
Accurate Centralization for Applying Model Checking on Networked
Applications

Cyrille Artho
National Institute of Informatics

Tokyo, Japan

Pierre-Loïc Garoche
Institut de Recherche en Informatique de Toulouse

France∗

Abstract

Software model checkers can be applied directly
to single-process programs, which typically are multi-
threaded. Multi-process applications cannot be model
checked directly. While multiple processes can be merged
manually into a single one, this process is very labor-
intensive and a major obstacle towards model checking of
client-server applications.

Previous work has automated the merging of multiple
applications but mostly omitted network communication.
Remote procedure calls were simply inlined, creating sim-
ilar results for simple cases while removing much of the
inherent complexities involved. Our goal is a fully trans-
parent replacement of network communication. Other lan-
guage features were also modeled more precisely than in
previous work, resulting in a program that is much closer
to the original. This makes our approach suitable for test-
ing, debugging, and software model checking. Due to the
increased faithfulness of our approach, we can treat a much
larger range of applications than before.

1. Introduction

Java [11, 17] is a popular object-oriented, multi-threaded
programming language. Verification of Java programs has
become increasingly important. However, most non-trivial
programs use network communication. Testing distributed
systems is extremely difficult. The non-determinism intro-
duced by asynchronous communication and thread schedul-
ing makes testing unreliable, because failures may only oc-
cur under particular schedules. Model checking finds such
failures reliably while still being completely automated [6].
Several model checkers for Java-based programs have been
created [2, 8, 23]. Unfortunately, these model checkers can

∗Thanks go to the NII international internship program for its financial
support.

only explore a single process and are not applicable to net-
worked applications, where several processes interact.

Process centralization allows model checking dis-
tributed applications: Processes are converted into threads
and merged into a single application [21]. Networked ap-
plications can then run as one multi-threaded application.
This approach is applicable if all programs to be merged
are available in the same format and inter-program commu-
nication can be modeled accurately. The latter has not been
addressed satisfactorily yet. Previous work inlined parts of
one program in another one, modeling certain patterns of
interaction using Remote Method Invocation (RMI) under
Java [21]. Unfortunately, this implementation is very spe-
cific to certain RMI-based programs and cannot cover more
general, TCP/IP-based communication. Our approach can
fully replace the widely used socket mechanism. It is there-
fore much more generic. Furthermore, we treat certain lan-
guage features with a higher precision and explain in more
detail possible solutions for mapping processes to threads.
This increased precision allows us to use our tool on any
application where an automated approach is feasible, and
correctly centralizes applications that were not treated ac-
curately in previous work. While our goal is to model check
the resulting centralized application, the technique may also
be used to simplify debugging of multi-process systems, al-
lowing them to run on a single-process debugger. We do not
pursue this idea further in this paper.

This paper is organized as follows: Section 2 describes
how problems arising with the conversion of processes to
threads are solved. Treatment of network communication is
described in Section 3. An overview of our tool, and results
gained from experiments are given in Section 4. Section 5
described related work, and Section 6 concludes.

2. Process centralization

Centralization of Java program involves four issues [21]:

1. Wrapping applications (processes) as threads, and
starting them as such.

1



2. Keeping the address space of each process separate.
This is not a problem for normally created instances,
as they are only reachable from the process where they
have been created.1 However, it is in issue when con-
sidering static fields. Each static field is unique and
globally accessible by its class name. This uniqueness
applies per class and thus per Virtual Machine (VM):
In the original system, each process has its own copy of
each class used, and each static field contained therein.
In the centralized version, field accesses to static fields
must be disambiguated between processes.

3. Static synchronized methods. Method-level synchro-
nization is performed implicitly by the VM when-
ever a method is synchronized. This synchroniza-
tion accesses a class descriptor that should again be
unique for each centralized process. Resolving this
also entails transforming the synchronized flag in the
method in question to block-level synchronization.

4. Shutdown semantics. The Java VM closes open sock-
ets and files before exiting. Furthermore, background
(daemon) threads are killed. These actions only occur
if the entire process terminates, and therefore have to
be implemented by the centralization tool.

2.1. Process wrapping and startup

The first task is to convert a process to a thread. In
addition to the conversion, a unique process ID has to be
maintained for each process. Both problems can be solved
quite elegantly, as implemented by the tool described by
Stoller [21]. Figure 1 shows the implementation. A simple
wrapper class CentralizedProcess maintains the process
ID, and another class (called ProcessStartup in this ex-
ample) initializes and runs the processes as threads. Classes
Proc1 and Proc2, which are not shown, contain the main
method of each application.

