
Combining
Test Case Generation and Runtime Verification

Cyrille Arthoa,1, Howard Barringerb,2, Allen Goldbergc,
Klaus Havelundc, Sarfraz Khurshidd,3, Mike Lowry e,
Corina Pasareanuc, Grigore Roşuf, Koushik Senf,4,

Willem Visserg, Rich Washingtong

aComputer Systems Institute, ETH Zurich, Switzerland
bDepartment of Computer Science, University of Manchester,England

cKestrel Technology, NASA Ames Research Center, USA
dMIT Computer Science and Artificial Intelligence Laboratory, USA

eNASA Ames Research Center, USA
fDepartment of Computer Science, Univ. of Illinois at Urbana-Champaign, USA

gRIACS, NASA Ames Research Center, USA

Abstract

Software testing is typically an ad-hoc process where humantesters manually write test
inputs and descriptions of expected test results, perhaps automating their execution in a
regression suite. This process is cumbersome and costly. This paper reports results on a
framework to further automate this process. The framework consists of combining auto-
mated test case generation based on systematically exploring the input domain of the pro-
gram with runtime verification, where execution traces are monitored and verified against
properties expressed in temporal logic. The input domain ofthe program is explored using
a model checker extended with symbolic execution. Properties are formulated in an expres-
sive temporal logic. A methodology is advocated that generates properties specific to each
input instance rather than formulating properties uniformly true for all inputs. Capabilities
for analyzis of concurrency errors are planned to be integrated with temporal logic moni-
toring. The paper describes an application of the technology to a planetary rover controller.

Key words:
Automated testing, test case generation, model checking, symbolic execution, runtime
verification, temporal logic monitoring, concurrency analysis, NASA rover controller.

Preprint submitted to Theoretical Computer Science 24th June 2005

1 Introduction

A program is typically tested by manually creating atest suite, which in turn is a set
of test cases. An individual test case is a description of a singletest inputto the pro-
gram, together with a description of thepropertiesthat the corresponding output is
expected to have. This manual procedure may be unavoidable since for real systems
writing test cases is an inherently innovative process requiring human insight into
the logic of the application being tested. However, we believe that a non-trivial part
of the testing workcanbe automated. Evidence is found in a previous case study,
where an 8,000-line Java application was tested by different student groups using
different testing techniques [14]. It was observed that thevast majority of faults
that were found in this system could have been found in a fullyautomatic way. We
suggest a framework for generating and executing test casesin an automated way
as illustrated by Figure 1. For a particular application to be tested, one establishes
a test harness consisting of two modules: atest case generatorand anobserver.

Properties

Application trace Observerinput
generator
Test case

Model
input/output

Figure 1. Test case generation and runtime verification.

The test case generator takes as input a model of the input domain of the applica-
tion to be tested. The model furthermore describes a mappingfrom input values to
properties: for each input element, the model defines what properties an execution
on that input should satisfy. The test case generator automatically generates inputs
to the application. For each generated input a set of properties is also generated.
The input is applied to the program, which executes, generating an execution trace.
The observer module checks the behavior of the executed program against the gen-

1 Cyrille Artho is grateful to QSS for the partial support provided to conduct this research.
2 Howard Barringer is grateful to RIACS/USRA and the UK’s EPSRC under grant
GR/S40435/01 for the partial support provided to conduct this research.
3 Sarfraz Khurshid is grateful to RIACS/USRA for the partial support provided to conduct
this research.
4 Koushik Sen is grateful to RIACS/USRA for the partial support provided to conduct this
research.

2

erated set of properties. Hence, it takes the execution trace and the set of properties
generated as input. The program itself must be instrumentedto report events that
are relevant for monitoring that the properties are satisfied on a particular execu-
tion. This instrumentation can in some cases be automated. In the rest of this paper
the termtest case generationis used to refer to test input generation and property
generation and the termruntime verificationis used to refer to instrumentation as
well as observation.

Test cases are generated using the JAVA PATHFINDER model checker extended
with techniques for symbolic execution and the properties generated are expressed
in the EAGLE temporal logic, capable of embedding most temporal logics.The
framework described is being applied to a case study, a multi-threaded NASA rover
controller, which interprets and executes complicated activity plans. The individ-
ual techniques, model checking with symbolic execution andruntime verification
in EAGLE, have been described elsewhere, respectively in [38] and [10]. The con-
tribution of this paper is to demonstrate their combinationand on a realistic case
study. A special characteristic is that the properties to beverified are generated
automatically from the inputs to the program to be tested.

