible type $T' \in DepTypes$ do
27: $M ← M \cup ExtractDependentMethods(T', processedSet)$
28: end for
29: return M

Fig. 5. Demand-driven object creation algorithm for missed input objects.

D. Detective: Demand-Driven Input Construction

To test an MUT m, all input arguments (including the receiver object) of m must be prepared. If any input of m cannot be created, m cannot be tested. Therefore, the ability of creating objects that MUTs depend on greatly affects the number of testable MUTs. In order to create auxiliary objects, diverse API types and methods are often required.

Consider class IOUtils (see Fig. 4), where both methods copy and skip require an object of type InputStream. The required object cannot be generated by tools like Randoop, because the creation of the object of type InputStream requires an external library (the Java core library) and cannot be performed by using only the methods in the SUT. As a result, no method in class IOUtils is ever covered. It is tempting to use accessible methods from dependent classes (such as all library classes) of an SUT, but this increases the search space and wastes effort on methods that are not the target.

We propose a demand-driven approach to construct missing input objects in two phases: we statically analyze the method type dependency of MUTs to identify those types that cannot be created by running MUTs only; at run-time, we use a demand-driven approach to construct inputs of types that are not directly available, by maintaining a secondary object pool.

Our method type dependency analysis first statically computes dependencies of MUTs by checking their input and return types. Then, it analyzes each input type of MUTs and determines if the objects of an input type can be obtained at run-time from other MUTs. Using this analysis, GRT identifies a set of unavailable types as candidates (input) for demand-driven input construction.

Fig. 5 shows the demand-driven algorithm for creating sequences for missing input types. When an unavailable input of type T is required during test generation, the algorithm calls function ExtractDependentMethods (line 1) to search all available packages for constructors and methods that return the required type (lines 19 to 24). T is marked as processed when we have extracted the necessary methods from it. The algorithm recursively searches for inputs needed to execute a method m that returns the sought-after type T (lines 26 to 28). The recursive search terminates if the current T is a primitive type or if it has already been processed (lines 17 to 18).

For each method m required to produce objects of type T, GRT searches for necessary inputs of m in both the main and the secondary object pool. If all inputs of m are available, GRT combines the corresponding method sequences with m to generate a new method sequence ending with a call to m (lines 2 to 3). Then, GRT executes the newly created sequence and stores the result object in the secondary object pool (lines 4 to 9). We use a secondary object pool, because adding all objects to the main object pool can add additional overhead and decrease the query performance for the main test generation procedure. GRT selects the method sequences that produce objects of type T from the secondary object pool and adds them to the main object pool for future use (lines 11 to 12). This makes constructing missed input objects and querying efficient without interfering with the main test generation procedure.

Like a detective, this component works by following the clues (i.e., relationships) between methods.

E. Orienteering: Cost-Guided Input Sequence Selection

To test a method m, GRT prepares all its input objects mostly by selecting existing method sequences from the object pools. As there are often a large number of method sequences that return the objects of the same type, randomly selecting type-compatible method sequences as input makes the generated test method sequence grow considerably in length and execution cost. Even worse, repeatedly executing lengthy sequences may take up too much execution budget, leaving many other relevant sequence combinations untested.

For better run-time performance, it is desirable to use method sequences that have lower execution cost as input. The idea is inspired by orienteering, where a path that takes lower cost is preferable. Therefore, we randomly select a sequence as an input based on its execution cost measured by:

weight(seq) = $1/(\sum_{i=1}^{k} seq\.exec\.time_i \times \sqrt{seq\.meth\.size})$, where seq is a sequence for selection, k counts how many times seq has been selected so far, $seq\.exec\.time_i$ is the execution time during the ith execution of seq, and $seq\.meth\.size$ is the number of methods in seq, excluding statements for the assignment of primitive values. This weight formula favors sequences with less execution effort while it still includes high-cost sequences with diverse states.
F. Bloodhound: Coverage-Guided Method Selection

The difficulty of covering a branch varies between branches. Some branches can be easily covered with simple inputs, while others require complex object states. An equally balanced selection of MUTs wastes time on methods that are already well covered. On the other hand, too much emphasis on MUTs containing uncovered branches may waste time in challenging the difficult branches without much payoff.