When launching networked programs, there exists an ad-
ditional problem that was not discovered in previous work:
The startup procedure shown in Figure 1 does not control
the order in which threads are run. Calling Thread.start
merely enables a thread to run but does not necessarily start
it immediately. Therefore, there exist possible thread sched-
ules where Thread t2 is run prior to the thread which was
created before, t1. Such thread schedules may lead to exe-
cutions where a client thread attempts to connect to a server
thread before the server has finished initialization. This will
lead to failures in the client that are generally not interest-
ing for model checking. For example, assume a client starts

1The original application cannot share references between processes, as
Java does not allow to do so directly. Therefore, instances created within
a particular process are always only reachable by threads belonging to that
process.

public class CentralizedProcess
extends Thread {
public int pid;

public CentralizedProcess
(int procId) {
super();
pid = procId;

}
}

public class ProcessStartup {
Thread t1 =
new CentralizedProcess(0) {
public void run() {
Proc1.main(null);

}
};
t1.start();

Thread t2 =
new CentralizedProcess(1) {
public void run() {
Proc2.main(null);

}
};
t2.start();

}

Figure 1. Wrapping a process as a thread.

before the server and cannot connect to the desired port.
Some clients may retry a number of times, but there still
exist schedules where the server cannot complete initializa-
tion on time, and the client will ultimately fail. The server
will then wait indefinitely for a client to connect, while the
client has already aborted.

Such failures should be avoided in the centralized ver-
sion. If the case where no server is present should be tested,
this can be done by running the client by itself, without a
server. Therefore, when model checking the client together
with a server, this scenario creates undesired, spurious fail-
ures. These behaviors do not only increase the search space,
but may also mask more interesting failures.

When simply testing an application, an imprecise solu-
tion for organizing the startup sequence can be used. Sim-
ply waiting for a short time before starting the client is suf-
ficient. This will give the server enough time to initialize.
Thread schedules in which server initialization cannot com-
plete in time are unlikely, and can be dealt with by repeating
the test in the rare event of a failure. However, when us-
ing model checking, all thread schedules are explored, in-
cluding the unlikely ones leading to a slow server startup.
Hence, a mere heuristic reducing the likelihood of schedule
problems cannot be applied to model checking.

Instead, one has to ensure that server initialization has
completed before the client starts. In a distributed appli-
cation, it may not be possible to check whether the server
is ready. Fortunately, if the program is centralized, com-
pleted server initialization can be communicated to the

2



client by using shared data.2 Still, such startup synchro-
nization remains difficult. Commonly, the last step required
before a server can accept client requests is the system call
ServerSocket.accept. This is a blocking system call,
and it is not easily possible to check whether the socket
is actually ready for receiving requests, even when using
another server thread to do this. While there exist mech-
anisms how this could be achieved, these approaches are
complex and not fully portable. In principle, it could be im-
plemented by using method ServerSocket.acceptImpl
to wrap accept and then polling file descriptors. Other
inter-process communication mechanisms can be polled in
different ways. For instance, most operating systems have
tools listing open file descriptors. Open sockets can be de-
tected by port scans. In any case, knowing whether initial-
ization of inter-process communication has completed usu-
ally requires knowledge of its implementation, not just its
API. Different inter-process communication (IPC) means
have different ways of being polled or monitored. How-
ever, in the centralized version, it is actually desirable to
replace a given IPC mechanism entirely by a simpler intra-
process mechanism, which allows for model checking. This
is described in Section 3 for TCP/IP networking.

2.2. Static fields

As described at the beginning of this section, it is not
possible to re-use static fields without changes. The fact that
different VMs load each class individually implies that they
have their own copy of static fields [11, 17]. This must be
preserved for the centralized version. This creates a chal-
lenge because even in the centralized version, a class can
only be loaded and initialized once. The problem becomes
exceptionally difficult for static initializers relying on cer-
tain data or having side-effects; only some of these initial-
izers may be centralized automatically. This limitation is
acceptable because model checking usually entails a certain
degree of program abstraction. The focus of this part there-
fore lies on static fields and their initialization.

The best solution to problems arising with global, static
fields lies in replacing each static field with an array of
static fields [21].3 For each static field, an array contain-
ing the value of that static field for each process is main-
tained. Arrays are transformed into arrays of arrays, with
an extra dimension for distinguishing the array content be-
tween processes. This approach assumes that the number of

2This usage of global data only works for inter-thread communication.
Thus this change should be done in the wrapper class, as this modification
does not work when running the applications individually as processes.

3An alternative solution consists of the duplication of each class file,
creating one renamed copy per process. This would create a separate
“name space” for each process. However, in order to accommodate for
callbacks, the entire Java library would have to be duplicated this way.
Furthermore, this approach would require type casting for passing object
data between processes, e.g. when using RMI.

processes is known at compile-time. This is a very reason-
able assumption as model checkers can only handle a small
number of threads. Thus the number of processes has to be
bounded for scalability reasons. At run-time, the process ID
of the current process can be obtained as follows:

PID = ((CentralizedProcess)
Thread.currentThread()).pid;

A centralized process can in turn create threads. If
this occurs in a program, another change is required:
Any thread created has to be replaced with an in-
stance of CentralizedThread, which is a superclass of
CentralizedProcess. Any class extending Thread must
be changed to extend CentralizedThread and initialized
with the PID of the “parent process”.

