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ABSTRACT

Java Pathfinder (JPF) is a virtual machine executing Java byte-
code that is able to perform model checking using backtracking
execution. Due to backtracking, parts of a program may be ex-
ecuted multiple times during model checking. Hence, we explore
whether method summaries can be used to make JPF’s model
checking more efficient. We present the design and implementa-
tion of dynamically generated summaries as an extension of JPF.

While our summaries incur an overhead that outweighs the bene-
fits in most cases, the approach shows promise in certain cases, in
particular when stateless model checking is used. We also provide
some results related to cases when our summaries are applicable
that could provide guidance for future work within this field.

1. INTRODUCTION

Java Pathfinder (JPF) is a framework for Java bytecode analy-
sis [19, 2]. An explicit-state model checker [11] is the core of JPF.
JPF executes Java bytecode in its own Virtual Machine (VM),
which in addition to standard capabilities of a VM supports non-
deterministic choices. Non-determinism can arise due to choices
over parameters or due to thread-level concurrency, as the thread
schedule in Java depends on the environment [19, 2].

A choice causes JPF to explore all possible outcomes. Concur-
rency is analysed by exploring all serialised schedules one by one,
in a sequential way. In order to avoid repeating program execu-
tion from the initial state, JPF supports backtracking to reset the
VM to a previously visited state. As a result of this approach,
JPF executes parts of a program under a particular schedule in a
linear fashion, one thread at a time, until it hits a choice. Each
outcome of the choice is again explored sequentially. It can be
observed that some operations are explored repeatedly under dif-
ferent choice outcomes, even if the result of a particular method
call does not differ between them.

Due to the size of the state space, and the redundancy of some of
the choice outcomes, the state space explosion problem continues
to be a limiting factor for software model checking. We propose
method summaries to capture the preconditions, side effects, and
postconditions of a method succinctly, in order to apply them
when a method is executed again in the same state.

In this paper we describe our approach for improving the per-
formance of Java Pathfinder’s (JPF) model checking procedure
through the use of method summaries. We present our approach,
the results of our experiments, and guidance for the future devel-
opment of the technique in the context of JPF.

This work is based on a Master’s thesis [3]. We summarise the
findings and show how often summaries are applicable, and useful,
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in a variety of benchmarks. Our implementation of method sum-
maries is available at https://github.com/lassebe/jpf-summary.

2. BACKGROUND

The architecture of JPF lends itself to the implementation of
method summaries, which in turn can be used to augment stateful
or stateless model checking.

2.1 Java Pathfinder

The main architectural component of JPF is a Java virtual ma-
chine, implemented in Java. This component supports function-
ality for executing bytecode as well as backtracking over already
executed code [2]. When analyzing a concurrent program with
multiple threads, the number of thread interleavings is in prin-
ciple exponential in the number of threads and statements [4].
However, most bytecode operations are thread-local, and do not
affect the global state of the program. Interleavings between such
operations are therefore not relevant and can be ignored as a
partial-order reduction [4]. Therefore, JPF groups instructions in
an atomic transition as long as they cannot have any visible effect
on other threads [2]. If an instruction has a globally visible effect,
JPF uses a transition break in order to explore interleavings be-
tween executions where the outcome may depend on the schedule.
Such instructions may be instructions that access shared memory,
or a call to a native method, which often has a globally visible
side effect, such as printing to the console.

2.2 Method Summaries

A procedure summary is defined as concise representation of a
part of a program; usually a function or a method [6]. They are
heavily used in program analysis, as they allow for compositional
verification, where previous results (the summaries) can be re-
used throughout the verification process [16, 13, 5].

The method summaries we describe in this work are summaries
over methods in Java bytecode. We consider the dependencies of
a summary to consist of the arguments of the method, and all
the fields which the method reads from. Note that this does not
include local variables, which exist only within the scope of the
method. Similarly, we consider the effects of a method to be its
return value and the fields which the method writes to.

2.3 Stateless Model Checking

JPF uses stateful model checking, in that it matches each state
with previously visited state. At the expense of extra memory,
this allows JPF to avoid revisiting redundant states.

In contrast to this, stateless model checking is an approach where
the model checking procedure does not store the states as they are
explored and checked [9]. Godefroid argued that in order to apply



model checking to actual programs, one could not maintain the
assumption that each state could be assigned a unique id, which
is required if one performs stateful model checking.

The key to making stateless search work is to reduce the amount
of non-determinism to a fixed set of schedules [12]. The model
checker then explores each schedule in turn, until a property vi-
olation occurs, or they have all been explored. Stateless model
checking remains an active field [1, 14].