To direct testing towards uncovered code, we perform a coverage analysis during test generation and favor those MUTs that are not well covered so far. Although it is desirable to update the coverage information after each execution of a MUT, this is expensive; Therefore, the coverage information is updated at time interval t. During each interval, we prioritize method selection for a method m among all MUTs M by using the following function to compute its weight $w(m, k)$:

$$w(m, k) = \begin{cases} \alpha \cdot \text{uncovRatio}(m) + (1 - \alpha) \cdot \left(1 - \frac{\text{succ}(m)}{\text{max Succ}(M)}\right) & \text{if } k = 0 \\ \max \left(\frac{-3}{\ln(1-p)} k^{b}, \frac{-1}{\ln(\text{size}(M) + 3)} + w(m, 0)\right) & \text{if } k \geq 1 \end{cases}$$

In this function, k represents the number of selections of method m since the last update of the coverage information; $\text{uncovRatio}(m)$ is the uncovered branch ratio (the number of uncovered branches over all branches) of m; p is the parameter of a logarithmic series that determines how fast the factor decreases as k increases; $\text{succ}(m)$ is the total number of successful invocations of m; $\text{max Succ}(M)$ is the maximal number of successful invocations of all MUTs; $\text{max}(a, b)$ returns the larger of the two given values; $\text{size}(M)$ is the number of MUTs M; and α is the parameter to adjust the weight of the first formula.

The overall effect of the weight function is that initially ($k = 0$) we favor those methods with low code coverage. Once a method has been tested successfully ($k \geq 1$), we downgrade its weight logarithmically (the first part of max function). After several rounds of selection, the weight of each method returns to a uniform distribution again (the second part of max function). At each update of the coverage, the weights are recalculated, and k is reset to 0.

Our method selection strategy is inspired by the multi-armed bandit algorithm [61]. This algorithm balances “exploitation” (methods that are well tested) and “exploration” (methods with low coverage) for a higher payoff. The algorithm is useful because some branches of an MUT can be difficult to cover even if the MUT is tested over and over again. A weight function only based on the uncovered ratio of code would waste resources on methods with difficult branch conditions, without gaining much benefit. Our approach considers both code coverage and the execution history of each MUT for the initial weight, but decreases this weight later to avoid investing too much effort in difficult branches.

Like a Bloodhound, this enhancement hungers for coverage, while intelligently balancing the deeper search of each MUT against the breadth given by the entire problem set.

IV. EXPERIMENTS

We implement GRT based on the random testing framework of Randoop. Constant mining is implemented as an abstract interpreter using ASM [7]. Impurity is based on Relm & RelmInfer [26]. Bloodhound is implemented by adapting JaCoCo [28] to support on-line coverage collection during test generation. Based on our experience of developing GRT, we empirically set its parameters for the experiments; further parameter tuning is possible. For constant mining, we set the probability as $p_{\text{const}} = 0.01$. For primitive value fuzzing, we select $\sigma = 30$ as the standard deviation for Gaussian distribution fuzzing; this covers boundary conditions and character constant ranges well. For coverage guidance, we set parameters of the weight formula and time interval as $p = 0.99, \alpha = 0.9, t = 50$ seconds (see Section III-F).

Using this configuration we evaluate GRT by investigating the following questions:

Q1: What code coverage and mutation score are achieved by GRT, compared to Randoop and EvoSuite?
Q2: How does each tool perform given different time budgets?
Q3: How much does each component of GRT contribute to code coverage?
Q4: How many existing defects can be detected by GRT in a controlled study?
Q5: How many new defects can GRT reveal in real-world software?