Furthermore, field initialization has to be implemented
for fields whose value is not initialized to zero. In Java,
static fields are initialized by the static initializer, a method
that is called when a class is loaded. The centralized ver-
sion has to initialize the array of per-process copies of the
field first. Then, for initializing the field content, the orig-
inal static initializer has to be executed once for each pro-
cess. This initializes all copies of the original static field
and also executes other initialization statements once per
process. Care has to be taken for classes where such side-
effects should not occur several times; such classes have
to be excluded from this transformation step. Automation
has other limits: For instance, certain class initializers may
be dependent on the context of a process. For instance, an
initializer may use a default setting given by an environ-
ment variable. If static data is initialized equally for all pro-
cesses, this may negate the fact that different processes may
be run under different settings. Our tool currently supports
process-specific command line arguments; process-specific
environment variables are subject to future work.

Other problems with respect to centralization and class
loading may occur if one uses a custom class loader. It
then has to be ensured that the class loaded is the same
for each centralized process, as it is not possible to have
different classes under the same name in a centralized pro-
gram. Again, this problem should not occur frequently for
programs that are going to be model checked.

2.3. Class descriptors and locking on classes

The third issue in centralization is given by synchronized
static methods. A static synchronized method is a shortcut
for having an entire block of code which is synchronized on
the descriptor of the current class (as given by the type in
which the current method was declared).4 Such a descrip-
tor is always a unique instance of type java.lang.Class.

4Sun’s official JDK documentation states that a static synchronized
method uses the reference returned by java.lang.Object.getClass as

3



Again, different processes have to use different locks. Pre-
vious work used proxy locks to replace the class instance
for locking in synchronized methods [21]. However, this
has the following problems:

• Block-wise synchronization on a given class descrip-
tor using X.class or getClass() is not covered. Ap-
plications using such locking would exhibit data races
when centralized.

• If any use of a class descriptor instances is replaced
with a proxy object, then this will not only cover lock-
ing, but also other uses of class descriptors, e.g. when
using reflection. Programs relying on such features
will no longer work without proper class descriptors.

Our first approach was therefore an attempt to replace all
instances of java.lang.Class with an array of class de-
scriptors. The class descriptor of each class can be seen as
a static field; the first attempt was therefore to treat them as
such, replacing each class descriptor with an array. Unfor-
tunately, class java.lang.Class has no public constructor
and does not support the clone method. Trying to support
this option artificially, through code instrumentation, ob-
viously violated internal invariants in Sun’s JVM, because
running such code resulted in internal errors in the VM.

We therefore reverted to proxy locks. As class descrip-
tors can be used for locking or for other purposes, the fi-
nal solution works as follows: First, static synchronization
is replaced with block-wise synchronization on the current
class descriptor.5 Then, for any block-wise synchroniza-
tion, a run-time check is added, which tests whether the lock
used is of type java.lang.Class. If so, a proxy lock is
used instead; otherwise, the given lock is used directly. For
proxy locks, the invariant that the lock is unique per process
is maintained by the transformation, and the program se-
mantics are not changed. The proxy object is used for lock-
ing only; other uses of class descriptors are not changed.
This allows for arbitrary uses of class descriptors.

2.4. Shutdown semantics

The final problem with centralization concerns applica-
tion termination. There are two ways to terminate a running
Java VM immediately: System.exit and System.halt.
The first one runs any registered shutdown hooks, tasks

its lock [22]. This is slightly imprecise: First, getClass is not available
in a static context. Second, the lock used is actually determined by the
compile-time type of a method, not by its run-time type. Assume a static
synchronized method is inherited by a subclass. Said method, even when
called via its subclass, will still lock on the class descriptor of the super
class, which is not what a call to getClass in a non-static context would
return.

5This entails installing an exception handler that releases the given lock
should an exception occur inside the given static method.

that free resources during shutdown. Such tasks can also
be added by the user through Runtime.addShutdownHook.
The second one terminates the VM abruptly, without free-
ing any resources [22]. When centralizing an appli-
cation, these system calls must be replaced, as threads
representing other centralized processes must still con-
tinue to run. Therefore, any call to System.exit and
System.halt has to be replaced with throwing a new in-
stance of java.lang.ThreadDeath. This causes the cur-
rent thread to terminate and allows other centralized pro-
cesses to continue [21, 22].

This solution is adequate for single-threaded applica-
tions. The complex shutdown semantics of multi-threaded
applications have not yet been addressed by previous work.
The key problem is that System.exit has to shut down
other threads belonging to the same process. Similarly, dae-
mon threads have to be terminated when all normal threads
have died. In the centralized program, this mechanism is not
automatically triggered by the VM. Hence, daemon threads
belonging to the “dead” process will not terminate as usual.
If daemon threads are not shut down properly in the central-
ized version, spurious failures may occur because the dae-
mon thread may still attempt to use shared resources which
are no longer available.

