
Visualization and Abstractions for Execution
Paths in Model-based Software Testing

Rui Wang1, Cyrille Artho2, Lars Michael Kristensen1, Volker Stolz1

1 Department of Computing, Mathematics, and Physics,
Western Norway University of Applied Sciences, Bergen, Norway

Email: {rwa,lmkr,vsto}@hvl.no
2 School of Computer Science and Communication,

KTH Royal Institute of Technology, Stockholm, Sweden
Email: artho@kth.se

Abstract. This paper presents a technique to measure and visualize
execution-path coverage of test cases in the context of model-based soft-
ware systems testing. Our technique provides visual feedback of the tests,
their coverage, and their diversity. We provide two types of visualizations
for path coverage based on so-called state-based graphs and path-based
graphs. Our approach is implemented by extending the Modbat tool for
model-based testing and experimentally evaluated on a collection of ex-
amples, including the ZooKeeper distributed coordination service. Our
experimental results show that the state-based visualization is good at
relating the tests to the model structure, while the path-based visualiza-
tion shows distinct paths well, in particular linearly independent paths.
Furthermore, our graph abstractions retain the characteristics of distinct
execution paths, while removing some of the complexity of the graph.

1 Introduction

Software testing is a widely used, scalable and efficient technique to discover
software defects [17]. However, generating sufficiently many and diverse test
cases for a good coverage of the system under test (SUT) remains a challenge.
Model-based testing (MBT) [21] addresses this problem by automating test-case
generation based on deriving concrete test cases automatically from abstract
(formal) models of the SUT. In addition to allowing automation, abstract test
models are often easier to develop and maintain than low-level test scripts [20].
However, for models of complex systems, an exhaustive exploration of all possible
tests is infeasible, and the decision of how many tests to generate is challenging.

Visualizing the degree to which tests have been executed can be helpful in
this context: visualization can show if different parts of the model or SUT have
been explored equally well [13], if there are redundancies in the tests [13], and if
there are parts of the system that are hard to reach, e. g., due to preconditions
that do not hold [3]. In this paper, we focus on the visualization of test paths
on the test model, as this provides a higher level of abstraction than the SUT.

The main contribution of this paper is to present a technique to capture and
visualize execution paths of the model covered by test cases generated with MBT.
Our approach records execution paths with a trie data-structure and visualizes
them with the aid of lightweight abstractions as state-based graphs (SGs) and
path-based graphs (PGs). These abstractions simplify the graphs and help us to
deal with complexity in moderately large systems. The visual feedback provided
by our technique is useful to understand to what degree the model and the SUT
are executed by the generated test cases, and to understand execution traces
and locate weaknesses in the coverage of the model. Being based on the state
machine of the model, the state graph focuses on the behaviors of a system in
relation to the test model. The path graph shows paths as transition sequences
and eliminates crossing edges.

Our second contribution is to provide a path coverage visualizer based on the
Modbat model-based API tester [2]. Our tool extends Modbat and enables the
visualization of path coverage without requiring modifications of the models.
Users of the tool can choose to visualize all execution paths in the SGs and
PGs, or limit visualization to subgraphs of the SGs and PGs for models of large
and complex systems. Our third contribution is an experimental evaluation on
several model-based test suites. We analyze the number of executed paths against
quantitative properties of the graphs. We show how edge thickness and colors
help to visualize the frequency of transitions on executed paths, what kinds
of paths have higher coverage than others, and what kinds of tests succeed or
fail. We also compare the resulting SGs and PGs with full state-based graphs
(FSGs) and full path-based graphs (FPGs). The FSGs and FPGs are the graphs
without applying abstractions; they are used only in this paper for comparison
with the SGs and PGs. We show that our abstraction technique helps to reduce
the number of nodes and edges to get concise and abstracted graphs.

The rest of this paper is organized as follows. Section 2 gives background on
extended finite state machines and Modbat. In Sect. 3, we give our definition
of execution paths and the trie data structure used for their representation.
In Sect. 4, we introduce our approach for the path coverage visualization. In
Sect. 5, we present the two types of graphs and the associated abstractions used.
Section 6 presents our experimental evaluation of the path coverage visualizer
tool and analyzes path coverage of selected test examples. In Sect. 7, we discuss
related work, and in Sect. 8 we sum up conclusions and discuss future work.

2 Extended Finite State Machines and Modbat

We use extended finite state machines (EFSMs) as the theoretical foundation for
our models and adapt the classical definition [6] to better suit its implementation
as an embedded language, and several extensions that Modbat [2] defines.

Definition 1 (Extended Finite State Machine). An extended finite state
machine is a tuple M = (S, s0, V, A, T) such that:

– S is a finite set of states, including an initial state s0.

2

– V = V1 × . . . × Vn is an n-dimensional vector space representing the set of
values for variables.

– A is a finite set of actions A : V → (V,R), where res ∈ R denotes the result
of an action, which is either successful, failed, backtracked, or exceptional.
A successful action allows a test case to continue; a failed action constitutes a
test failure and terminates the current test; a backtracked action corresponds
to the case where the enabling function of a transition is false [6]; exceptional
results are defined as such by user-defined predicates that are evaluated at
run-time, and cover the non-deterministic behavior of the SUT. We denote
by Exc ⊂ R the set of all possible exceptional outcomes.

– T is a transition relation T : S×A×S×E; for a transition t ∈ T we denote
the left-side (origin) state by sorigin(t) and the right-side (destination) state
by sdest(t), and use the shorthand sorigin → sdest if the action is uniquely
defined. A transition includes a possible empty mapping E : Exc → S, which
maps exceptional results to a new destination state.