JPF is able to perform stateless model checking, but does not do
so by default, as it reduces performance significantly.

3. IMPLEMENTATION

This section defines method summaries and their implementation.

3.1 Design

We define a summary of a Java method as S = (P, 1,0, R). We
refer to P and I as the context of a method. P is a an ordered
list representing the arguments of the method by the values of the
parameters. For non-static methods, P includes a reference to the
callee object (this). I is a set of tuples (id, value) and contains all
fields that are read by the method, during a particular execution
path, and the values that were read from those fields. We only
store the first value read from a particular field, as any subsequent
reads will not affect the execution path of the method. If a method
reads from a field inside a non-primitive field, we store a reference
to the outer field, as well as the inner value. O is a set of tuples
(id, value) containing all fields that are written by the method,
capturing the effects of the method. As we are interested only
in the state after the method completes, we overwrite the stored
value if a field is written to multiple times. So the contents of O
will be the last values written to fields. R represents the return
value of the method, either a primitive value or the reference of
an object, or for methods with return type void it is simply 0. As
a method might be called in multiple different contexts, we create
multiple summaries for each method, up to a user-defined limit.
As an example, consider the method in Listing 1: if we call
method (37) we will create the following summary:

S = ([r,37], {this.value, 5}, {(this. flag,true)},37). P contains
the reference to the callee object, r, and the argument = with the
value 37. The method reads the value of the field value at the
condition in the loop-statement, so it is added to I. O contains
the new value written the field flag. The return value is simply
stored as 37; if a method returns a non-primitive type, we store a
reference to the returned object.

Listing 1: A small example class.
public class Example {
private boolean flag;
private int value = 5;

public int method(int x) {

for (int i=0; i<value; i++) {
X+

}

flag = (x = 42);

return x—5;

We create summaries dynamically through a process we call record-
ing (see Fig. 1). We say a summary is recorded for a given con-
text if we have a summary with that context. Recording starts
at method invocation, and finishes successfully when the method
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Figure 1: Diagram showing the process of recording, and
possible interruptions.

returns. When we perform the modifications contained in the
summary, we say that the summary is applied. A summary can
only be safely applied if the context in which the method is called
matches that of the context stored in the summary.

3.2 Construction in JPF

We implement our summary creation using a listener. The listener
primarily listens to notifications related to instruction execution.
When JPF executes a method invocation, the listener checks if the
method has been recorded; if so, the listener compares the context
of existing recordings to the current state of the system. This
comparison may contain non-primitive types, such as the callee
object this for non-static methods. In this case, we compare the
object reference and the fields that the referred object contains.

If there is a recorded summary with a matching context, the in-
vocation is skipped, and the summary is applied instead. If the
method has not been recorded in that context, the listener will
start recording and continue until the corresponding return in-
struction is executed, at which point the summary is stored.

As described above, I contains all fields and their values that are
read by the method (inputs). We only consider the first read of
each field, as updates during the execution of the method will be
reflected in the output set O, which contains the fields that are
written by the method, with their values. Intermittent updates
are not important for the summary, so O contains only the values
of the last write of each field used by the method.

In order to ensure that we do not impact the soundness of JPF’s

model checking, we ensure that summaries take into account whether

or not other threads are live during recording. A method might
be safe to summarise in a single-threaded context, but could be
interrupted in a multi-threaded context.

There are a few reasons why we might stop recording prematurely:
the method might be interrupted by a transition break, or the
method might call a native peer that we are unable to summarise,
or the method calls a method that has been previously blacklisted
because it was interrupted during recording.



In order to increase the number of methods we can successfully
summarise, we manually configure a so-called white-list of native
methods. This list contains the names of native methods that are
known to have no side-effects that we cannot summarise. Without
this list, we would have to abort recording unconditionally when a
method calls a native method, even if the method in question only
has side-effects that are irrelevant to the verification. Examples
of methods that we add to the white-list are print and println,
as their side-effects are generally not of concern to the verifica-
tion process, and desiredAssertionStatus, which is the native
method called when evaluating an assert-statement in Java. The
latter can be summarized safely because repeated method invo-
cations do not change the outcome of the assertion.

The application of a summary involves a few more steps than de-
scribed above. To create summaries of nested method calls, the
listener has to propagate context and modifications to the sum-
maries of methods that are being recorded, as the read and write
instructions of the summarised method would not be executed and
captured in those summaries otherwise. After that, the listener
has to get the instruction that follows directly after the method
invocation, remove any arguments from the current stack frame,
get the return value from the summary’s modifications and place
it on the stack, and finally set the program counter of JPF to the
instruction directly following the method invocation.