Unfortunately, it is difficult to shut down other threads in
Java. Methods that allow to shut down other threads have
been deprecated because they can lead to deadlocks. There-
fore, daemon threads cannot be shut down directly. For-
tunately, a closer look at the situation reveals a solution:
A daemon thread of a dead process performs either invisi-
ble operations in memory, or externally visible operations
such as I/O. Operations in memory affect only the state of
the dead process; therefore, their results, including possible
assertion violations or exceptions, can just be ignored. Ex-
ternally visible operations are prevented by automatically
closing all I/O resources. Any attempt to still use these re-
sources will result in a failure. Therefore, the solution con-
sists of ensuring that any possible failures in a dead process
are recognized as spurious failures and ignored. This can
be achieved by implementing a custom search class in JPF,
which overrides the normal search and failure report func-
tions for these special cases.

Beyond shutting down other threads belonging to the
same application, there is the problem of shutting down the
VM itself and executing shutdown hooks. Such shutdown
hooks close open files or network connections. In order to
model this correctly, each newly created such resource has
to be registered in class CentralizedProcess and closed
manually if it is still open. This is very important because
some of these resources, such as an open server socket on
a given port, can only be allocated once. If a centralized
application terminates, such resources have to be freed au-
tomatically by the run-time library of the centralization tool.

4



Client Server

accepts communication (b)

connects (b) → established connection
↓ ↓
bi-directional communication possible

Figure 2. Client-server communication.

In order to be able to close allocated resources at pro-
cess shutdown time, each allocation has to be registered at
run-time. I/O resources can only be allocated by a handful
of classes. Creation of such instances can thus be tracked
automatically through code instrumentation in a few key
methods. When a centralized process terminates, any of its
allocated resources that have not yet been closed are closed
by our shutdown routine.

Our current implementation of the shutdown semantics
covers System.exit, System.halt, and normal process
termination, keeping track of open sockets and files. It
is still work in progress. We have not yet implemented
shutting down external processes that were created by
java.lang.Runtime.exec. Experiments on Sun’s JVM
on Linux have shown that the VM sends an INT (interrupt)
signal to such processes, and detaches them from the dying
VM process. Nonetheless, as a centralized application that
starts external processes cannot be model checked directly,
we did not investigate this feature further.

3. Network communication, RMI

Network communication can be modeled as an interac-
tion of two peers, a client and a server. The server allows
for incoming communication by accepting connections to
a certain port. The client can subsequently connect to that
port. After a connection is established, a bidirectional com-
munication channel exists between the client and the server.
Communication then occurs asynchronously. Underlying
transport mechanisms (commonly TCP/IP) ensure that sent
messages arrive eventually (if a connection is available),
perhaps with some delay. This applies to messages in both
directions. A connection can be closed by the client or the
server, terminating communication.

Figure 2 illustrates this: The client has to wait until the
server is available, and retry a connection attempt if neces-
sary. When the server accepts a new connection, its exe-
cution blocks until a client has connected. A blocked state
is shown as (b) in the figure. As soon as a client connects,
the server is unblocked, and a connection is established by
underlying system libraries. The corresponding connect
call is in turn blocking for the client, unblocking as soon as
the response from the server is received. In Java, TCP/IP

Client Server

Client looks up stub
↓

Stub serializes arguments → Remote stub called
↓

Client stub receives result ← Result sent by stub
↓

Client receives result

Figure 3. Remote Method Invocation.

Client

Client looks up stub
↓

Stub serializes arguments
↓ Local computation

Stub returns result
↓

Client receives result

Figure 4. Inlined RMI call.

communication mainly involves two classes: Socket and
ServerSocket. Instances of Socket are handles to a con-
nection between a client and a server. A ServerSocket,
on the other hand, allows a server to accept incoming con-
nections. This operation instantiates a Socket object as a
result. On the client side, internal Socket data will be ini-
tialized when its connect call returns.

Remote Method Invocation (RMI) in Java builds in sock-
ets and behaves in a similar way, as shown by Figure 3. RMI
offers a naming mechanism which allows clients to find a
server. After the lookup is performed, the client commu-
nicates with the server via stubs, which hide network com-
munications and make (blocking) RMI calls appear to be
local. Arguments for calls have to be serialized (converted
into raw data) before transmission. The client blocks until
it receives the response from the server. The stub receives
the serialized result, unblocks execution of the client, and
relays the result to the calling client.

Previous work [21] has inlined the remote computation
of the server, replacing a blocking remote call with a local
call, as shown by Figure 4. This idea “cannibalizes” on the
blocked client thread for simulating remote computation. In
doing so, it greatly simplifies the original program, which
is desirable for model checking. However, it also removes
a lot of the structural complexity, which may be harmful
because it may mask problems. The key problem is that
this idea cannot be extended to generic TCP/IP networking.

We keep the idea of replacing multiple processes with
multiple threads in a single process. The client and server

5



notifies
waits for client to connect

Server: ServerSocket.acceptClient: Socket.connect

waits for server to accept

servernotifies

bidirectional comm.

inter−thread pipes

partial initialization of Socket

wakes up
completes initialization

client

wakes up

Figure 5. Implementation of Socket.connect
and ServerSocket.accept.

applications are still merged into a single application as
done before [21], but communication is treated in a totally
different way. Due to the complex nature of true bidirec-
tional communication in client-server programs, a simple
inlining mechanism is no longer applicable. RMI-based ap-
plications are subsumed by our approach since RMI is just
a protocol on top of TCP/IP.