Compared to the traditional definition of an EFSM [6], we merge the enabling
and update functions into a single action α ∈ A, and handle inputs and outputs
inside the action. Actions deal with preconditions, inputs, executing test actions
on the SUT, and its outputs. An action may also include assertions; a failed
assertion causes the current test case to fail. Finally, transitions support non-
deterministic outcomes in our definition.

Modbat. Modbat is a model-based testing tool aimed at performing online
testing on state-based systems [2]. Test models in Modbat are expressed as EF-
SMs in a domain-specific language based on Scala [18]. The model variables can
be arbitrarily complex data structures. Actions can update the variables, pass
them as part of calls to the SUT, and use them in test oracles.

Fig. 1 (left) shows the ChooseTest model that we will use as a simple running
example to introduce the basic concepts of Modbat and our approach to exe-
cution path visualization and abstraction. A valid execution path in a Modbat
model starts from the initial state and consists of a sequence of transitions. The
first declared state automatically constitutes the initial state. Transitions are
declared with a concise syntax: “origin”→ “dest” := {action}. The ChooseTest
model in Fig. 1 consists of three states: “ok”, “end , and “err”. It also uses
require in the action part as a precondition to check if a call to the random
function choose returns 0 (10% chance). Only in that case is the transition from
“ok” to “err” enabled. Function assert is then used to check if a subsequent
call to choose returns non-zero. If 0 is returned (10% chance), the assertion
fails. Thus, transition “ok” → “err” is rarely enabled; and if enabled, it fails
only infrequently.

Choices. Modbat supports two kinds of choices: (1) Before a transition is exe-
cuted, the choice of the next transition is available. (2) Within an action, choices
can be made on parameters that can be used as inputs to the SUT or for com-
putations inside the action. The latter are internal choices, which can be choices

3

class ChooseTest extends Model {
"ok" -> "ok" := skip
"ok" -> "end" := skip
"ok" -> "err" := {

require(choose(0, 10) == 0)
assert(choose(0, 10) != 0)

}
}

ok

end

errc0 c1

transition

step

internal choice

Fig. 1: Model ChooseTest (left) with steps and internal choices (right).

over a finite set of numbers or functions. These choices are obtained in Modbat
by calling the function choose. In our example, the action in transition “ok” to
“err” has two internal choices shown as c0 and c1 in Fig. 1 (right).

Transitions and steps. We divide an action into smaller steps to distinguish
choices between transitions from internal choices inside an action. A step is a
maximal-length sequence of statements inside an action that does not contain
any choices. Our definition of choices corresponds to the semantics of Modbat,
but also that of other tools, such as Java Pathfinder [22], a tool to analyze
concurrent software that may also contain non-deterministic choices on inputs.

Action results. Modbat actions (which execute code related to transitions) have
four possible outcomes: successful, backtracked, failed, or exceptional. A suc-
cessful action allows a test case to continue with another transition, if available.
An action is backtracked and resets the transition to its original state if any
of its preconditions are violated. An action fails if an assertion is violated, if
an unexpected exception occurs, or if an expected exception does not occur.
In our example, the action of transition “ok” to “err” is backtracked if the
require-statement in the action evaluates to false, and the action fails if the
assert-statement evaluates to false. Exceptional results are defined by custom
predicates that may override the destination state (sdest(t)) of a transition t;
see above. If no precondition or assertion is violated, and no exceptional result
occurs, the action is successful.

3 Execution Paths and Representation

Path coverage concerns a sequence of branch decisions instead of only one branch
at a time. It is a stronger measurement than branch coverage, since it considers
combinations of branch decisions (or statements) with other branch decisions (or
statements), which may not have been tested according to the plain branch or
statement coverage [16]. It is hard to reach 100% path coverage, as the number
of execution paths usually increases exponentially with each additional branch
or cycle [15].

A finite execution path is a sequence of transitions starting from the initial
state and leading to a terminal state. A terminal state in our case is a state

4

without outgoing transitions, or a state after a test failed. We denote by Sterminal

the set of terminal states.

Definition 2 (Execution Path). Let M = (S, s0, V, A, T) be an EFSM. A
finite execution path p of M is a sequence of transitions, which constitute a path
p = t0t1 . . . tn, tn ∈ T , such that sorigin(t0) = s0, the origin and destination
states are linked: ∀i, 0 < i ≤ n, sorigin(ti) = sdest(ti−1), and sdest(tn) ∈ Sterminal .

We first represent the executed paths in a data structure based on the tran-
sitions executed by the generated test cases, and then use this to visualize path
coverage of a test suite in the form of state-based and path-based graphs.

We record the path executed by each test case in a trie [5]. A trie is a prefix
tree data structure where all the descendants of a node in the trie have a common
prefix. Each trie node n stores information related to an executed transition,
including the following: t (executed transition); ti (transition information); trc
(transition repetition counter) to count the number of times transition t has been
executed repeatedly without any other transitions executing in between during a
test-case execution, with a value of 1 equalling no repetition; tpc (transition path
counter) to count the number of paths that have this transition t executed trc
times in a test suite; Ch, the set of children of node n; and lf , a Boolean variable
to decide if the current node is a leaf of the tree. The transition information ti
consists of the sorigin(t) and sdest(t) states of the transition, a transition identifier
tid , a counter cnt to count the number of times this transition is executed in a
path, an action result res, which could be successful, backtracked, or failed, and
sequences of transition-internal choices C for modeling non-determinism.