As the listener is executing on the Host VM, rather than inside
the JPF VM, we should see a similar performance benefit to the
one described by d’Amorin et al. [8].

3.3 Interruptions

Our summaries are able to capture the effects of methods that
read and write to fields of complex objects. However, there are a
number of scenarios that our summaries are not able to capture,
in which case we abort recording. Most importantly, we cannot
create summaries over transition boundaries, because a summary
compresses a method’s execution to an “atomic” event. A tran-
sition boundary occurs when accessing shared or static data or
invoking an operation that may affect other threads.

We currently cannot capture the effects of a method that adds
new objects to the heap, as this would require tracking references
that escape the context of the summary. Therefore, we interrupt
recording if a method creates a new object. For this reason, we
do not summarize methods that throw an exception or return an
array type, as these operations typically allocate a new exception
object or array.

Most native methods also interrupt recording, as we cannot ob-
serve their effects via the listener, though some may be manually
whitelisted, if they are known to be safe and free from relevant
effects, such as printin().

4. EVALUATION

In order to measure the effect of our summaries, we ran a number
of experiments. For each experiment program, we run JPF with
and without summaries enabled, and compare the time it takes
until the search terminates.

4.1 Setup

The majority of the systems under test (SUTs) were picked from
the Software Infrastructure Repository (SIR) [7], an initiative
that aims to make Software Engineering research reproducible
and comparable by providing a number of programs that can be

JPF-core JPF-summary Relative

Experiment (ms) (ms) change
boundedBuffer 145.7 155.3 1.07
log4j1 237.1 261.7 1.10
log4j2 285.8 299.6 1.05
groovy 304.7 340.9 1.12
groovy-fixed 639.5 715.0 1.12
pool3 868.4 1218.9 1.40
pool6 1081.6 1268.5 1.17
linkedlist 1086.7 1410.0 1.30
poold 1272.8 1451.4 1.14
log4j3 1474.0 1758.4 1.19
pool2 3014.2 3913.7 1.30
pooll 3061.6 3646.0 1.19
log4j3-fixed 11298.4 12301.4 1.09
log4j1-fixed 22358.4 24751.6 1.11
poolb 28818.2 29633.9 1.03
pooll-fixed 259168.7 322284.8 1.24
pool2-fixed 261422.8 324724.4 1.24
pool3-fixed 271131.1 343094.4 1.27
pool6-fixed 966102.5 1075927.3 1.11
loseNotify-stateless 85.8 96.8 1.13
twoStage-stateless 425.6 464.3 1.09
alarmclock-stateless 20950.4 22196.2 1.06
groovy-stateless 31786.2 34923.6 1.10
lang-stateless 116648.6 125244.6 1.07
pool3-stateless 386734.6 320813.3 0.83

Table 1: Mean run time of experiments, where the dif-
ference was significant for o = 0.1, for normal JPF (top
part) and JPF in stateless mode (bottom six rows).

used to evaluate testing and analysis techniques. Each SUT con-
tains some type of fault that JPF is able to identify. Some SUTs
also supply a version where the fault has been remedied, these are
identified by the suffix -fixed.

In addition to looking at JPF’s standard model checking proce-
dure, we also ran our experiments with state matching turned off.
This effectively causes JPF to perform stateless model checking.
As state matching is one of the cornerstones for JPF’s perfor-
mance, removing it decreases performance significantly. Many of
our experiment’s programs caused JPF to run out of memory, or
not terminate in several hours, in stateless mode.

All experiments were run on an Intel Core i5-4200M CPU 2.50 GHz
with 8 GB of RAM, running Ubuntu 16.04 LTS, and Oracle’s VM
version 1.8.0_151, no experiment exceeded the default memory
limit of 1 GB. For each experiment SUT we run JPF ten times
and present the mean run times. Because the setup phase of JPF
involves a large amount of variance, we only start measuring once
the search procedure actually starts.

4.2 Run Time Results

Overall we see that our summaries have a negative or negligible
impact on the run time of JPF [3]. Table 1 shows cases with
a significant difference in the run time with and without sum-
maries. The top part of the table uses JPF in normal mode (with
state matching), while the last six entries show JPF without state
matching (in stateless mode). A number greater than 1 indicates
that execution took longer using summaries, while a smaller num-
ber means run time was reduced.

