
Verifying Networked Programs Using a Model Checker Extension

Watcharin Leungwattanakit
University of Tokyo

Tokyo, Japan
watcharin@is.s.u-tokyo.ac.jp

Cyrille Artho
RCIS/AIST

Tokyo, Japan
c.artho@aist.go.jp

Masami Hagiya
University of Tokyo

Tokyo, Japan
hagiya@is.s.u-tokyo.ac.jp

Yoshinori Tanabe
University of Tokyo

Tokyo, Japan
y-tanabe@ci.i.u-tokyo.ac.jp

Mitsuharu Yamamoto
Chiba University

Chiba, Japan
mituharu@math.s.chiba-u.ac.jp

Abstract

Model checking finds failures in software by exploring
every possible execution schedule. Until recently it has
been mainly applied to stand-alone applications. This pa-
per presents the I/O-cache, an extension for a Java model
checker to support networked programs. It contains a cache
module, which captures data streams between a target pro-
cess and its peer processes. This demonstration also shows
how we found a defect in a WebDAV client with a model
checker and our extension.

1 Introduction

Software testing executes an application through only
one thread schedule for each run, but the threads in the ap-
plication may be scheduled by the operating system in a
non-deterministic way. As a result, testing would miss some
failures. Model checking solves this problem by exploring
every possible schedule.

Networked applications are very complex, since they ex-
change data and interoperate with other entities. Several
techniques have been established to verify such applications
with a model checker [2]. The aim of our research is to of-
fer another technique together with a tool, which relaxes
restrictions of previous approaches. This paper proposes a
Java PathFinder (JPF) [4] extension using a cache module
as an interface to other processes.

A single-process model checker cannot be applied to net-
worked applications, because some processes are not run-
ning inside the model checker, and consequently those pro-
cesses are not backtracked together with the target process.
Previous work has shown that a cache can be used to act as a
proxy to external processes [1]. Our I/O-cache makes use of

requests and responses in the past and sends already known
responses back to the target application instead of dispatch-
ing requests to the peer. As a result, peers do not become
aware of the model checker. If a request is not cached, the
I/O-cache will physically send the request to the peer, wait
for a response, and remember it.

The cache stores information it observed in a data struc-
ture that contains communication traces of each channel.
When the target program sends a message to a peer, the
message is stored in the cache. The I/O-cache then polls the
peer process for a response. If there is a response, it will
be matched with the last request. Some kinds of programs
such as web servers serving dynamic content produce mes-
sages differently each time. To handle such programs, the
cache module creates a new instance of the peer process to
handle a new set of messages.

2 Tool Overview and Demonstration

The I/O-cache is an extension to JPF (see Figure 1). The
internal state of JPF changes continually during program
verification. Tool developers can write listeners and sub-
scribe them to certain internal events. When a state transi-
tion takes place, the cache saves and restores communica-
tion data such as stream pointers and the number of active
connections.

The Java library class Socket is modified to return spe-
cial InputStream and OutputStream instances. The
customized output stream redirects data sent by a target
program to the cache, whereas the customized input stream
reads data from the cache rather than the real peer process.
Socket and ServerSocket have native peer classes,
which run on the standard Java VM. These classes are re-
sponsible for the establishment of physical connections to
peer processes. The cache is initialized when either class

Figure 1. I/O-cache system architecture.

transition #3 thread: 0
ThreadChoiceFromSet {>main,SocketTimeout}
 StreamDemultiplexor : timer = t.setTimeout();
transition #153 thread: 1
ThreadChoiceFromSet {main,>SocketTimeout}
 StreamDemultiplexor.java:435 : timer = null;
 StreamDemultiplexor.java:438 : demuxList.remove(this);
transition #154 thread: 0
ThreadChoiceFromSet {>main,SocketTimeout}
 StreamDemultiplexor.java:138 : timer.hyber();
 HTTPConnection.java:2268 : requestList.remove(req);
snapshot #1
thread index=1,name=SocketTimeout,status=RUNNING
 call stack:
 at StreamDemultiplexor.close(StreamDemultiplexor)
 at StreamDemultiplexor.markForClose(StreamDemultiplexor)
 at SocketTimeout.run(StreamDemultiplexor)