As an example, consider a test suite consisting of three execution paths:
p0 = [a → b, b → b, b → c, c → d], p1 = [a → b, b → b, b → b, b → c, c → d], and
p2 = [a → b, b → b, b → e], where a, b, c, d, and e are states. These execution
paths can be represented by the trie data structure shown in Fig. 2 where the
node labeled root represents the root of the trie. Note that this data structure is
not a direct visual representation of the paths and it is not the trie data structure
that we eventually visualize in our approach. Each non-root node in the trie in
Fig. 2 has been labeled with the transition it represents. As an example, node 1
represents the transition a→ b and node 2 represents the transition b→ b. This
reflects that all the three execution paths stored in the trie have a→ b followed
by b→ b as a (common) prefix. Each non-root node also has a label representing
the transition counters associated with the node. For the transition counters,
the value before the colon is trc (transition repetition counter), while the value
after the colon is tpc (transition path counter). For example, the transition b→ b
associated with node 2 has been taken three times in total. Two paths, (p0 and
p2) execute this transition once (label trc=1:tpc=2), while one path p1 executes
it twice (label trc=2:tpc=1). A parent node and a child node in the trie are
connected by a mapping 〈tid , res〉 7→ n in each node which associates a transition
identifier and action result (res) with a child (destination) node n.

5

root 1

trc=1:tpc=3
a→b

2

trc=1:tpc=2;trc=2:tpc=1
b→b

3

trc=1:tpc=2
b→c

5

trc=1:tpc=1
b→e

4

trc=1:tpc=2
c→d

Fig. 2: Example trie data structure representing three executed paths.

origin

dest

 1:1

origin

dest

 1:1
(f)

origin 1:1

(a) Successful action (b) Failed action (c) Self-transition

origin 1:1 6
 1

dest

 1:1

5
 1

origin

 1:1

8
 1

 1:1
(f)

 1:1 1:1 1:1 origin

exception

(e)

(d) Backtracked transition (e) Action with choices (f) Exception result

Fig. 3: Basic visualization elements of the state-based graphs (SGs).

4 Path Coverage Visualization

Our path coverage visualizer can produce two types of directed graphs: state-
based graphs (SGs) and path-based graphs (PGs). These two types of graphs
are produced based on the data stored in the trie data structure representing
the executed paths of the testing model. Fig. 3 and Fig. 4 illustrate the basic
visualization elements of the SGs and PGs, respectively, with the help of the
DOT Language [9], which can be used to create graphs with Graphviz tools [4].

The SGs and PGs have common node and edge styles (shape, color and thick-
ness) to indicate different features of the path- execution coverage visualization.

Node Styles. We use three types of node shapes in the graphs for path coverage
visualization. Elliptical nodes represent states in the SG as shown in Fig. 3.
Point nodes represent the connections between transitions/steps in the PG as
shown in Fig. 4. Diamond nodes visualize internal choices in both the SGs and
PGs as shown in Fig. 3e and Fig. 4e. Each diamond node has a value inside
indicates the chosen value. There is also an optional counter value label aside
each diamond node to show how many times this choice has been taken. The
edge labels of the format n : m will be discussed later.

6

 1:1
 1:1
(f)

(a) Successful action (b) Failed action

 1:1 1:1

(c) Self-transition (d) Backtracked transition

6
 1

 1:1

5
 1

 1:1

8
 1

 1:1
(f)

 1:1 1:1 1:1

(e) Action with choices

Fig. 4: Basic visualization elements of the path-based graphs (PGs).

Edge Styles. A directed edge in both the SGs and PGs represents an executed
transition and its related information as stored in the trie structure. We distin-
guish different kinds of edges based on the action results, using shape and color
styles. Black solid edges are used to represent successful transitions (Fig. 3a
and Fig. 4a). Blue dotted edges are used to visualize backtracked transitions
(Fig. 3d and Fig. 4d). Red solid edges labeled (f) are used to visualize failed
transitions (shown in Fig. 3b and Fig. 4b). Black solid loops represent self-
transitions (Fig. 3c and Fig. 4c) and are used when sdest(t) and sorigin(t) of
a transition t are the same state. Black dotted edges labeled (e) are used to
represent exceptional results for the SG (shown in Fig. 3f). This allows the vi-
sualization to distinguish between the normal destination state sdest(t) and the
exception destination state. For the PG, this kind of edge is ignored by merging
the point nodes of sorigin(t) and the exception destination state of a transition
t into one point node. If a transition t consists of multiple steps (Fig. 3e and
Fig. 4e), we only apply the edge styles to the last step edge which connects to
sdest(t), while other step edges use a black solid style.

Each edge may have a label for additional information, such as transition
identifier tid , and values of the counters trc and tpc. Here we use the for-
mat trc : tpc. It is optional to show these labels. For example, in both Fig. 3
and Fig. 4, the values of counters are all 1 : 1 indicates that each transition in
a test case is executed only once without any repetitions, and there is only one
path that has this transition executed.

The thickness of an edge indicates how frequently a transition is executed for
the entire test suite. The thicker an edge is, the more frequently is its transition
executed. Let nTests be the total number of executed test cases. Then, the
thickness of an edge is given by ln(

∑
count∗100
nTests + 1), where the value of count

is the tpc value of a transition in each path if there are no internal choices for
this transition. If a transition has internal choices, then we use the value of the
counter for each internal choice as the value of count. Since we merge edges in the
graphs corresponding to the same transitions or the same choices from different
paths, we then compute the sum of values of counts obtained for the transition
or choice.

7

5 State-based and Path-based Graphs

We now present the details of the state-based (SG) and path-based (PG) graphs
with abstractions that form the foundation of our visualization approach. These
abstractions underly the reduced representation of the execution paths.