A. Subject Programs and Setting

We compare GRT with Randoop 1.3.4 [49], and with EvoSuite (snapshot Oct. 14, 2014) [14]. We select EvoSuite because it represents the state of the art in search-based testing [21], [19].

\begin{table}[h]
\centering
\caption{Benchmarks: Size and complexity metrics.}
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline
Software (version) & NLOC & # Class & # Insn. & # Bran. & # Mut. \\
\hline
AJJ (1.0b) & 3,602 & 45 & 9,777 & 544 & 936 \\
Apache BCEI (5.2) & 23,631 & 338 & 65,719 & 5,133 & 7,209 \\
Apache C. Codec (1.9) & 5,803 & 76 & 24,960 & 1,835 & 2,747 \\
Apache C. Collection (4.0) & 23,713 & 390 & 47,324 & 5,499 & 7,401 \\
Apache C. Compress (1.8) & 17,462 & 181 & 57,083 & 4,634 & 7,605 \\
Apache C. Lang (3.0) & 19,997 & 141 & 47,773 & 7,179 & 9,057 \\
Apache C. Math (3.2) & 81,792 & 845 & 288,250 & 18,576 & 41,023 \\
Apache C. Primitive (1.0) & 9,836 & 231 & 18,462 & 1,464 & 3,290 \\
Apache Commons C1i (1.2) & 1,978 & 20 & 3,588 & 490 & 512 \\
Apache Shiro-core (1.2.3) & 13,818 & 217 & 27,964 & 3,291 & 3,770 \\
ASM (5.0.1) & 24,193 & 176 & 65,146 & 7,475 & 9,765 \\
ClassViewer (5.0.5b) & 1,485 & 23 & 5,266 & 470 & 609 \\
Deparseargs (10/2008) & 204 & 6 & 652 & 88 & 103 \\
EasyMock (3.2) & 4,372 & 79 & 9,449 & 915 & 1,382 \\
Fixsuite (R48) & 2,665 & 36 & 6,520 & 374 & 804 \\
Guava (16.0.1) & 66,566 & 1,546 & 136,321 & 11,247 & 20,709 \\
Hamcrest-core (1.3) & 1,253 & 40 & 2,199 & 155 & 314 \\
Jcommander (1.36) & 2,154 & 34 & 5,688 & 640 & 686 \\
Java Simp. Arg. Parser (2.1) & 4,888 & 69 & 8,623 & 714 & 969 \\
Java View Control (1.1) & 4,617 & 24 & 15,650 & 2,064 & 2,084 \\
Javassist (3.19) & 34,574 & 367 & 87,381 & 8,830 & n.a. \\
Javai Mail (1.5.1) & 28,271 & 284 & 79,599 & 9,523 & 11,070 \\
Jaxen (1.1.6) & 20,345 & 175 & 20,352 & 3,323 & 4,338 \\
Jdom (1.0) & 8,362 & 70 & 20,970 & 3,196 & 4,116 \\
Joda Time (2.3) & 27,638 & 208 & 62,627 & 6,172 & 9,838 \\
Mango (2.1.03/2014) & 2,141 & 90 & 3,689 & 382 & 556 \\
Nekomud (Rb6) & 363 & 8 & 809 & 44 & 63 \\
Pmd-dcd (5.2.2) & 1,608 & 20 & 2,902 & 305 & 384 \\
SAT4J Core (2.3.5) & 17,397 & 213 & 41,840 & 3,815 & 6,140 \\
SCCH collection (1.0) & 1,348 & 25 & 2,688 & 292 & 433 \\
SLF4J-api (1.7.12) & 1,504 & 18 & 2,581 & 271 & 265 \\
Simplicative (1.1) & 4,617 & 24 & 15,650 & 2,064 & 2,084 \\
Software (version) & NCLOC & # Class & # Insn. & # Bran. & # Mut. \\
\hline
\end{tabular}
\end{table}
To answer Q1–Q3, we run all tools on a collection of 32 popular real-world programs. The overview in Table II shows for each program its name and version, its overall size in terms of non-comment lines of source code (NLOC, measured by CLOC 1.60 [11]), the number of classes, the number of instructions and branches in the bytecode (measured by JaCoCo v0.6.4 [28]), and the number of mutants generated by the mutation analysis tool PIT [47].