NullPointerException: calling ’hyber()V’ on null object
 at StreamDemultiplexor.init(StreamDemultiplexor.java)

elapsed time: 0:00:09
states: new=3400, visited=2833, BT=6073
search: maxDepth=280, constraints=0
choice generators: thread=3400, data=0
heap: gc=6060, new=7122, free=629
instructions: 306142
max memory: 25MB

Figure 2. The error trace of the WebDAV client
(some transitions are omitted).

init() {
 timer = t.setTimeout();
 timer.hyber();
}
close() {
 stream.close();
 socket.close();
 if (timer != null)
 timer = null;
}

class StreamDemultiplexor
static {
 t = new SocketTimeout(10);
 t.start();
}

class SocketTimeout
 extends Thread
SocketTimeout(sec) {
 list = new Entry[sec];
 for each entry in list
 entry = new Entry;
}

setTimeout() {
 list[c].mark();
 return list[c];
}

run() {
 while(alive) {
 sleep(sec);
 c = (c + 1)%sec;
 if (list[c] is marked
 and is not suspended)
 list[c].demux.close();
}}

(*)

(**)

Figure 3. Pseudocode of the WebDAV client.

Socket or ServerSocket is referenced for the first
time by the program being verified. After that, it is ready
to manage connection requests and data exchange between
both sides of communication.

The time at which peers are launched depends on their
roles. If a peer is a server, it must be completely initial-
ized before JPF and the target process start. If the peer is
a client, it is executed after the target process has called
method accept. Execution order is specified in start-up
scripts to make sure that each process runs at the right time.

A WebDAV test client [5], which is used for testing
WebDAV-supported HTTP servers, was one of the applica-
tions we analyzed. Our extended JPF finds a defect consist-
ing of a NullPointerException, as shown in the error
trace in Figure 2. The code involving the defect is shown in
Figure 3. A countdown thread is created in the static initial-
izer of class StreamDemultiplexor. Any stream that
is inactive for 10 seconds will be automatically closed by
this thread, which is started immediately after creation. In
transition #3, the main thread executes method init and
starts counting time by method setTimeout, which also
returns an object handler timer at line (*). In the scenario
causing a failure, before method hyber is called, thread
SocketTimeout gets its turn and continues running until
time runs out. The countdown thread closes the correspond-
ing stream and socket at line (**), setting variable timer
to null (transition #153). This causes the method call to
timer.hyber to fail at transition #154.

The failure is caused by improper synchronization in ac-
cess to timer objects. It allows another thread to break in
on the execution of method init. Such a fault might occur
in programs with a high degree of thread-level parallelism.
The Java language specification does not guarantee fairness
of the thread scheduler [3]. A thread not to run for a certain
time, which may cause defects that are very hard to find us-
ing traditional testing. This problem is addressed by model
checking (and our tool extension).

References

[1] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe.
Efficient model checking of networked applications. In Proc.
TOOLS EUROPE 2008, volume 19 of LNBIP, pages 22–40,
Zurich, Switzerland, 2008. Springer.

[2] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe.
Tools and techniques for model checking networked pro-
grams. In Proc. SNPD 2008, Phuket, Thailand, 2008. IEEE.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Lan-
guage Specification. Addison-Wesley, Third edition, 2005.

[4] K. Havelund and T. Pressburger. Model checking Java pro-
grams using Java PathFinder. International Journal on Soft-
ware Tools for Technology Transfer, 2(4):366–381, 2000.

[5] B. Holmes. A Simple PROPFIND/PROPPATCH Client,
2000.

	Introduction
	Tool Overview and Demonstration