McCabe [12] proposed basic path testing and gave the definition of a linearly
independent path. A linearly independent path is any path through a program
that contains at least one new edge which is not included in any other linearly
independent paths. A subpath q of an execution path p is a subsequence of
p (possibly p itself), and an execution path p traverses a subpath q if q is a
subsequence of p. In this paper, for the visualization of execution paths, we
merge subpaths from different linearly independent paths in both SG and PG
with the aid of the trie data structure.

5.1 State-based Graphs

An SG is a directed graph SG = (Ns, Et), where Ns ≡ {ns0 , ns1 , . . . , nsi} is a
set of nodes including both elliptical nodes representing states with their names
and diamond nodes representing internal choices with their values as discussed
in Sect. 4. Elliptical nodes use the name of their state as node identifier; diamond
nodes are identified by a tuple 〈v , cn〉, where v is the value of the choice, and
cn is an integer number starting from 1 and increasing with the number of dia-
mond nodes. Et ≡ {et0 , et1 , . . . , eti} is a set of directed edges representing both
transitions and steps. These edges connect nodes according to node identifiers.

An SG is an abstracted graph of the unabstracted full state-based graph
(FSG). An FSG may have redundant edges representing the same transition/step
between two states; it may also contain choices with the same choice value ap-
pearing more than once. These situations, in general, contribute to making the
FSG large, complex and difficult to analyze, especially for large and complex
systems. Note that the FSG is only used by us to show its complexity in this pa-
per for comparison with the SG. The FSG for the ChooseTest model (discussed
in Sect. 3) is already very dense after only 100 test cases (see Fig. 5).

In order to reduce the complexity of graphs such as Fig. 5, we abstract the
FSG to get the SG, and use edge thickness to indicate the frequency of transitions
in the executed paths. We use the ChooseTest model with 1000 executed test
cases as an example to show how the SG is obtained in four abstraction steps:

1. Merge edges of subpaths: the trie data structure is used to merge subpaths of
linearly independent paths when storing transitions in the trie. As discussed
for Fig. 2, transition a → b followed by b → b is a (common) prefix for
all the three execution paths p0, p1 and p2. In other words, all these three

ok

end

8

4

7

9

6

0

8

2

5

4

7

1

9

6

0

2

err

2

5

4

9

3

Fig. 5: FSG for 100 test cases of ChooseTest.

8

ok

end

8

2

5

4

7

1

9

3

6

0

8

2

5

4

7

1

9

3

6

0

0

2

4

7

1

9

3

err

0

(f)

8

2

5

4

7

1

9

3

6

Fig. 6: The graph for 1000 test cases of ChooseTest after merging subpaths.

execution paths traverse the subpaths a→ b and b→ b. Therefore, to obtain
the SG, edges representing transition a→ b and b→ b from three execution
paths are merged into one edge by the trie data structure. We then use an
edge label of the form “trc : tpc” to show how a transition represented by this
edge is executed. (Here, we do not show edge labels due to space limitations.)
After merging edges of subpaths, we get only linearly independent paths in
the graph. Fig. 6 shows the graph of the ChooseTest model after merging
subpaths. There are seven linearly independent paths: p0 = [ok → end],
p1 = [ok → ok , ok → end], p2 = [ok → ok , ok → err(backtracked), ok →
end], p3 = [ok → ok , ok → err], p4 = [ok → err(backtracked), ok → end],
p5 = [ok → err(failed)] and p6 = [ok → err].

2. Merge edges of linearly independent paths: from Fig. 6, it can be noticed that
after merging edges of subpaths, the graph may still have redundant edges
between two states that represent the same transition with the same action
result from different linearly independent paths. For example, there are four
edges between the “ok” and “end” states, from four linearly independent
paths: p0, p1, p2 and p4. We merge such edges into one single edge. We also
aggregate the path coverage counts. The aggregated counts can be shown as
an optional edge label on the form “trc : tpc”, using “;” as the separator, e. g.,
“1 : 304; 1 : 158; 1 : 177; 1 : 290” for the edge between the “ok” and “end”
states after merging p0, p1, p2 and p4.

3. Merge internal choice nodes: internal choice nodes of a transition are merged
in two ways. First, based on Step 1, when storing transitions in the trie, each
transition has recorded choice lists; we merge choice nodes from different
choice lists if these choice nodes have the same choice value and they are
a (common) prefix of choice lists. For example, for choice lists [0, 1, 2] and
[0, 1, 3] (0, 1, 2, 3 are choice values), we notice that these two choice lists both
have choice nodes with value 0 and 1, and they are a (common) prefix for
these two lists. We then merge choice nodes with value 0 and 1 to become one
choice node, respectively, when storing transitions in the trie. Second, if there
are still choice nodes of a transition from different linearly independent paths,
with the same value appearing more than once, such as choices in Fig. 6, then
we merge them into one choice node during Step 2. For both approaches, we
get the result of the sum of the values of counters of merged choice nodes.
This result denotes the total number of times a choice value appears in the

9

ok

end 8 2 5 4 7 1 9 3 6 0 0

8 2 5 4 7 1 9 3 6

err

0

(f)

Fig. 7: SG for 1000 test cases of ChooseTest with all abstractions applied.

SG, and it can then be shown in addition to the outcome of the choice on
the label of the final choice node after merging. Note that to avoid visual
clutter, we elide showing the target state for backtracked transitions.

4. Merge loop edges: loop edges represent self-transition loops and backtracked
transitions; they are merged if they represent the same transition with the
same action result.