Our experiments were executed on a computer cluster. Each cluster node ran a GNU/Linux system (Ubuntu 12.04 LTS) with Linux kernel 3.5.0, on a 16-core 1.4 GHz AMD 64-bit cluster node. The experiments consumed more than 10 hours for running the mutation analysis with PIT. In total, on Jaxen, each tool takes about 2 hours to finish test generation when choosing 60 s/class as time budget, but it takes more than 10 hours for running the mutation analysis with PIT. In total, over all cluster nodes, the experiments consumed more than one year of computation time.

B. Code Coverage and Mutation Score

Q1 and Q2: We compare the effectiveness of GRT, Randoop and EvoSuite, in terms of code coverage and mutation score. We run each tool on each study subject with four test time budgets: 2 s/class, 10 s/class, 30 s/class, and 60 s/class. Pre- and post-processing, such as loading classes and writing test cases to disk, are not counted towards that time budget. As also discussed in other work [17], we use different time budget configurations to account for different use cases, from testing during a coffee break to generating tests over night. For each configuration (time budget, tool, subject), the experiments are repeated 10 times to mitigate the influence of the randomness of the tools. As each tool sometimes generates tests that do not compile, our experimental platform automatically removes uncompilable code at a method level. All the compilable tests are then evaluated by JaCoCo for code coverage. As a conventional procedure for mutation analysis [30], we first filter out generated test cases that fail on the original programs, and then send the passing tests to PIT to compute the mutation score that measures the ability of killing automatically generated mutants.

<table>
<thead>
<tr>
<th>Time budget</th>
<th>Insn. cov. [%]</th>
<th>Branch cov. [%]</th>
<th>Mutation score [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 s</td>
<td>47.4</td>
<td>60.6</td>
<td>43.8</td>
</tr>
<tr>
<td>10 s</td>
<td>51.1</td>
<td>66.3</td>
<td>52.0</td>
</tr>
<tr>
<td>30 s</td>
<td>52.9</td>
<td>68.2</td>
<td>57.8</td>
</tr>
<tr>
<td>60 s</td>
<td>53.6</td>
<td>68.9</td>
<td>60.8</td>
</tr>
</tbody>
</table>

Fig. 6. Instruction coverage, branch coverage and mutation score of Randoop, GRT and EvoSuite over 32 subjects for a time budget of 2 s to 60 s/class.

With a time budget of 60 s/class, the tools mostly reach a state in which code coverage and mutation score grow much slower or stop growing (with few exceptions when running EvoSuite). Since the amount of time is allocated for each class (instead of the entire SUT), the results are largely independent of the size of the subject programs. When extending the time budget, large subjects (e.g., Guava) run for many hours, as mutation analysis incurs a high computational cost [30] and sometimes takes longer than test generation itself. For example, on Jaxen, each tool takes about 2 hours to finish test generation when choosing 60 s/class as time budget, but it takes more than 10 hours for running the mutation analysis with PIT. In total, over all cluster nodes, the experiments consumed more than one year of computation time.

Figure 6 shows instruction coverage, branch coverage and mutation scores achieved by Randoop, GRT and EvoSuite over the 32 study subjects for each time budget configuration ranging from 2–60 s/class. Table III summarizes the results in terms of average code coverage and mutation score. The results show that when running with a short time budget, (2 s or 10 s), GRT has a clear advantage on both higher code coverage (by 28–52%) and mutation score (by 19–39%) compared with Randoop and EvoSuite. When the provided test time budget increases, the overall code coverage and mutation score of all tools increase, too. EvoSuite shows a noticeable improvement from 2 s to 60 s, reducing the coverage gap between GRT and EvoSuite. This is because EvoSuite first performs an initial random search and then uses evolutionary search to improve its results [19]; the latter phase requires a certain amount of time to become effective. With the largest time budget of 60 s/class the coverage of EvoSuite tends to plateau out. For Randoop, coverage tends to saturate after about 30 s/class.
For the largest time budget of 60 s/class, the average branch coverage from GRT is 42% = (60.3 − 42.6)/42.6 higher than with Randoop and 13% higher than with EvoSuite. For the average instruction coverage, the values are 29% and 13%, respectively. On the average mutation score, GRT also outperforms Randoop by 35% and EvoSuite by 9%, indicating that the tests generated by GRT have better performance in revealing automatically seeded faults (mutants). The evaluation of the coverage and mutation scores over all 32 subjects shows that the improvement of GRT over Randoop and EvoSuite is statistically significant (Wilcoxon Matched-Pairs Signed-Ranks Test [53], \(p < 0.05 \) in all cases). The effect size is determined using Vargha and Delaney’s A measure [60]; \(A = 0.58 \) to 0.73. For assessing the results of the individual subjects we follow the guidelines proposed by Arcuri and Briand [3]. The results including code coverage and mutation scores for each benchmark are available on our website [24].