The paper is organized as follows. Section 2 outlines our technology for test case
generation: symbolic execution and model checking. Section 3 describes the run-
time verification techniques: temporal logic monitoring and concurrency analysis.
Section 4 describes the case study, where these technologies are applied to a plane-
tary rover controller. Section 5 outlines some related work. Section 6 concludes the
paper and outlines how this work will be continued.

2 Test Case Generation

This section presents the test case generation framework. As mentioned earlier, test
case generation is considered as consisting oftest input generationandproperty
generation.

2.1 Test Input Generation

2.1.1 Model-based testing

In practice today, the generation of test inputs for a program under test is a time-
consuming and mostly manual activity. However, test input generation lends itself
to automation and therefore has been the focus of much research attention – re-
cently it has also been adopted in industry [51,66,18,27]. There are two main ap-
proaches to generating test inputs automatically: a staticapproach that generates

3

inputs from some kind of model of the system, also called model-based testing,
and a dynamic approach that generates tests by executing theprogram repeatedly,
while employing criteria to rank the quality of the tests produced [41,65]. The dy-
namic approach is based on the observation that test input generation can be seen as
an optimization problem, where the cost function used for optimization is typically
related to code coverage, e.g. statement or branch coverage. The model-based test
input (test case) generation approach is used more widely, e.g. the TGV tool [2] for
the generation of conformance test suites for protocols, and the AGEDIS tool [1]
for automated generation and execution of test suites for distributed component-
based software, see also Hartman’s survey of the field [31]. The model used for
model-based testing is typically a model of expected systembehavior and can be
derived from a number of sources, namely, a model of the requirements, use cases,
design specifications of a system [31] – even the code itself can be used to create a
model, e.g. approaches based on symbolic execution [40,51]. As with the dynamic
approach, it is most typical to use some notion of coverage ofthe model to derive
test inputs, i.e., generate inputs that cover all transitions, or branches, etc., in the
model. Constructing a model of the expected system behaviorcan be a costly pro-
cess. On the other hand, generating test inputs just based ona specification of the
input structure and input pre-conditions can be very effective, while typically less
costly. This is the approach pursued in in the following.

In [38] a framework is presented that combinessymbolic executionand model
checking techniques for the verification of Java programs. The framework can be
used for test input generation forwhite-boxandblack-boxtesting. For white-box
test input generation, the framework model checks the program under test. A testing
coverage criterion, e.g. branch coverage, is encoded in a temporal logic specifica-
tion. Counterexamples to the specification represent pathsthat satisfy the coverage
criterion. Symbolic execution, which is performed during model checking, com-
putes a representation, i.e., a set of constraints, of all the inputs that execute those
paths. The actual testing requires solving the input constraints in order to instantiate
test inputs that can be executed. The framework can also be used for black-box test
input generation. In this case, the inputs to the program under test are described as
a Java input specification, i.e., a Java program, annotated with special instructions
to model non-determinism and to encode constraints, for symbolic execution. The
framework is then used to check this Java specification, i.e., to systematically ex-
plore the input domain of the program under test and to generate inputs according
to this specification. It is in this latter context (black-box) that we use the frame-
work from [38] in this paper. Note that for black-box test input generation, only the
input specification is required to be expressed in Java; the program under test can
be written in another language, e.g. C++ as it is the case for this paper. Note that
in writing input specifications, we can take full advantage of the expressive power
of the Java language and thus we can easily express inputs with complex structure,
e.g. linked lists, red-black search trees, executive plans.

Using symbolic execution for test input generation is a well-known approach, but

4

int x, y;
read x,y;

1: if (x > y) {
2: x = x + y;
3: y = x - y;
4: x = x - y;
5: if (x > y)
6: assert(false);

}

1

x: Y, y: X
PC: X>Y

x: X+Y, y: X
PC: X>Y

x: X+Y, y: Y
PC: X>Y

x: X, y: Y
PC: X>Y

x: X, y: Y
PC: true

x: X, y: Y
PC: X<=Y

PC: X>Y & Y<=X
x: Y, y: X

FALSE!
PC: X>Y & Y>X
x: Y, y: X

5 5

4

3

2

1

Figure 2. Code for swapping integers and corresponding symbolic execution tree.

typically only handles sequential code with simple data. In[38], this technique has
been extended to handle complex data structures, e.g. listsand trees, concurrency
as well as linear constraints on integer data. Symbolic execution of a program path
results in a set of constraints that define program inputs that execute the path; these
constraints are then solved using off-the-shelf decision procedures to generate con-
crete test inputs. When the program represents an executable input specification,
symbolic execution of the specification enables us to generate inputs that give us,
for instance, full specification coverage. Note that these specifications are typically
not very large – no more than a few thousand lines, in our experience – and hence
will allow efficient symbolic execution.