Fig. 7 illustrates the final SG with all abstractions after 1000 test cases. One
characteristic of the SG is that it is a concrete instance of its underlying state
machine graph. The EFSM shows potential transitions, whereas the SG shows
the actually executed steps of actions, and internal choices for non-determinism.
For example, Fig. 7 is a concretization of the state machine shown in Fig. 1. As
shown in Fig. 1, the transition “ok”→ “err” has a precondition with an internal
choice over values 0 to 9 (see Fig. 7). Only choice 0 enables this transition; the
transition is backtracked the original state “ok” otherwise, as shown with the
blue dotted edges. If the transition is enabled by a successful choice with value
0, the assertion, which is another internal choice that fails only for value 0 out
of 0 to 9, is executed; its failure is shown by the red solid (failing) edge in Fig. 7.

5.2 Path-based Graphs

The PG is a directed graph PG = (Np, Et), where Np ≡ {np0
, np1

, . . . , npi
} is a

set of nodes, including point nodes representing connections between transitions
and diamond nodes representing internal choices with their values (see Sect. 4);
and Et ≡ {et0 , et1 , . . . , eti} is a set of directed edges representing both transitions
and steps. They connect nodes using the identifiers of nodes.

The nodes in PG in contrast to SG do not correspond to states in the EFSM;
instead, each node corresponds to a step in a linear independent path through
the EFSM. Therefore, each point node is allocated a point node identifier pn, an
integer starting from 0 (we elide the label in the diagrams here). The value of pn
increases with the number of point nodes. Each diamond node is identified by a
tuple 〈v , cn〉, similar to the diamond nodes in the SG. For the edges representing
transitions, they are connected by point nodes according to their identifiers,
which results in constructing paths one by one. All constructed paths start with
the same initial point node and end in different final point nodes. The number of
constructed paths in the PG indicates the number of linearly independent paths.

10

8

2

5

4

7

1

9

3

6

0

8

2

5

4

7

1

9

3

6

0

0

2

4

7

1

9

3

0

(f)

8

2

5

4

7

1

9

3

6

Fig. 8: Path-based graph for 1000 test cases of the ChooseTest model.

An PG is an abstracted graph of the full state-based graph (FPG) without
any abstractions. (Here, we do not show the FPG of the ChooseTest model due
to space limitations.) As was the case for SG, we apply abstractions to reduce
the complexity of the FPG to obtain the PG and use thickness to indicate the
frequency of transitions taken by executed paths. The reduction is based on three
abstractions:

1. Merge edges of subpaths using the same approach as for step 1 of the SG.
2. Merge internal choice nodes with the first approach of step 3 used to merge

choice nodes for the SG.
3. Merge loop edges representing self-transition loops and backtracked transi-

tions as for the SG.

Unlike for the SG, we do not merge edges of linearly independent paths and
choice nodes from different linearly independent paths for the PG, since our goal
for the PG is to show linearly independent paths after applying the abstractions.

Fig. 8 shows the abstracted PG for the ChooseTest model. It can be seen that
there are seven black final point nodes from seven paths, which indicate that
seven linearly independent paths have been executed. The information about
the number of linearly independent paths is one characteristic of the PG, and
this information is not easy to derive from the SG shown in Fig. 7.

5.3 User-defined search function

As the SG and PG graphs might become unwieldy for complex testing models,
the user can specify a selection function to limit the visualization to a subgraph.
After completion of the tests, the user can filter the graph into a subgraph by
providing a query in the form of a quadruple 〈tid , res, l , ptid〉 to locate a recorded
transition in the trie data structure, where tid is the transition identifier for the
transition that the user wants to locate; res is the action result of this transition;
l is the level of this transition in the trie; ptid is the transition identifier for this
transition’s parent in the trie. With this selection function, users can select a
subtrie to generate both SG and PG with the corresponding root node in lieu of
an interactive user-interface. It should be noted that this projection only affects
visualization, and not the number of executed tests.

11

6 Experimental Evaluation

We have applied and evaluated our path coverage visualization approach on a
collection of Modbat models. The list of models includes the Java server socket
implementation, the coordinator of a two-phase commit protocol, the Java array
list and linked list implementation, and ZooKeeper [11]. The array and linked
list models, as well as the ZooKeeper model, consist of several parallel EFSMs,
which are executed in an interleaving way [2].

Table 1 summarizes the results. For each Modbat model, we have considered
configurations with 10, 100, 200, 500 and 1000 randomly generated test cases.
The table first lists the statistics reported by Modbat: the number of states (S)
and transitions (T) covered for each model (including their percentage), and the
number of test cases (TC) and failed test cases (FC). The second part of the
table shows the metrics of the graphs we generate. For both SGs and PGs, we
list: the total number of Nodes (including both state nodes and choice nodes);
the total numbers of Edges (E), the number of failed edges (FE), and loops (L).
In addition to these graph metrics, for the PGs, our path coverage visualizer
calculates the numbers of linearly independent paths (LIP), the longest paths
(LP), the shortest paths (SP), the average lengths of paths (AVE), and the
corresponding standard deviation (SD).

In Table 1, when comparing the results of the SG and PG obtained from all
the models, we can see that for any increase in the number of test cases by going
from 10 to 1000, the SG has a smaller number of nodes and edges than the PG.
This shows that the SG is constructed in a more abstract way than the PG and
is useful for giving an overview of the behavior. For the PG, although there are
more nodes and edges in the graph compared to the SG, we can directly see
the information about the number of linearly independent paths (LIP column
in Table), so that we know how execution paths are constructed and executed
from the sequences of transitions executed. This information cannot be easily
seen from the SG.