These results were also confirmed by the Search-Based Software Testing Competition [50], [36], where GRT competed with six other tools, also including Randoop and EvoSuite. The tools were compared over a benchmark that was not revealed to participants a priori, following a fully automated competition protocol that evaluated the effectiveness and efficiency of the tools. The benchmark contained 63 classes taken from 10 open source Java packages. GRT achieved the highest score of all tools [50], which was calculated based on obtained code coverage, mutation score, and the time used to prepare, generate and execute the test cases [50].

Q3: We run GRT with each of its six components enabled individually in comparison to GRT with all components enabled on our 32 subjects with 600s as global time budget. We observe a coverage improvement for each component and for full GRT as time increases. In general, each individual component of GRT contributes to the overall effectiveness; the impact of each component varies across different subjects. The combination of all six components is usually stronger than any single component, as can be seen from the branch coverage boxplots over all 32 subjects (Fig. 7).

Fig. 8—Fig. 10 show three examples of how each component improves code coverage. Constant mining is effective when extracted constants relate to branch conditions (Fig. 8). Sometimes, detecting makes a breakthrough by automatically constructing objects of specific types (Fig. 9). Fig. 10 shows another example, where orienteering outperforms the other components of GRT. Other plots can be found online [24].

C. Defect Detection

Q4 and Q5: We first evaluate the defect detection ability of each tool on the Defects4J framework [31], and then use GRT to find new unknown defects in popular open source projects. We run GRT, Randoop, and EvoSuite on Defects4J to compare their fault-detection ability in a controlled environment (i.e., the faults are known). We use 120 seconds, 300 seconds and 600 seconds as the global time budget when comparing GRT and Randoop in different use cases, and allocate 120 seconds, 300 seconds and 600 seconds for each class when running EvoSuite on Defects4J. This should be sufficient for each tool to generate test cases and is reasonable for our available computing resources. To mitigate the effects of randomness, we run each tool 10 times to generate 10 test suites (one test suite each time) to detect each fault. We then measure the faults detected by each tool by aggregating the faults found by the 10 generated test suites in each setting.

As shown in Table IV, each tool detects more bugs when using a larger time budget setting, and GRT shows the largest improvement (29=147 − 118) when the time budget increases from 120 s to 600 s. GRT also detects more faults than Randoop and EvoSuite in all subjects. In particular, GRT can detect 23 out of 26 (88%) faults in JFreeChart, 21 out of 27 (77%) faults in JodaTime, and more than 50% of the real faults in both Apache Math and Apache Lang using 600 s as global time budget. This result demonstrates GRT’s strong fault detection ability, in a controlled study using a large number of real faults under different time budget settings.

Table IV shows the four cases where we were able to replicate most of the data on Randoop and EvoSuite from a previous study on Defects4J [32]. Table IV does not include data for the fifth subject, Closure Compiler, because all tools detect unexpectedly few faults. Other minor deviations from the previous study can be attributed to differences in our computing environment, including hardware and software, and the exact configurations; we used mostly default settings.

2) Open Source Software: To evaluate GRT’s ability to find new, previously unknown defects, we apply it to the latest versions of 10 popular, widely used open source projects. We use system exceptions, crashes, and the behaviors stipulated for the base class java.lang.Object (e.g., the reflexivity property of equals()) as the test oracle [43].

As the failed tests generated by GRT require manual analysis to determine whether they reveal true bugs or generate false positives, we selected projects that are still under active development.
development (the last update being less than a year ago), and for which the number of failed test cases is not prohibitively high (i.e., fewer than 100 failed tests); see Table V.