The size and complexity of the SUTs varies a lot, from the very
small and simple deadlock, which is only 24 lines, to examples
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Figure 2: Percentage of calls to recorded methods in
matching contexts for stateful experiments.

from real bugs from open source projects such as pool6, which is
2043 lines [7]. While the larger targets are more interesting, the
smaller are included for the sake of completeness.

We see that, for now, the overhead of creating and managing
summaries mostly outweighs any performance gains when apply-
ing them. To look further into this, we also investigated how
often summaries were actually used, and how often they could be
created at all.

4.3 Usage of summaries

Having a recorded summary is not very useful if the method is
never called in the same context a second time. Figure 2 shows
the percentage of calls to methods where a summary is applicable
(across all benchmarks). The differences in the percentages were
small or non-existent when comparing the stateful and stateless
model checking, though the absolute numbers were larger for some
stateless experiments, as such we only present the stateful results.
In some smaller programs, the ratio of applied summaries is very
low or even 0% as in clean, log4jl, and loseNotify. This is
because a very small number of methods is recorded, and the
methods are not executed often because the state space is small.
On the other hand, 87% in log4j3 shows a case where summaries
are very effective. On average, we are able to apply summaries
29 % of the times we call summarised methods.

~

4.4 Interruptions

In our experiments, we see a large variance between different pro-
grams in terms of how many methods we are able to summarise,
as seen in Figure 3, ranging from 5% to 27%. With these re-
sults, we again saw no significant differences between stateful and
stateless model checking, so we only present the stateful results.

As presented in Section 3.3, there are multiple reasons why we
might stop creating a summary. Figure 4 show a distribution
of the reasons why summary recording failed on our benchmarks.

The distributions remain the same when running in stateless mode.

We can see that the primary cause is methods creating new ob-
jects. This is visible in Java bytecode as a call to init, the byte-
code instruction corresponding to calling new in Java. The two
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Figure 3: Percentage of methods that are summarised
for stateful experiments.

other most common reasons are native methods that we cannot
safely summarise, and that the execution of a method is inter-
rupted by a transition break. Note that exceptions do not show
up as a cause in Figure 4, because recording was always inter-
rupted by init, which was used to create the Exception instance
before it was to be thrown, in all experiments that we ran.

5. RELATED WORK

Method or procedure summaries have been used with some suc-
cess in the domain of symbolic execution. Godefroid et al. use
on-demand summaries for static analysis or test case generation
to speed up static and dynamic analysis [10]. Sery et al. use sum-
maries based on Craig interpolation to avoid analyzing functions
again after an upgrade, if their effect has not changed [18].

Rojas and Pasareanu use partial evaluation to summarise the
set of all symbolic paths of a method [17]. Each summary of a
symbolic path represents specific path and heap constraints and
contains a specialised version of the method code for those con-
straints. The specialised code of the summaries is guaranteed to
contain no branch conditions, meaning that when it is applied,
there will be no additional solver calls. The authors show that
their summaries improve the run time at somewhat high memory
costs [17].

Qiu et al. [16] expand on this work and build summaries using
memotsation trees. These summaries do not encode the effects of
methods, but rather the information about feasible paths in each
method, and they improve the performance of SPF by an order
of magnitude in certain cases [16].

In symbolic execution, summaries are particularly useful as they
reduce the number of computationally intensive constraint solver
calls; furthermore, the summary context is more likely to match
in a symbolic rather than a concrete representation.

6. CONCLUSIONS AND FUTURE WORK

JPF uses a backtracking search to analyse the full state space of
a program; because methods are executed repeatedly after back-
tracking, the same computations inside methods may be executed
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many times. Method summaries promise to eliminate redundant
computations. A summary records in which program state a
method call with given parameters produces a given result, in-
cluding modifications to the program state.

We implement summaries that capture the effects of instructions
sequences that are executed inside the same transition and do
not create new objects or call native methods. With these sum-
maries, the overhead of managing them usually but not always
outweighs speed-ups gained by not executing the same code re-
peatedly. The reason for this is that larger methods usually can-
not be summarised. The main cause of interrupting the creating
of a summary is the creation of new objects.

If we can extend our approach to enable summaries to contain
object creation, it would be potentially more impactful, as up to
50 % of all methods cannot be summarized due to object creations.

Another way to improve upon our implementation would be to
make the summaries more general. Our current summaries are
fixed to cover entire methods. Furthermore, even if only a single
variable in the context changes, this requires an entirely new sum-
mary. In this context, it might be useful to create summaries over
symbolic values [15] to enable sharing summaries in similar but
not equal contexts. Finally, it may be possible to keep summaries
across multiple executions.
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