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Abstract
Java applications utilize various security APIs for cryptography and access control, such as avail-

able through packages java.security and javax.crypto. For performance reasons, these libraries inter-
nally use an implementation written in C, accessed through the Java Native Interface. Our goal is
to extract properties in the source code of the C library, and translate these assertions back into the
Java domain. This allows these properties to be used in verification of Java code, opening up various
applications that are not possible when verifying binary code.
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1 Introduction

Java offers various security and cryptography facilities [11]. Security includes permission management
(access control managed by security policies) and secure class loading. Cryptography includes access to
cryptographic functions, such as hashing and encryption ciphers, and cryptographic protocols [16].

Java applications request security services from the Java platform. In order to accommodate for dif-
ferences between different platforms, implementations are typically not provided by the standard library
itself. Instead, they are accessed via providers, which encapsulate algorithm-specific implementations
behind a standardized application programming interface (API). This allows an application to be in-
dependent of a provider. The same kind of function can be implemented by different providers, and
exchanged if necessary [16].

For instance, certain access control features may only be available if the underlying operating system
or file system supports corresponding mechanisms. Secure class loading may take advantage of specific
hardware (trusted computing) [7, 21]. Cryptographic functions implemented in hardware or software
may have to be replaced by different implementations if an existing implementation is too slow [1], or if
an underlying cryptographic algorithm has been broken, i. e., demonstrated not to be cryptographically
secure anymore [9].

Because the underlying functionality and API are very system-specific and low-level, the software li-
brary is usually implemented in C. Table 1 shows how in a Java application, access to C code is provided
by the Java Native Interface (JNI) [11, 17]. This causes a problem when a Java application is analyzed by
Java-specific tools, such as software model checkers [22]. An analysis tool may not be able to inspect or
execute C code. In model checking, the inability to handle actions outside the given bytecode platform
is a well-known problem when analyzing application that use library functionality such as network com-
munication [5]. Because the effect of C code cannot be controlled by the Java platform, analysis tools
may provide incorrect results. For model checking, a tool has to be able to restore the entire program
state to a previous state. If C code is involved, side-effects of its execution may prove to be impossible
to revert. This effectively puts programs using JNI calls outside the range of model checkers.

We plan to extract properties from low-level C code that are relevant for the correct behavior of Java
applications. In this way, we can apply various inspection and analysis techniques to Java programs that
are not possible otherwise.

Compared to similar work [19, 18], we plan to generate executable code instead of property anno-
tations. We think that existing toolkits for code analysis that represent the abstract syntax tree as XML
data may be the appropriate platform for a unified representation of the data [10, 14]. Mapping rules can
then relate C code fragments to Java code.
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Table 1: Architecture of Java application using Java library backed by native code.
Layer Language Description
Application Java Written by developers, target of verification in this project
Java library Java High-level functions (e. g., security and cryptography)
JNI layer Java Java Native Interface: passes library calls to low-level code
JNI impl. C C counterpart of JNI, sometimes automatically generated
Crypto library C Library implementing low-level functions
Device driver C (If present) interface to hardware (e. g., trusted computing)

2 Benefits

There are several benefits when low-level C code is modeled in the same language as the target applica-
tion:

• Better integration into the analysis tool, as the tool can fully inspect properties of interest.

• The possibility of combining properties of multiple implementations, giving a stronger specifica-
tion for verification.

• The possibility of using other analysis technologies, such as symbolic execution, model checking,
or fault injection. These technologies are usually not applicable to low-level code.

Model checking for software is specifically useful for concurrent applications, as the outcome of all pos-
sible thread and communication schedules cannot be tested effectively. A test run covers one particular
scenario [15]. In software where multiple threads [20] of execution work in parallel, a test run executes
one particular thread schedule. As the schedule is typically non-deterministic, even repeated test runs
cover only a part of all behaviors. Different verification approaches are required for more exhaustive
verification. Model checking has the advantage that it is fully automated, but given verification tools for
Java require that the entire application exists as Java bytecode [22] or that side-effects of system-specific
code are modeled by a special library [4].

Similarly, fault injection tools also require that code is available in a platform that the tool supports [3,
2]. Conversion of so-called checked exceptions from JNI to Java would allow such tools to have a richer
view of the library, including exceptions returned from C code.

As complex computations are inevitably simplified when extracting only key properties, the resulting
model code would also be more efficient than the original one. This is another benefit both for model
checking and other analysis types, because analysis can scale to larger applications.

3 Implementation Strategy

A model of a library function may consist of a stub, implementing only a subset of the real functional-
ity [6]. The stub has to be precise enough to allow for execution of a test case of interest. For crypto-
graphic functions and security APIs, certain properties of their behavior help us to write such stubs:

• Cryptographic functions can be replaced with a stub that either returns clear text (for matching
keys) or a pseudo cipher text that differs in a simple way. For example, each string may be pre-
ceded with a special marker character to mark it as encrypted. This marker is removed upon
encryption. Because the goal of software verification is only to ensure that encryption is used
whenever necessary, the lack of security of this “encryption scheme” is not a problem.
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Java interface:

public final static native void

TPM_NONCE_nonce_set(long jarg1, TPM_NONCE jarg1_, short[] jarg2);

C implementation:

SWIGEXPORT void JNICALL

Java_iaik_tc_tss_impl_jni_tsp_TspiWrapperJNI_TSS_1NONCE_1nonce_1set(

JNIEnv *jenv, jclass jcls, jlong jarg1, jobject jarg1_, jshortArray jarg2) {

// other declarations omitted

if (jarg2 && (*jenv)->GetArrayLength(jenv, jarg2) != TPM_SHA1BASED_NONCE_LEN) {

SWIG_JavaThrowException(jenv, SWIG_JavaIndexOutOfBoundsException,

"incorrect array size");

return;

}

...

Figure 1: C implementation of a Java native method.

• Security APIs often work in a binary way, either granting or denying access. This can be modeled
as a non-deterministic decision.

In both cases, the exact way the C security library works is often irrelevant for testing an application. The
library has to implement high-level properties such as providing a secure one-way hash function. Such
properties can be analyzed in isolation of the application, for example through cryptanalysis. When
analyzing the Java application, only correct usage of the functionality is important.

Therefore, stubs should model preconditions that the Java application must meet when calling the
API. Such preconditions can be extracted from assertions in the C implementation. Other properties,
such as a correct sequence of calls, may also be accessed by more advanced inspection techniques on the
C code, such as program slicing [13].

Figure 1 shows a part of the API for Trusted Computing for Java [12, 21]. In this code, method
nonce_set is declared to be native in Java, and implemented in C. The Java Native Interface declaration
requires the expanded class name of the method and a lengthy signature, but the interesting part is the C
implementation of the method. In the C code, the array length of the last argument is checked against
a constant that is defined elsewhere. This check is not part of the Java program! However, knowledge
of JNI calling conventions allows for a translation of the if-expression from C to Java, where it can be
verified even if the C code is subsumed by a stub.

Previous work has implemented a similar mapping for the verification of low-level C libraries [19,
18]. The focus was on generating code annotations, but we aim at generating executable code that does
not require extra tool support for analysis. By leveraging tools that represent program structure in XML
form, we have a unified representation of the problem [10, 14]. Finally, we hope to include recent
advances in reverse engineering to infer properties relating to correct sequences of API calls [8].
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