From the 208 failed tests, we first filter out tests that confirm a problem that is either known or not going to be fixed in the code, such as bugs caused by using deprecated methods and infinite recursion in container data structures. We then manually simplify the remaining tests and identify duplicates by comparing the stack traces and the sequences of method calls of different tests. This results in 56 distinct issues. We reported these using the projects’ bug tracking systems, combining similar issues into one bug report. According to the developers’ feedback, GRT found 23 new, previously unknown defects (see Table V).

D. Summary

Compared with Randoo and EvoSuite, GRT significantly improves code coverage and mutation scores (Q1). The advantage of GRT is observed for all time budget configurations, from 2 s/class to 60 s/class; the tools mostly tend to reach a plateau at 60 s/class. Compared with Randoo and EvoSuite, GRT achieves a high coverage sooner (Q2). Not all components of GRT are equally effective in all cases, yet the overall effectiveness of GRT results from the synergy between all six components (Q3). GRT is able to detect about two thirds of the known faults on the studied subjects of Defects4J (Q4) as well as a number of new, previously unknown faults in the latest versions of real-world programs (Q5).

E. Threats to Validity

The selection of study subjects is always a threat to validity. We try to counter this by choosing 32 diverse programs from various application domains with their sizes ranging from very small to fairly large. An external threat to validity is caused by the randomness of the three tools. We run each tool on the same configuration 10 times to diminish this threat, and have not observed significant variance caused by randomness. A related threat is that different tools may require different amounts of time to exhibit their best performance. As a countermeasure, we use four different time budgets to study the effectiveness of each tool in most typical use cases. We have fully utilized our computing resources to extend the time budget as much as possible (up to 60 s/class). Another threat is that we have not examined all tool configurations. In particular, EvoSuite can be configured to satisfy one of three criteria, including branch coverage, weak mutation testing, or strong mutation testing. Our study uses the default configuration, which is branch coverage. However, as indicated in a previous study [32] on Defects4J, the other two configurations would yield similar overall results in terms of detected bugs. From the authors of Defects4J, we also obtained the breakdown of their earlier study [32] and confirmed that there are minor differences between results generated by different configurations.

We did not compare GRT with test generation tools based on symbolic execution. This may miss an important aspect of our study. It is because we could not find an existing symbolic execution based automatic test tool that supports to test Java programs and works on the large set of subjects that we used. However, the idea of symbolic execution is orthogonal to the framework of GRT and could be integrated as another analysis component in GRT in the future.

V. RELATED WORK

Given the large body of work on automated testing, we discuss only work closely related to GRT. For further work, we refer readers to representative surveys [1], [39], [46], [18].
1) Variants of Random Testing: The critical step in automatic test case generation for object-oriented programs is to prepare input objects with desirable object states. An input object can be constructed by either direct construction [6], [38] or method sequence construction returning the desired objects [44], [55], [66]. Direct construction approaches, e.g., Korat [6] and TestEra [38], construct objects by assigning fields directly. They use specifications defined in languages, such as Alloy, and are therefore not fully automated.

Most random techniques create required input objects by method sequence construction [12], [42], [44], [55], [65]. JCrasher [12] creates input objects by using a parameter graph to find method type dependencies (similar to our dependency method extraction described in Section III-D). Eclat [42] and Randoop [44], [43] use feedback from previous tests. The run-time phase of GRT is based on the same basic idea, however, it performs sophisticated dynamic analysis to generate finer-grained feedback. In addition, the static phase of GRT extracts useful information of the SUT to support the run-time phase.

Adaptive random testing (ART) [8], [1] improves the defect detection effectiveness of random testing by evenly spreading test input selection across the input domain. Since its introduction by Chen et al. [9], various studies [8], [10], [33] have shown that ART requires fewer tests to detect defects than random testing. However, it has also been shown that ART has a high computational overhead [2], [45], and has difficulties in testing large SUTs that require complex inputs [1]. It would be interesting to include adaptive random testing (ART) tools in the analysis of GRT as well, as our constant mining technique is related to it. Unfortunately, we are not aware of any publicly available ART tools that support Java and work on the large set of benchmarks we used. We leave the study on the usefulness of ART as a GRT component as future work.