In addition, the results in Table 1 indicate what degree the models are exe-
cuted by the generated test cases. For example, for the coordinator model, the
numbers of nodes and edges in both the PG and SG do not increase after 100
test cases are executed, and there are no failed edges. This gives us confidence
about how well this model is explored by the tests. The same situation occurs
for the array and linked list models. For the Java server socket and Zookeeper
models, the number of failed edges for each model keeps increasing with more
tests. This indicates that for these kinds of complex models, there are parts that
are hard to reach and explore, so there might be a need to increase the number
or quality of the tests. Moreover, we can see from Table 1 that for some models
such as the ZooKeeper model, there are very large numbers of nodes and edges in
both the SG and PG for, e. g., 1000 test cases executed. To deal with such large
and complex models, we can use the user-defined search function discussed in
Sect. 5.3 to limit the visualization to a subgraph. We do not show any subgraphs
due to space limitations.

12

Table 1: Experimental results for the Modbat models.

Model S T TC FC
Path-based (PG) State-based (SG)

Nodes Edges Paths Nodes Edges
E FE L LIP LP SP AVE SD E FE L

JavaNio
ServerSocket

7/ 7
(100%)

17/17
(100%)

10 2 57 79 1 17 8 14 3 9.25 4.18 9 23 1 6
100 3 177 243 1 48 30 15 2 7.87 3.84 9 23 1 6
200 8 363 528 4 111 53 29 2 9.68 6.24 10 25 1 7
500 14 779 1147 8 247 105 29 2 10.51 5.29 11 27 1 8
1000 28 1269 1904 15 439 168 29 2 10.80 4.79 11 27 1 8

Coordinator
Test

7/ 7
(100%)

6/ 6
(100%)

10 0 17 20 0 0 1 6 6 6.00 0.00 17 20 0 0
100 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
200 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
500 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0
1000 0 21 27 0 0 1 6 6 6.00 0.00 21 27 0 0

ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 5/11 (45%) 10 0 174 542 0 276 6 99 12 58.17 38.75 34 85 0 38

ListIterator 2/ 2 (100%) 12/29 (41%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 100 0 1171 3222 0 1571 75 181 2 23.93 29.74 102 216 0 94

ListIterator 2/ 2 (100%) 13/29 (44%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 200 1 3369 10474 1 4848 138 181 2 45.35 47.46 204 423 1 184

ListIterator 2/ 2 (100%) 17/29 (58%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 500 1 10438 29730 1 14024 319 181 2 48.96 43.55 467 955 1 417

ListIterator 2/ 2 (100%) 25/29 (86%)
ArrayList 1/ 1 (100%) 11/11 (100%)
Iterator 2/ 2 (100%) 10/11 (90%) 1000 14 29056 86871 1 40609 649 406 2 70.87 64.17 896 1812 1 815

ListIterator 2/ 2 (100%) 27/29 (93%)
LinkedList 1/ 1 (100%) 18/19 (94%)
Iterator 2/ 2 (100%) 8/11 (72%) 10 0 216 718 0 348 9 191 10 56.11 72.01 34 85 0 36

ListIterator 1/ 2 (50%) 5/29 (17%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 100 0 1190 3348 0 1679 83 191 2 23.51 38.05 148 312 0 131

ListIterator 1/ 2 (50%) 7/29 (24%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 200 0 6266 17140 0 7549 178 191 2 54.45 49.14 405 824 0 295

ListIterator 2/ 2 (100%) 19/29 (65%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 500 0 15091 43303 0 19797 406 257 2 60.17 61.56 699 1413 0 522

ListIterator 2/ 2 (100%) 22/29 (75%)
LinkedList 1/ 1 (100%) 19/19 (100%)
Iterator 2/ 2 (100%) 9/11 (81%) 1000 0 39391 113155 0 52461 825 257 2 74.66 67.19 1404 2819 0 1083

ListIterator 2/ 2 (100%) 24/29 (82%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 10 0 488 536 0 6 10 27 17 24.60 2.65 158 203 0 6ZKClient 9/13 (69%) 28/54 (51%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 100 7 4628 5160 7 76 98 31 4 22.57 5.99 862 1110 5 75ZKClient 11/13 (84%) 38/54 (70%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 200 9 9869 9869 9 138 197 31 4 22.88 5.67 1532 1964 5 135ZKClient 11/13 (84%) 39/54 (72%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 500 26 27208 31918 25 325 480 31 4 22.79 5.31 3057 3910 10 320ZKClient 11/13 (84%) 40/54 (74%)
ZKServer 4/ 4 (100%) 4/ 4 (100%) 1000 47 63524 76090 44 648 937 31 4 23.01 5.07 5719 7201 16 643ZKClient 11/13 (84%) 43/54 (79%)

We use the Java server socket model to further discuss our experimental re-
sults based on the graphs obtained. The static visualization of the EFSM (see
Fig. 9) shows the transition system and uses red edges to show expected excep-
tions, since the notion of failed tests does not apply. After applying abstractions,
Fig. 10 shows the SG and PG for the Java server socket model with ten test cases
executed, including failed transitions in red and labeled with (f).