2.1.2 Symbolic Execution

The enabling technology for black-box test input generation from an input specifi-
cation is the use of symbolic execution. In fact, the same techniques can be applied
for white box testing. The main idea behind symbolic execution [40] is to use sym-
bolic values, instead of actual data, as input values and to represent the values of
program variables as symbolic expressions. The state of a symbolically executed
program includes, in addition to the symbolic values of program variables and the
program counter, a path condition. The path condition is a quantifier-free Boolean
formula over the symbolic inputs; it accumulates constraints which the inputs must
satisfy in order for an execution to follow the particular associated path. A sym-
bolic execution tree characterizes the execution paths followed during the symbolic
execution of a program. The nodes represent program states and the arcs represent
transitions between states.

Consider as an example, taken from [38], the code fragment inFigure 2, which
swaps the values of integer variablesx andy, whenx is greater thany. Figure 2
also shows the corresponding symbolic execution tree. Initially, the path condition,
PC, is true andx andy have symbolic valuesX andY, respectively. At each branch

5

continue/backtrack

checking

Decision
procedures

path condition (data)
heap configuration

test coverage
criterion

test suite
[constraints on inputs]

state
input specification

 Model

Figure 3. Framework for test input generation.

point,PC is updated with assumptions about the inputs according to the alternative
possible paths. For example, after the execution of the firststatement, boththen and
else alternatives of theif statement are possible andPC is updated accordingly.
If the path condition becomesfalse, i.e., there is no set of inputs that satisfy it, this
means that the symbolic state is not reachable and symbolic execution does not
continue for that path. For example, statement(6) is unreachable. In order to find
a test input to reach branch statement(5) one needs to solve constraintX > Y, e.g.
make inputsx andy 1 and 0, respectively.

Symbolic execution traditionally arose in the context of sequential programs with a
fixed number of integer variables. We have extended this technique [38] to handle
dynamically allocated data structures, e.g. lists and trees, complex preconditions,
e.g. lists that have to be acyclic, other primitive data, e.g. strings, and concurrency.
A key feature of our algorithm is that it starts the symbolic execution of a procedure
onuninitialized inputs and it useslazy initializationto assign values to these inputs,
i.e., it initializes parameters when they are first accessedduring symbolic execution
of the procedure. This allows symbolic execution of procedures without requiring
an a priori bound on the number of input objects. Procedure preconditions are used
to initialize inputs only with valid values.

2.1.3 Framework for Test Input Generation

Our symbolic execution-based framework is built on top of the JAVA PATHFINDER

(JPF) model checker [67]. JPF is an explicit-state model checker for Java programs
that is built on top of a custom-made Java Virtual Machine (JVM). It can handle
all of the language features of Java and in addition treats non-deterministic choice
expressed in annotations of the program being analyzed. JPF has been extended
with a symbolic execution capability which is described in detail in [38].

Figure 3 illustrates our framework for test input generation. The input specification
is given as a non-deterministic Java program that is instrumented to add support for
manipulating formulas that represent path conditions. Theinstrumentation enables

6

JPF to perform symbolic execution. Essentially, the model checker explores the
symbolic state space of the program, for example, the symbolic execution tree in
Figure 2. A symbolic state includes information about the heap configuration and
the path condition on integer variables. Whenever a path condition is updated, it
is checked for satisfiability using an appropriate decisionprocedure; currently our
system uses the Omega library [53] that manipulates linear integer constraints. If
the path condition is unsatisfiable, the model checker backtracks. A testing cover-
age criterion is encoded in the property the model checker should check for. This
causes the model checker to produce a counter-example tracewhenever a valid
symbolic test input has been generated.

From this trace a concrete test input is produced. Since onlyinput variables are
allowed to be symbolic, all constraints that are part of a counter-example are de-
scribed in terms of inputs. Finding a solution to these constraints will allow a valid
set of test data to be produced. Currently a simple approach is used to find these
solutions: Only the first solution is considered. In future work we will refine the
solution discovery process to also consider characteristics such as boundary cases.