General network communication was broken down into
two steps: Connection establishment, and bidirectional
communication. We used a two-step barrier [16] to
model the blocking connection mechanism shown in Fig-
ure 2. In a first step, the server blocks during the accept
call. When the client calls connect, the server is un-
blocked while the client blocks and waits for comple-
tion of the connection. This ensures that the sequence
of each original application passing through blocking li-
brary calls is preserved in the centralized version. Upon
connection, two unidirectional inter-thread pipes are set
up, as available through java.io.PipedInputStream and
java.io.PipedOutputStream. They model the underly-
ing network communication normally provided by system
libraries, replacing inter-process communication by inter-
thread communication.

Figure 5 illustrates this idea. If a client connects to an
open port, it will be suspended until the server thread has
had an opportunity to complete its part of the Socket ini-
tialization. The server thread will initialize its side of the
Socket and then suspend itself after having notified the
client about completion of its part. The client then wakes up
and finishes initialization. After that, the connect method
of the client returns. Its data streams are already fully ini-
tialized at that point, ready to be used by the client. Data
will not actually be received or sent by the server until it
wakes up, having been notified by the client. After that,
bidirectional communication can take place.

Input Output
Centralizer

Application bytecode → Instrumented bytecode
Startup script → Startup wrapper program

Figure 6. Overview of our centralizer tool.

The fact that blocking calls between different processes
are modeled using wait and notify also allowed us to
solve the problem of scheduling the start of centralized pro-
cesses. The point where the server has completed its part
of socket initialization and suspends itself is where the first
client process can be started. Therefore, the same signal
used in notify is used by the process wrapper described in
Figure 1, which waits for the same notification.

For fine-tuning the implementation, the possibility of a
refused connection (when a socket is closed), management
of open connections, and other details made the code more
complex than indicated in Figure 5. Due to these complex
inter-thread interactions, development of a correct socket
replacement was very difficult. We have used the Java
PathFinder model checker [23] to find failures and later on
verify correctness of our implementation.6 We have also
successfully used this socket replacement for running and
model checking centralized example applications, such as a
daytime server, an echo server, and a chat server.

4. Experiments

Based on the transformation described above, we imple-
mented a centralization tool that automatically transforms
all class files of a given application. Figure 6 describes
the general way this tool operates: As input, it takes the
bytecode (class files) of the application, and a startup script
that specifies the processes to be launched. The startup
script also includes dependencies, such as whether the client
should not be started before the server is ready to accept
connections on a given port. As output, the centralizer pro-
duces instrumented class files and a wrapper program that is
used to launch the centralized processes. The instrumented
bytecode also uses a run-time library which implements
process and thread wrappers, and proxy locks.

Unlike the tool described in previous work [21], which
operates on source code, our tool directly works on byte-
code. This improves its performance, as source code does
not have to be parsed, and allows transformation when
source code is not possible. Another advantage is the fact
that Java bytecode has not changed significantly in the last
few years. This is in contrast to changes in the Java pro-
gramming language, which unfortunately had the conse-
quence that the tool developed by Stoller et al. [21] no

6Properties verified included built-in properties, such as deadlock free-
dom and no uncaught exceptions, and user-defined assertions.

6



Application Description
Daytime server Returns the current time (RFC 867).
Echo server Returns all input received (RFC 862).
Chat server Sends messages of one client to all clients.

Table 1. Example applications used.

Worker

Client

Process

Server

Process

Thread

Client

Process

Worker

Thread

Threadmain

creates

Figure 7. Chat server architecture.

longer functions in current environments. Therefore we
could not perform a cross-comparison for centralization of
difficult language features and had to rely on tool documen-
tation when describing the extensions in our approach. For
model checking, we used the Java PathFinder (JPF) model
checker [23]. Prior to our work, JPF could not support mul-
tiple processes or any inter-process communication. With
our library, JPF (or any other Java model checker) can now
handle such programs.

Table 1 gives an overview of the examples used as bench-
marks. The daytime server sends a fixed string back to the
client; the echo server returns the input received.7 The chat
server sends the input of one client back to all clients, in-
cluding the one that sent the input. All applications were
supplied with two test clients. The daytime client reads a
single line, while the echo client sends three lines and ex-
pects the same number of lines back. The chat client sends
and reads a single line. While the daytime and echo server
were quite simple applications, the architecture of the chat
server is fairly complex, involving a main server thread to
handle connections and one worker thread per connection.
This architecture is comparable to more complex applica-
tions such as modern web servers [9]. While the first two
applications mainly served as test beds for our tool, the chat
server gives a good evaluation of the performance of model
checking a centralized application and the capabilities of
this approach for complex frameworks.