Compared to the EFSM in Fig. 9, the SG in Fig. 10 shows the concrete
executions instead of possible executions as shown by the EFSM. We see from
the SG that all states have been visited after ten test cases; the SG also provides

13

reset

open

 open

 toggleBlocking

bound

 getLocalPort

err

 NotYetBoundExc.

closed

 close

 toggleBlocking

connected

 accept accepting

 startClient

 close close

 readFrom

 interrupt

 (accept)

 accept

 close

 ClosedChannelExc.

 close

Fig. 9: EFSM for the Java server socket model.

reset

open

err

bound

closed

accepting

connected false true

(e)

 (f)

false

false

true

true

 (f)

false

Fig. 10: SG (left) and PG (right) for the above model after ten tests.

information about possible exceptions and failures occurred, actual paths and
choices taken; the edge thickness indicates how often transitions were taken.

A good path-coverage-based testing strategy requires that the test cases ex-
ecute as many linearly independent paths as possible. For the PG in Fig. 10, we
can directly see that there are eight linearly independent paths. Each linearly
independent path has a sequence of edges which represent executed transitions
of the path. This gives us a simpler way of showing the paths as transition se-
quences, at the expense of a graph that has more nodes and edges overall. In
addition, all loops, backtracked edges and taken choices are directly shown with
their related linearly independent paths in the PG, and there is one linearly

14

independent path which shows a failed test in the graph. Also, like the SG, the
edge thickness in the PG indicates how often transitions were taken.

To show how our abstraction reduces the complexity of graphs, we use the
Java server socket model as an example. Fig. 11 shows the FSG without applying
any abstractions for the Java server socket model with 10 test cases executed.
This graph should be contrasted with the SG shown in Fig. 10 (left). From this
FSG, we notice that the FSG has many redundant edges between both state
nodes and choice nodes, and it also has more choice nodes, as opposed to the SG
in Fig. 10. Here, we do not show the FPG for the Java server socket model due
to space limitations, but we give the detailed comparison between the SG and
FSG and between the PG and FPG for the Java server socket model in Table 2.
For instance, with 1000 test cases, the PG has three times fewer edges than the
FPG; the SG has only 11 nodes and 27 edges, as compared to 61 nodes and 5491
edges in the FSG. This comparison shows that with the help of abstractions, the
SG and PG are much more concise and less complex than the FSG and FPG.

7 Related Work

Coverage analysis is an important concern in software testing. It can be used
as an exit criterion for testing and deciding whether additional test cases are
needed, and related to which aspects of the SUT. For source code coverage,
tools generally only report a verdict on which line of code has been executed
how often. In the tool Tecrevis, a visual representation of redundancy in unit

reset

open

err

bound

closed

accepting

connectedfalse false true

(e) (e)

true false false (f)(f)

Fig. 11: FSG for the Java server socket model after ten tests.

Table 2: Comparison between PG and FPG, and between SG and FSG of the
Java server socket model.

Model TC
PG FPG SG FSG

Nodes Edges Nodes Edges Nodes Edges Nodes Edges
E FE L E FE L E FE L E FE L

JavaNio
ServerSocket

10 57 79 1 17 70 97 2 21 9 23 1 6 13 109 2 31
100 177 243 1 48 376 497 3 100 9 23 1 6 15 545 3 145
200 363 528 4 111 811 1101 8 221 10 25 1 7 26 1239 8 353
500 779 1147 8 247 1943 2613 14 520 11 27 1 8 40 2910 14 816

1000 1269 1904 15 439 3721 4982 28 996 11 27 1 8 61 5491 28 1510

15

tests provides a graphical mapping between each test case and the artifacts in
the SUT (here: methods) that indicates which tests exercise the same compo-
nent [13]. In path coverage, the underlying graph is usually derived from the
source code, the control flow graph, or from the call graph of the SUT when
considering function calls. In our approach, we are not directly concerned with
visualizing paths of the SUT, but rather, paths on the testing model used for
test-case generation. Correspondingly, our graphs are usually more concise than
the control flow graph, as not all branches of the SUT may need to be modeled at
the level of ESFMs. In particular, with respect to related work and the coverage
analysis domain, visualization is usually an orthogonal concern to quantifying
coverage, and not often considered.

Visualization makes coverage information understandable. Ladenberger and
Leuschel address the problem of visualizing large state spaces in the ProB tool
[14]. They introduce projection diagrams, which through a user-selectable func-
tion partition the states into equivalence classes. A coloring scheme for states
and transitions indicates whether the state space has been exhausted, or all col-
lapsed transitions share the same enablement. As their diagrams are based on
the actually explored state space, they do not directly visualize coverage of the
underlying model as in our approach. Moreover, they do not cover multiple tran-
sitions between the same pair of states as in our application scenario; however,
this could be accounted for by adjusting the thickness of edges by the number
of collapsed edges. Similarly, Groote and van Ham [10] applied an automated
visualization to examples from the Very Large Transition System (VLTS) Bench-
mark set [8]. A relation between the graphical representation of the underlying
model (in the form of UML sequence diagrams) and a set of paths from test
cases is presented by Rountev et al. [19]. Their goal is deriving test cases, and
as such they are not concerned with a representation of the paths.

The basic visualization elements of both SG and PG we have defined in
this paper are based on the concept of simple path proposed by Ammann and
Offutt [1]. An execution path is a simple path if there are no cycles in this path,
with the exception that the first and last states may be identical (the entire
path itself is a cycle) [1]. Based on this definition, any execution path can be
composed of simple paths. Therefore, in this paper, the concept of the simple
path is applied by considering only transitions from sorigin(t) to sdest(t) (or
sorigin(t) if t is a self-transition or backtracked transition).

8 Conclusions and Future Work

The main contribution of this paper is to present an approach to capture and
visualize test-case-execution paths through models. This is achieved by first
recording execution paths with a trie data structure, then visualizing them using
state-based graphs (SGs) and path-based graphs (PGs) obtained by applying ab-
stractions. The SG conveys the behavior of the model well. The PG only shows
executed paths, without providing detail. It avoids crossing edges, which makes

16

the PG more scalable, even though it contains more nodes and edges as such.
Also, the PG directly indicates the number of linearly independent paths.