Currently, the model checker is not required to perform state matching, since state
matching is, in general, undecidable when states representpath conditions on un-
bounded data. Note that performing symbolic execution on programs with loops
can explore infinite execution trees, hence symbolic execution might not termi-
nate. Therefore, for systematic state space exploration, limited depth-first search or
breadth-first search is used; our framework also supports various heuristic search
strategies, for example, based on branch coverage [28] or random search.

2.2 Property Generation

Any verification activity is in essence a consistency check between two artifacts. In
the framework presented here the check is between the execution of the program
on a given input and an automatically generated specification for that given input,
consisting of a set of properties about the corresponding execution trace. In other
contexts it may be a check of the consistency between the program and a com-
plete specification of the program under all inputs. This redundancy of providing
a specification in addition to the program is expensive but necessary. The success
of a verification technology partly depends on the cost of producing the specifica-
tion. The hypothesis of this work is twofold. First, focusing on the test effort itself
and writing “testing-oriented” properties, rather than a complete formal specifica-
tion, may be a cheaper development process. Second, automatically generating the
specification from the input may be easier than writing a specification for all inputs.

More precisely, the artifact produced here is a program thattakes as input an input
to a program and generates a set of properties, typically assertions in temporal logic.

7

The assertions are then checked against each program execution using the runtime
verification tools described in Section 3.

Notice that this approach leverages the runtime verification technology to great
effect, just as test case generation leverages model checking and symbolic analysis.
In addition, we anticipate the development of property generation tools specific
to a domain or class of problems. The software under test in our case study is
an interpreter for a plan execution language. In this circumstance, the program to
generate properties uses the decomposition of the plan withrespect to the grammar
of the plan language. Like a trivial compiler, the property generator produces test-
input-specific properties as semantic actions corresponding to the parse. Several of
NASA’s software systems have an interpreter structure and it is anticipated that this
testing approach can be applied to several of these as well.

3 Runtime Verification

Runtime verification is divided into two parts:instrumentationand event obser-
vation. A monitor receives events from the executing program, emitted by event
generators inserted during instrumentation and dispatches them to a collection of
algorithms, each of which performs a specialized trace analysis. We consider two
kinds of such algorithms: the EAGLE temporal logic monitor and three concur-
rency analyzers, that can detect deadlock potentials, as well as two kinds of data
race potentials. The concurrency analyzers are currently not fully integrated in the
presented testing environment but are mentioned since theyform an interesting al-
ternative to temporal logic monitoring and since we have made trials and intend to
integrate them.

Instrumentation can be achieved in a number of ways, including code instrumen-
tationandwrapping. In thecode instrumentationapproach, source code (or object
code) is augmented with code that generates the event stream. In the wrapping
approach, system library methods are wrapped inside user-defined methods, that
themselves contain instrumentation. This is the approach of Purify [54]. Instrumen-
tation can be done automatically or manually. Our experiments have used manual
source code instrumentation as well as manual wrapping. Thesource code instru-
mentation approach is used to generate events for the temporal logic monitoring.
The wrapping approach is used to generate events for the deadlock concurrency
analysis, where POSIX thread [49]lock andunlockmethods are wrapped and in-
strumented. In other work, we describe an instrumentation package, named JSpy,
that automatically instruments Java bytecode [25]. However, this could not be ap-
plied here as the code is written in C++. An automated instrumentation is necessary
in order to perform data race analysis since all accesses to shared variables need to
be monitored.

8

3.1 Temporal Logic Monitoring withEAGLE

Many different languages and logics have been proposed for specifying and an-
alyzing properties of program state or event traces, each with characteristics that
make it more or less suitable for expressing various classesof trace properties; they
range from stream-based functional, state chart, single-assignment and dataflow
languages, through pattern-matching languages based on regular (and extended reg-
ular) expressions, to a whole host of modal and, in particular, linear-time temporal
logics. In Section 5, such languages and logics that have been applied directly to
run-time property analysis are discussed more fully. Suffice it to say here that the
general framework of linear-time temporal logics (LTL) appeared most appropriate
for our own work but that none of the proposed temporal logicsfor run-time analy-
sis, of which we were aware, provided the right combination of expressivity, natu-
ralness, flexibility, effectiveness and ease of use we desired. Of course, more often
than not, it can be observed that the greater the expressivity of the property speci-
fication logic, the higher the computational cost for its analysis. As a consequence
this has led us in the past to research efficient algorithms for the evaluation of re-
stricted sub-logics, e.g. pure past-time LTL, pure future-time LTL, extended regular
expressions, metric temporal logic and so forth. But we weredissatisfied that (i) we
had no unifying base logic from which these different temporal logics could be built
and (ii) we were overly restrictive on the way properties could be expressed, e.g.
forcing pure past, or pure future, etc. Our research thus ledus to develop and im-
plement a core, discrete temporal logic, EAGLE, that supports recursively defined
formulas, parameterizable by both logical formulas and data expressions, over a set
of four primitive modalities corresponding to the “next”, “previous”, “concatena-
tion” and “sequential temporal composition” operators. The logic, whilst primitive,
is expressively rich and enables users define their own set ofmore complex tempo-
ral predicates tuned to the particular needs of the run-timeverification application.
Indeed, in [10] it is shown how a range of finite-trace monitoring logics, including
future-time and past-time temporal logic, extended regular expressions, real-time
and metric temporal logics, interval logics, forms of quantified temporal logics and
context free temporal logics, can be embedded within EAGLE. However, in order to
be truly fit for purpose, the implementation of EAGLE must ensure that “users only
pay for what they use”.