In the chat server, the main server thread listens to in-
coming connections and creates a worker thread for each

7For the purpose of model checking, the “date” used was hard-coded in
the replacement class for java.util.Date.

connection that is handled. These worker threads use shared
data structures to send a message to all other clients. This
results in complex possible interactions between several ap-
plications (Figure 7). The main thread inside each client
process is the only thread and therefore not shown sepa-
rately. Because the server contains several threads, the main
thread is listed as such. The main thread in the server creates
worker threads to handle a connection whenever a client
connects. Each message from a client is handled by the cor-
responding worker thread on the server side. This worker
thread then sends that message to each other client by ac-
cessing the shared array that contains references to all the
other workers. Through this array, the sockets connecting
the chat server to each client can be retrieved. Therefore any
interaction between clients always occurs via the server ap-
plication, where it is handled by a particular worker thread.

Experiments were executed on a dual-processor 2.7 GHz
PowerPC G5 with 8 GB of RAM and 512 KB of L2 cache
per CPU, running Mac OS 10.4.5. After the chat server ap-
plication was centralized, model checking found two faults
that were not detected by testing. The first one was a miss-
ing synchronized statement for a method. It may have
been detected by other means such as the Eraser run-time
verification algorithm [19]. Model checking the applica-
tion containing this defect only took a couple of seconds,
though, and delivered a detailed counter-example trace,
which contains more data than just the field access in ques-
tion. Nonetheless, we will focus on the second fault found,
which is much more interesting and could not have been
detected by run-time monitoring.

The parts of the code which are relevant for the observed
failure are shown in Figure 8. The failure scenario involves
two (or more) clients connecting to the chat server at the
same time. The main thread of the server keeps accept-
ing incoming connections on the open socket. As long as
the number of available worker threads is not exceeded,
the server handles incoming connections by instantiating a
worker object for each connection. Each worker instance
contains the data which is relevant for itself (a reference to
the socket and its ID number). It also implements interface
Runnable, allowing for creation of new threads. This can
be seen in the lower part of Figure 8, where method run
implements the code that handles messages sent by a given
client.

The failure scenario looks as follows: A client con-
nects to the server. The connection is handled inside
the synchronized block in method ChatServer.serve,
which creates a new instance of Worker. After worker
thread w1 is initialized, the new instance is added to
the array of worker threads, and start is called. Af-
ter this, the for loop inside the synchronized block of
ChatServer.serve completes. Worker thread w1 is now
ready to run, but at this moment, the scheduler does not

7



public class ChatServer {
public serve(int maxServ) {
try { while (maxServ-- != 0) {

Socket sock = servsock.accept();
synchronized(this) {
for (int i=0; i < workers.length; i++) {
if (workers[i] == null) {
workers[i] = new Worker(sock, i);
new Thread(workers[i]).start();
break;

} } } } } catch(IOException ioe) { /* ... */ }
}
static synchronized void sendAll(String s) {
for (int i = 0; i < workers.length; i++) {
if (workers[i] != null) workers[i].send(s);

} } }

class Worker implements Runnable {
Socket sock; int n;
PrintWriter out = null; BufferedReader in = null;
public Worker(Socket s, int id) { sock=s; n=id; }
public void run() {
try {
out=new PrintWriter(sock.getOutputStream());
in=new BufferedReader(sock.getInputStream());
while ((s = in.readLine()) != null)
ChatServer.sendAll(s);

} catch(IOException ioe) { /* ... */ } } }

Figure 8. Excerpt of the chat server source.

yet execute any of its code. Instead, another client con-
nects to the server. This results in initialization of an-
other worker thread, w2, which is also ready to run at this
point. Now the scheduler decides to execute w1, which re-
ceives input from its client. This input is then sent to all
active connections. Method ChatServer.sendAll checks
whether each array entry is null, and then sends the mes-
sage to each registered worker via Worker.send. However,
PrintWriter out of w2 is not initialized yet, which results
in a NullPointerException. Initialization of out would
have been completed in the first statement of Worker.run,
which did not execute yet. So the error consists of the fact
that w2 is not yet fully initialized but already registered in
the array of worker instance. This error is quite complex
and does not correspond to any easily classifiable data races
or atomicity problems which find similar errors [1]. The er-
ror trace shown by JPF involves over 100 transitions. Fixing
the error required moving the initialization of field out from
method run into the constructor. This allows initialization
to complete before the worker thread is registered globally.

A manually and an automatically centralized version
were compared to evaluate the overhead our tool introduces.
This overhead consists of unneeded centralization of static
data. Knowledge about classes used by one process only
can avoid centralization of some static fields. This produces
a leaner centralized version, because both the class initial-
izer and all field accesses of static fields require less code.
It was therefore interesting to see the quantitative effect of
automatic centralization of field accesses.

Application Manual centr. Tool-based centr.
Time Cex [tr.] Time Cex. [tr.]

Daytime server 1:08 m n/a 1:49 m n/a
Echo server 2:07 m n/a 4:22 m n/a
Chat v. 1 2.8 s 112 3.0 s 142
Chat v. 2 6.3 s 154 6.8 s 186
Chat, 1 cl., final 3:54 m n/a 7:21 m (est.) n/a
Chat, 1 cl., opt. 3:41 m n/a 7:06 m (est.) n/a
Chat, final 13:12 h n/a 65 h (est.) n/a
Chat, opt. 7:43 h n/a 11:04 h (est.) n/a

Table 2. Comparison of manual with auto-
mated centralization.