To obtain the SGs and PGs, we have proposed abstractions as our initial
technique to reduce the size and complexity of graphs. We have implemented our
approach as a path coverage visualizer for the Modbat model-based API tester.
An experimental evaluation on several model-based test suites shows that our
abstraction technique reduces the complexity of graphs, and our visualization of
execution paths helps to show the frequency of transitions taken by the executed
paths and to distinguish successful from failed test cases.

Future work includes investigating other techniques and tools to support
more visualization features in the SGs and PGs, using more abstractions for the
further reduction of larger graphs and applying the SGs and PGs not only for
visualizing execution paths of models, but also for the SUT. Another direction
of future work is to investigate approaches to perform state space exploration ef-
ficiently for selecting good test suites and visualizing execution paths. Although
our current visualization approach has been applied to the Modbat tester, it
is also possible to use it for other testing platforms. Furthermore, additional
coverage metrics such as branch-coverage of boolean subexpressions within pre-
conditions and assertions, or the more detailed modified condition/decision cov-
erage (MC/DC) [7] could be used to refine the intermediate execution steps even
further. In essence, many of the coverage techniques available at the SUT-level
could be lifted to the model level.

References

1. P. Ammann and J. Offutt. Introduction to software testing. Cambridge University
Press, 2016.

2. C. Artho, A. Biere, M. Hagiya, E. Platon, M. Seidl, Y. Tanabe, and M. Yamamoto.
Modbat: A model-based API tester for event-driven systems. In Haifa Verification
Conference, volume 8244 of Lecture Notes in Computer Science, pages 112–128.
Springer, 2013.

3. C. Artho, G. Rousset, and Q. Gros. Precondition coverage in software testing. In
Proc. 1st Int. Workshop on Validating Software Tests (VST 2016), Osaka, Japan,
2016. IEEE.

4. AT&T Labs Research. Graphviz - Graph Visualization Software. https://www.
graphviz.org.

5. P. Brass. Advanced Data Structures. Cambridge University Press, 2008.
6. K. Cheng and A. Krishnakumar. Automatic functional test generation using the

extended finite state machine model. In Proc. 30th Intl. Design Automation Conf.,
DAC, pages 86–91, Dallas, USA, 1993. ACM.

7. J. J. Chilenski and S. P. Miller. Applicability of modified condition/decision cov-
erage to software testing. Software Engineering Journal, 9(5):193–200, 1994.

8. CWI and INRIA. The VLTS benchmark suite. https://cadp.inria.fr/
resources/vlts/, 2019. Last accessed: 2019-05-20.

9. E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot. http://www.
graphviz.org/pdf/dotguide.pdf, 2006.

10. J. F. Groote and F. van Ham. Interactive visualization of large state spaces. Intl.
Journal on Software Tools for Technology Transfer, 8(1):77–91, Feb 2006.

17

11. P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: wait-free coordination
for internet-scale systems. In P. Barham and T. Roscoe, editors, 2010 USENIX
Annual Technical Conference. USENIX Association, 2010.

12. P. C. Jorgensen. Software testing: a craftsman’s approach. Auerbach Publications,
2013.

13. N. Koochakzadeh and V. Garousi. Tecrevis: a tool for test coverage and test
redundancy visualization. In Intl. Academic and Industrial Conf. on Practice and
Research Techniques (TAIC PART), volume 6303 of Lecture Notes in Computer
Science, pages 129–136. Springer, 2010.

14. L. Ladenberger and M. Leuschel. Mastering the visualization of larger state spaces
with projection diagrams. In M. J. Butler, S. Conchon, and F. Zaïdi, editors, For-
mal Methods and Software Engineering - 17th Intl. Conf. on Formal Engineering
Methods, ICFEM 2015, volume 9407 of Lecture Notes in Computer Science, pages
153–169. Springer, 2015.

15. J. Lawrence, S. Clarke, M. Burnett, and G. Rothermel. How well do professional
developers test with code coverage visualizations? An empirical study. In IEEE
Symp. on Visual Languages and Human-Centric Computing, pages 53–60. IEEE,
2005.

16. S. Lu, P. Zhou, W. Liu, Y. Zhou, and J. Torrellas. Pathexpander: Architectural
support for increasing the path coverage of dynamic bug detection. In Proc. of
the 39th Annual IEEE/ACM Intl. Symp. on Microarchitecture, pages 38–52. IEEE
Computer Society, 2006.

17. G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The art of software
testing, volume 2. Wiley Online Library, 2004.

18. Programming Methods Laboratory of École Polytechnique Fédérale de Lausanne.
The Scala Programming Language. https://www.scala-lang.org.

19. A. Rountev, S. Kagan, and J. Sawin. Coverage criteria for testing of object inter-
actions in sequence diagrams. In M. Cerioli, editor, Fundamental Approaches to
Software Engineering, 8th Intl. Conf., FASE 2005, volume 3442 of Lecture Notes
in Computer Science, pages 289–304. Springer, 2005.

20. M. Utting and B. Legeard. Practical Model-Based Testing: A Tools Approach.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

21. M. Utting, A. Pretschner, and B. Legeard. A Taxonomy of Model-based Testing
Approaches. Software Testing, Verification and Reliability, 22:297–312, 2012.

22. W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model checking programs.
Automated Software Engineering Journal, 10(2):203–232, 2003.

18