3.2 Syntax ofEAGLE

The syntax of EAGLE is shown in Figure 4. A specificationSconsists of a declara-
tion partD and an observer partO. The declaration part,D, comprises zero or more
rule definitionsR and similarly, the observer part,O, comprises zero or more mon-
itor definitionsM, which specify the properties that are to be monitored. Bothrules
and monitors are named (N), however, rules may be recursively defined, whereas

9

S ::= D O

D ::= R∗

O ::= M∗

R ::= {max | min } N(T1 x1, . . . ,Tn xn) = F

M ::= mon N = F

T ::= Form | primitive type

F ::= True | False | xi | expression

¬F | F1∧F2 | F1∨F2 | F1 → F2 | F1 ↔ F2

©F | J

F | F1 ·F2 | F1; F2 | N(F1, . . . ,Fn)

Figure 4. Syntax of EAGLE.

monitors are simply non-recursive formulas. Each rule definition R is preceded by
a keywordmax or min, indicating whether the interpretation given to the rule is
either maximal or minimal. Rules may be parameterized; hence a rule definition
may have formal arguments of typeForm, representing formulas, or of primitive
type int , long, float, etc., representing data values.

An atomic formula of the logic is either a logical constantTrue or False, or a
boolean expression over the observer state, or a type correct formal argumentxi ,
i.e., of typeForm or of primitive typebool. Formulas can be composed in the
usual way through the traditional set of propositional logic connectives,¬, ∧, ∨,
→ and↔. Temporal formulas are then built using the two monadic temporal op-
erators,©F (in the next stateF holds) and

J

F (in the previous stateF holds)
and the dyadic temporal operators,F1 ·F2 (concatenation) andF1; F2 (sequentially
compose). Importantly, a formula may also be the recursive application of a rule to
some appropriately typed actual arguments. That is, an argument of typeForm can
be any formula, with the restriction that if the argument is an expression, it must
be of boolean type; an argument of a primitive type must be an expression of that
type.

The body of a rule/monitor is thus a (boolean-valued) formula of the syntactic cat-
egoryForm (with meta-variablesF, etc.). We further require that any recursive call
on a rule is strictly guarded by a temporal operator.

3.3 Semantics ofEAGLE

The models of our logic are observation (or execution) traces. An observation trace
σ is a finite sequence of observed program statesσ = s1s2 . . .sn, where|σ| = n is
the length of the trace. Note that the ith statesi of a traceσ is denoted byσ(i) and

10

σ, i |=D exp iff 1 ≤ i ≤ |σ| andevaluate(exp)(σ(i)) == true

σ, i |=D True

σ, i 6|=D False

σ, i |=D ¬F iff σ, i 6|=D F

σ, i |=D F1∧F2 iff σ, i |=D F1 andσ, i |=D F2

σ, i |=D F1∨F2 iff σ, i |=D F1 or σ, i |=D F2

σ, i |=D F1 → F2 iff σ, i |=D F1 impliesσ, i |=D F2

σ, i |=D F1 ↔ F2 iff σ, i |=D F1 is equivalent toσ, i |=D F2

σ, i |=D ©F iff i ≤ |σ| andσ, i +1 |=D F

σ, i |=D
J

F iff 1 ≤ i andσ, i −1 |=D F

σ, i |=D F1 ·F2 iff ∃ j s.t. i ≤ j ≤ |σ|+1 and

σ[1, j−1], i |=D F1 andσ[j ,|σ|],1 |=D F2

σ, i |=D F1; F2 iff ∃ j s.t. i < j ≤ |σ|+1 and

σ[1, j−1], i |=D F1 andσ[j−1,|σ|],1 |=D F2

σ, i |=D N(F1, . . . ,Fm) iff











































if 1 ≤ i ≤ |σ| then:

σ, i |=D F[x1 7→ F1, . . . ,xm 7→ Fm]

where (N(T1 x1, . . . ,Tm xm) = F) ∈ D

otherwise, ifi = 0 or i = |σ|+1 then:

ruleN is defined asmax in D

Figure 5. Definition ofσ, i |=D F for 0≤ i ≤ |σ|+1 for some traceσ = s1s2 . . .s|σ|.

the termσ[i, j] denotes the sub-trace ofσ from positioni to positionj, both positions
being included. The semantics of the logic is then defined in terms of a satisfaction
relation between observation traces and specifications. That is, given a traceσ and
a specificationD O, satisfaction is defined as follows:

σ |= D O iff ∀ (mon N = F) ∈ O . σ,1 |=D F

A trace satisfies a specification if the trace, observed from position 1 — the index of
the first observed program state — satisfies each monitored formula. The definition
of the satisfaction relation|=D ⊆ (Trace×nat)×Form, for a set of rule defini-
tions D, is defined inductively over the structure of the formula andis presented
in Figure 5. First of all, note that the satisfaction relation |=D is actually defined
for the index range 0≤ i ≤ |σ|+1 and thus provides a value for a formula before
the start of observations and also after the end of observations. This approach was

11

taken to fit with our model of program observation and evaluation of monitoring
formulas. The observer only knows the end when it has been passed and no more
observation states are forthcoming. It is at that point thata value for the formula
needs to be determined. At these boundary points, expressions involving reference
to the observation state (where no state exists) are trivially false. A next-time (resp.
previous-time) formula also evaluates false at the point beyond the end (resp. before
the beginning). A rule, however, has its value at such pointsdetermined by whether
it is maximal, in which case it is true, or minimal, in which case it is false. Indeed,
there is a correspondence between this evaluation strategyand maximal (minimal)
fixed point solutions to the recursive definitions. Thus, forexample, referring to the
first three rules defined below in Section 3.4 formulaAlways(φ) will evaluate to
true on an empty trace — sinceAlways was defined maximal, whereas formulas
Eventually(φ) andPreviously(φ) will evaluate to false on an empty trace — as
they were declared as minimal.

The propositional connectives are given their usual interpretation. The next-time
and previous-time temporal operators are as expected. The concatenation and se-
quential temporal composition operators are, however, notstandard in linear tempo-
ral logics, although the sequential temporal composition is often featured in interval
temporal logics and can also be found in process logics. A concatenation formula
F1 ·F2 is true if and only if the traceσ can be split into two sub-tracesσ = σ1σ2,
such thatF1 is true onσ1, observed from the current positioni andF2 is true on
σ2 from position 1 (relative toσ2). Note that the first formulaF1 is not checked on
the second traceσ2 and, similarly, the second formulaF2 is not checked on the first
traceσ1. Also note that eitherσ1 or σ2 may be an empty sequence. The sequential
temporal composition differs from concatenation in that the last state of the first
sequence is also the first state of the second sequence. Thus,formulaF1; F2 is true
if and only if traceσ can be split into two overlapping sub-tracesσ1 andσ2 such

thatσ = σ[1,|σ1|−1]
1 σ2 andσ1(|σ1|) = σ2(1) and such thatF1 is true onσ1, observed

from the current positioni, andF2 is true onσ2 from position 1 (relative toσ2).
This operator captures the semantics of sequential composition of finite programs.

Finally, applying a rule within the trace, i.e., positions 1. . .n, consists of replacing
the call by the right-hand side of its definition, substituting the actual arguments for
formal parameters. At the boundaries (0 andn+1) a rule application evaluates to
true if and only if it is maximal.

3.4 Programming inEAGLE

To illustrate EAGLE we describe the framework for the case study to be presented
in Section 4. Consider a controller for an autonomous mobilerobot, referred to as
a rover, that executes actions according to a given plan. The goal isto observe that
actions start and terminate in an expected order and within expected time periods.

12

class State extends EagleState {
public int kind;
// 1=start, 2=end, 3=fail

public String action;
public int time;

public boolean start(){
return kind == 1;

}

public boolean end(){
return kind == 2;

}

public boolean fail(){
return kind == 3;

}

public boolean start(String a){
return start() && action.equals(a);

}

public boolean end(String a){
return end() && action.equals(a);

}

public boolean fail(String a){
return fail() && action.equals(a);

}
}

Figure 6. The state in which EAGLE Java expressions are evaluated.