Table 2 shows the results of these experiments. For dif-
ferent versions of each application, the time required to
model check the centralized version is given. Two faulty
versions of the chat server exist. The correct version has
been tested with the ability to serve only one chat client,
and two clients. These final versions were run using a
general-purpose network replacement library (“final”), and
with one that was specially optimized for two connections
(“opt.”). For faulty versions of the chat server, the length
of the counterexample (measured in number of transitions)
is also given, since it is a good measure of the overhead
introduced by centralization of static fields.

Unfortunately, we encountered internal JPF errors for
the larger benchmarks for which we could not find a
workaround. The model checking terminated prematurely
due to this internal error. Based on the size of the log file,
we calculated the percentage of the state space explored,
and estimated the total time accordingly. The estimate for
the optimized version of the chat server is rather precise,
because about 75 % of the state space has been explored;
only the estimate for the unoptimized “final” version with
two clients is less accurate, because only 22 % of the state
space had been explored when JPF aborted. For the smaller
benchmarks, JPF had problems with initialization of con-
stants; these problems could be fixed by replacing the con-
stant fields with the values they represent.

When comparing the time required for model check-
ing and number of transitions required for the counter-
examples, one can see that our centralization tool normally
introduces an overhead of about factor two, which usually is
acceptable considering that model checking is exponential
in the size of the state space. The roughly 30 extra transi-
tions mainly reflect initialization of run-time data structures
of helper classes used by the instrumented, centralized code.
The overall time required when model checking the com-
plete state space of a system increases by roughly a factor
of two. This still leaves room for improvement. We hope
that leaner implementations of certain internal data struc-
tures will reduce this overhead in the future.

8



5. Related work

The classical application domain of model checking con-
sists of the verification of algorithms and protocols [13].
More recently, model checking has been applied directly to
software, sometimes even on concrete systems. Such model
checkers include the Java PathFinder system [12, 23],
JNuke [2], and similar systems [4, 8, 10, 15, 20].

Regardless of whether model checkers are applied to
models or software, they suffer from the state space ex-
plosion problem: The size of the state space is exponen-
tial in the size of the system, which includes the number
of threads and program points where thread switches can
occur. Most systems are therefore too complex for model
checking. Partial-order reduction eliminates certain inde-
pendent interleavings and can thus reduce the number of
states to be explored [5, 14]. System abstraction reduces
the state space by merging several concrete states into a
single abstract state, thus simplifying behavior. In general,
an abstract state allows for a wider behavior than the origi-
nal set of concrete states, preserving potential failure states.
System abstraction in software is crucial to reduce the state
space [4, 8]. Results of system-level operations have been
successfully modeled this way to detect failures in applica-
tions [7] and device drivers [4]. These techniques analyze
one process at a time, with a modular environment (that has
been generated automatically or written manually). They
work well on low-level programs where the actual content
of messages is irrelevant; however, complex applications
cannot be analyzed automatically in this way.

Most software model checkers are written to analyze a
single OS-level process, and cannot handle distributed sys-
tems [2, 4, 8, 10, 20, 23]. When using manual program
abstraction, I/O operations can be replaced by stubs that
mimic each possible operation. However, creation of such
stubs is application-specific and can be quite labor-intensive
for complex applications. A better solution to this problem
is to lift the power of a model checker from process level to
OS level. This way, the effect of any I/O operation is still
visible inside the model checker. An existing system that
can indeed store and restore full OS state is a tool based on
user-mode Linux, which uses the GNU debugger to store
states and intercept system calls [18]. The effects of sys-
tem calls are modeled by hand, but several processes can be
model checked together without modifying the application
code. The difference to our approach is that centralization
transforms a multi-process system down to a single-process
one, while the other tool expands the scope of model check-
ing to several processes. Our tool is therefore not dependent
on a special model checker and can act as a “preprocessor”
of a distributed program, allowing it to be model checked
with any software model checker supporting Java bytecode.

Centralization was first proposed and implemented by
Stoller et. al [21]. This allows several processes to run in
the same model checker. However, this does not solve the
problem of modeling inter-process communication. Pre-
vious work has been restricted to programs using remote
method invocation (RMI), where I/O was not modeled but
simulated using process inlining. Generic TCP/IP network-
ing, which is the foundation of many other protocols, has
not been supported before. Our work therefore expands the
applicability of centralization to a much large set of pro-
grams. Furthermore, an accurate treatment of Java seman-
tics such as usage of class descriptors and process shutdown
behavior ensures correct results when such rarely-used fea-
tures occur in Java programs.

6. Conclusion and future work

Distributed programs include several processes and typ-
ically use network communication. For model checking
such programs in a single-process model checker, processes
have to be replaced by threads and merged into a centralized
application. Replacement of communication mechanisms is
also necessary for non-trivial applications. While Remote
Method Invocation can be replaced by inlining, this replace-
ment is not very accurate and cannot be extended to arbi-
trary socket-based communication. Our approach replaces
the socket connection mechanism by inter-thread communi-
cation. We have successfully model checked our implemen-
tation using client-server applications. Our tool also treats
certain Java language features with increased accuracy com-
pared to previous work.