2) Random Testing Guided by Domain Knowledge: Several tools take advantage of the information contained in existing test cases (method sequences). MSeqGen [55] mines frequently used sequence patterns from code bases. Palus [65] trains a method sequence model from existing test cases, which is used for test generation at run-time. OCAT [29] adopts object capture-and-replay techniques, where object states are captured from running sample test cases and then used as input for further testing. Similar to these techniques, GRT also makes use of program analysis to guide random testing, but GRT does not require extra information sources, such as existing test cases and code bases.

3) Systematic Testing: In contrast to random testing, symbolic execution represents input as symbolic values, execution is based on abstract semantics, and path conditions are computed by leveraging constraint solvers. Tools like Java PathFinder [62] and Symbolic PathFinder [34] generate test cases in this way. Hybrid approaches of random (concrete) and symbolic execution, called concolic execution, are implemented by tools like DART [23], Cute and JCute [52], [51], Pex [56], and Dsc [27].

An alternative to symbolic execution is bounded exhaustive testing [38], [6], [63], which exhaustively generates method sequences up to a small bound of sequence length. However, real-world software usually requires longer test sequences to examine more program states beyond a small bound.

4) Evolutionary Testing: Evolutionary testing [57], [4], [19], [16], [19], [16], [22] leverages evolutionary algorithms to evolve and search for test sequences that optimize their fitness, e.g., branch coverage, in a limited search budget. EvoSuite [19], [16], [22] implements such an approach. Yet it goes beyond traditional techniques as it adopts a hybrid approach to automatically generate and optimize the whole test suites towards satisfying coverage criteria. It has been shown effective in achieving high coverage on real-world software [18], [20]. GRT shares some ideas with EvoSuite, such as extracting constants from SUT. Using EvoSuite, Fraser and Arcuri [17] study the influence of seeding constants (extracted from SUT) on the search-based testing techniques. The constant mining component of GRT is based on a similar assumption: Constants used in the SUT are more likely to be useful in testing. However, GRT uses different strategies, namely frequency-based prioritization and value fuzzing, to improve the usefulness of the extracted constants. We have not investigated how constants extracted from existing test cases can improve GRT (the third strategy studied by EvoSuite [17]). Although this can be a promising enhancement to GRT, it would make GRT dependent on external knowledge (i.e., existing tests).

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose GRT, a technique that combines static analysis and run-time analysis to guide random testing. GRT does not rely on knowledge outside of the SUT. Our static analysis extracts domain knowledge from the SUT as input for run-time test generation. Our dynamic analysis systematically improves test coverage in the generation phase. We have evaluated GRT thoroughly on a large set of real-world projects. Our approach exhibits significant improvements on code coverage, mutation score, and the ability to find defects.

Our work shows that random testing has not reached its limits yet. GRT itself can be improved in a number of ways. It is tempting to incorporate symbolic execution techniques to achieve higher code coverage, especially in the face of complicated branches. Simple specialized treatments, such as handling less visible code, may be surprisingly effective. We also plan to enhance the test oracle of GRT. Currently, GRT focuses on leveraging program analysis to obtain high code coverage, using simple oracles, such as software crashes and exceptions. Sometimes the oracles are too weak to detect the faults, even though the faulty code is executed. Automated specification mining that extracts information on valid uses of a system [13], [48] would be a promising next step towards stronger test oracles. Considering the sheer number of generated test cases, reducing false positives is another important task. Possible solutions include options to avoid deprecated code and recursive data structures. Developing an efficient test simplification technique is also helpful to ease the validation of failed tests. Enabling the application of GRT in more scenarios [35] is another direction of our future work.

VII. ACKNOWLEDGMENTS

We thank Reid Holmes, Mauro Pezzè, and Sai Zhang for their insightful comments, and Gordon Fraser, José Campos and René Just for their help on EvoSuite and Defects4J. This work was supported by the SEUT project from the University of Tokyo and kaken-hi grants 23240003 and 26280019.