Actions can either end successfully, or they can fail. The rover controller is instru-
mented to emit events containing an event kind (start, end, or fail), an action name
(a string) and a time stamp (an integer) – the number of milliseconds since the start
of the application.

<event> ::= <kind> <string> <int>

<kind> ::= start | end | fail

As events are received by the monitor, they are parsed and stored in a state, which
the EAGLE formulas can refer to. The state is an object of a user-definedJava class
and an example is given in Figure 6. The class defines the stateand a set of methods
observing the state, which can be referred to in EAGLE formulas. To illustrate the
use of formulas as parameters to rules, the following EAGLE fragment defines three
rules,Always, Eventually andPreviously – corresponding to the usual temporal
operators for “always in the future”, “eventually in the future” and “previously in
the past”.

max Always(Form f) = f ∧©Always(f)

min Eventually(Form f) = f ∨©Eventually(f)

min Previously(Form f) = f ∨J

Previously(f)

The following two monitors check that every observed start of the particular action
“ turn” is matched by a subsequent end of that action and conversely, that every end

13

of the action is preceded by a start of the action.

mon M1 = Always(start(“ turn”)→ Eventually(end(“ turn”))

mon M2 = Always(end(“ turn”)→ Previously(start(“ turn”))

To illustrate data patameterization, consider the more generic property: “for any
action, if it starts it must eventually end” and conversely for the past-time case.
This is stated as follows.

min EventuallyEnd(String a) = Eventually(end(a))

min PreviouslyStart(String a) = Previously(start(a))

mon M3 = Always(start()→ EventuallyEnd(activity))

mon M4 = Always(end() → PreviouslyStart(activity))

Consider the following properties about real-time behavior, such as the property
“when the rover starts a turn, the turn should end within 10 – 30seconds”. For this,
a real-timed version of theEventually operator is needed. The formula
EventuallyWithin(f , l ,u) monitors thatf occurs within the relative time bounds
l (lower bound) andu (upper bound), measured in seconds. It is defined with the
help of the auxiliary ruleEventuallyAbs, which is an absolute-timed version.

min EventuallyAbs(Form f , int al, int au) =

time≤ au∧
((f ∧ time≥ al) ∨
(¬ f ∧ ©EventuallyAbs(f ,al,au)))

min EventuallyWithin(Form f , int l , int u) =

EventuallyAbs(f , time+(l ∗1000), time+(u∗1000))))

Note that variabletime is defined in the state and contains the latest time stamp in
milliseconds since the start of the application. The property “when the rover starts
a turn, the turn should end within 10 – 30 seconds” can now be stated as follows:

mon M5 = Always(start(“ turn”)→ EventuallyWithin(end(“ turn”),10,30))

3.5 Online Evaluation Algorithm

A monitoring algorithmfor EAGLE determines whether a traceσ models a mon-
itoring specificationD O. Our algorithm operates in an online fashion. That is, it

14

is applied sequentially at each state ofσ and does not refer back to prior states or
forward to future states. This allows the algorithm to be used in online-monitoring
contexts.

Ideally, if a monitoring specification is expressible in a more restricted system,
e.g. LTL, then the EAGLE algorithm should perform about as well as an efficient
algorithm for the restricted system. We have proved this forLTL and other logics.

The algorithm employs a functioneval(F,s) that examines a state,s, and transforms
a monitorF into a monitorF ′ such thats_ σ,1 |=D F iff s_ σ,2 |=D F ′.

The algorithm is, where possible, a direct implementation of the definition of the
EAGLE semantics. So for example ifD monitors a formulaF1∨F2, then (with a
slight overloading of the notation)

eval(F1∨F2,s) = eval(F1,s)∨eval(F2,s).

Furthermore,
eval(©F,s) = F.

However, an online algorithm that examines a trace in temporal order cannot treat
the previous-state operator so easily. Thus the algorithm maintains an auxiliary data
structure used byevalon sub-formulas headed by the

J

operator, that records the
result of (partially) evaluating the formula in the previous state.

This is illustrated as follows.

min R(int k) =
J

(y+1 == k)

mon M = Eventually(R(x))

This monitor will be true if somewhere in the trace there are two successive states
such that the value ofy in the first state is one less than the value ofx in the second
state. More generally, notice that the combination of parameterizing rules with data
values and use of the next and previous state operators enable constraints that relate
the values of state variables occurring in different states.