Future work includes running the experiments on other
Java-based model checkers, and optimizations in the run-
time library of our centralizer. In code instrumentation, ref-
erence analysis may eliminate the need for instrumenting
certain classes. We also plan to complete the implementa-
tion of shutdown semantics in our tool, as described in this
paper. Finally, there is ongoing work in adding extensions
to the network library, which will allow us to check appli-
cations using features such as datagrams. We also intend
to explore another alternative to centralization, which con-
sists of I/O extensions in the model checker, which trans-
parently relay inter-process communication packets to ex-
ternal processes [3]. This approach model checks only a
single process at a time and prevents the process inside the
model checker from physically sending the same data sev-
eral times.

Acknowlegdements Thanks go to Shinichi Nagano for
writing the initial version of the chat server application.

9



References

[1] C. Artho. Combining Static and Dynamic Analysis to
Find Multi-threading Faults Beyond Data Races. PhD
thesis, ETH Zürich, 2005.

[2] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur,
and B. Zweimüller. JNuke: Efficient Dynamic Anal-
ysis for Java. In Proc. 16th Intl. Conf. on Computer
Aided Verification (CAV 2004), volume 3114 of LNCS,
pages 462–465, Boston, USA, 2004. Springer.

[3] C. Artho, B. Zweimüller, A. Biere, and S. Honiden.
Software Model Checking of Distributed Applications
with I/O. To be published.

[4] T. Ball, A. Podelski, and S. Rajamani. Boolean and
Cartesian Abstractions for Model Checking C Pro-
grams. In Proc. 7th Intl. Conf. on Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS 2001), volume 2031 of LNCS, pages 268–
285, Genova, Italy, 2001. Springer.

[5] D. Bruening. Systematic testing of multithreaded Java
programs. Master’s thesis, MIT, 1999.

[6] E. Clarke, O. Grumberg, and D. Peled. Model check-
ing. MIT Press, 1999.

[7] C. Colby, P. Godefroid, and L. Jagadeesan. Automat-
ically closing open reactive programs. In Proc. SIG-
PLAN Conf. on Programming Language Design and
Implementation (PLDI 1998), pages 345–357, Mon-
treal, Canada, 1998.

[8] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera: Ex-
tracting finite-state models from Java source code.
In Proc. 22nd Intl. Conf. on Software Engineering
(ICSE 2000), pages 439–448, Limerick, Ireland, 2000.
ACM Press.

[9] The Apache Foundation, 2006.
http://www.apache.org/.

[10] P. Godefroid. Model checking for programming lan-
guages using VeriSoft. In Proc. 24th ACM Sym-
posium on Principles of Programming Languages
(POPL 1997), pages 174–186, Paris, France, 1997.
ACM Press.

[11] J. Gosling, B. Joy, G. Steele, and G. Bracha. The
Java Language Specification, Third Edition. Addison-
Wesley, 2005.

[12] K. Havelund and T. Pressburger. Model checking Java
programs using Java PathFinder. Intl. Journal on Soft-
ware Tools for Technology Transfer (STTT), 2(4):366–
381, 2000.

[13] G. Holzmann. The SPIN Model Checker. Addison-
Wesley, 2004.

[14] G. Holzmann, P. Godefroid, and D. Pirottin. Coverage
preserving reduction strategies for reachability analy-
sis. In Proc. 12th Intl. Conf. on Protocol Specification,
Testing, and Verification, INWG/IFIP, Orlando, USA,
1992.

[15] G. Holzmann and M. Smith. A practical method
for verifying event-driven software. In Proc. 21st
Intl. Conf. on Software Engineering (ICSE 1999),
pages 597–607, Los Angeles, USA, 1999. ACM Press.

[16] D. Lea. Concurrent Programming in Java, Second
Edition. Addison-Wesley, 1999.

[17] T. Lindholm and A. Yellin. The Java Virtual Machine
Specification, Second Edition. Addison-Wesley, 1999.

[18] Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya,
and K. Kato. Model checking of multi-process appli-
cations using SBUML and GDB. In Proc. Workshop
on Dependable Software: Tools and Methods, pages
215–220, Yokohama, Japan, 2005.

[19] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM Transactions on Com-
puter Systems, 15(4):391–411, 1997.

[20] S. Stoller. Model-Checking Multi-threaded Dis-
tributed Java Programs. In Proc. 7th Intl. SPIN Work-
shop (SPIN 2000), volume 1885 of LNCS, pages 224–
244, Stanford, USA, 2000. Springer.

[21] S. Stoller and Y. Liu. Transformations for model
checking distributed java programs. In Proc. 8th Intl.
SPIN Workshop (SPIN 2001), volume 2057 of LNCS,
pages 192–199. Springer, 2001.

[22] Sun Microsystems, Santa Clara, USA. Java
2 Platform Standard Edition (J2SE) 1.5, 2005.
http://java.sun.com/j2se/1.5.0/.

[23] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engi-
neering Journal, 10(2):203–232, 2003.

10