Sinceeval recursively decomposes the formulas, eventuallyevalwill be called on
J

(y+1== k). Note the state variabley refers to the value ofy in the previous state,
while the formal parameterk is bound to the value ofx in the current state. Since the
previous state is unavailable, in the prior step the algorithm must take some action to
record relevant information. Our algorithm pre-evaluatesand caches the evaluation
of any formulaP headed by a previous-state operator, in this case formulay+1==
k. However, since the value ofk will not be known at that point, the evaluation is
partial. In particular note that the atomic formulas and theunderlying expression

15

language (in our case this is Java expressions), must be partially evaluated5 . Also
note that since formulaP can be arbitrarily complex, in particular another previous-
state operator may be nested within, the pre-evaluation is done by a recursive call
to eval.

This is basic idea of the algorithm. One subtle point is that the sub-formulas that
must be pre-evaluated must be identified and properly initialized prior to process-
ing the first state. This is done by expanding monitor formulas by unfolding rule
definitions, while avoiding infinite expansion due to recursive rule definitions. At
the end of the trace, functionvalueis called yielding a truth value as the final result
of evaluating each monitor over the trace. Functionvalue implements the EAGLE

semantics with respect to boundary conditions regarding the end of the trace.

Functionevalyields a formula that may be simplified without altering the correct-
ness of the algorithm. Indeed the key to efficient monitoringand provable space
bounds is adequate simplification. In our implementation, formulas are represented
in disjunctive normal form where each literal is an instanceof negation, the previ-
ous, next, concatentation or sequential composition operator or a rule application.
Subsumption, i.e., simplifying(a∧b)∨a to a, is essential.

3.6 Complexity ofEAGLE

It is evident from the semantics given in Section 3.3 that, intheory, EAGLE is a
highly expressive and powerful language; indeed, given theunrestricted nature of
the data types and expression language, it is straightforward to see it is Turing-
complete. However, what is of interest is the performance ofEAGLE on special
cases, i.e., for arbitrary monitors defined over fixed rule sets that implement stan-
dard temporal logics. Furthermore one must distinguish complexity due to any data
computation ascribed to methods defined for state update andpredicate evaluation
from the evaluation of the purely temporal aspects of the logic. An alternative way
of viewing this is to show that our algorithm can meet known optimal bounds for
various sub-logics embedded within Eagle. To that end, there are some initial com-
plexity results that are of interest.

Our first result relates to an embedding of propositional linear-time temporal logic
(LTL), over both future and past. In [9], we show that the stepevaluation for an ini-
tial LTL formula of sizemhas an upper time complexity bound ofO(m422m log2m)
and a space bound ofO(m22m logm), thus showing that the evaluation at any point
is not dependent on the length of the history, i.e., the inputseen so far. The result is
close to the lower bound ofO(2

√
m) for monitoring LTL given in [60].

5 A simpler alternative to partial evaluation is to form a closure and do the complete eval-
uation when all variables are bound.

16

For metric temporal logic (MTL) where time constants are stated as natural num-
bers, embedded in EAGLE, it can be shown that the time and space complexity
of monitoring of a formula is 2O(m) wherem is the size of the monitored formula
plus the sum of all time constants that appear in the formula.Note that the bound,
although exponential, is independent of the length of the trace. The proof for this
complexity bound is similar to the proof of the same result in[64].

For real-time logic where time constants are stated as real numbers, embedded in
EAGLE, the time and complexity bound, although independent of thelength of the
trace, is dependent on the minimum of all time differences between any two events
in the trace. The bound is given by 2O(mt/δ) wherem is the size of the formula,t is
the sum of all time constants appearing in the formula andδ is the minimum time
difference between any two events in the trace monitored.

3.7 A Java Library for MonitoringEAGLE Properties

The EAGLE monitoring engine implements the EAGLE monitoring algorithm as a
Java library. The library provides three basic methods,parse, eval andvalue,
that can be called by any client program for the purpose of monitoring. The first
methodparse takes a file containing a specification involving several monitors
(sets of monitored formulas) written in EAGLE and compiles them internally into
data structures representing monitors. After compilation, the client program calls
the methodeval iteratively with an observer state. This call internally modifies
the monitors according to the definition ofeval in subsection 3.5. If a monitored
formula becomes false during this modification, it calls a methoderror which the
client program is expected to implement. Similarly, if a formula becomes true the
methodsuccess is called. It is up to the client program to define the observer
state. The client program also modifies the observer state atevery event. Once all
the events are consumed the client program calls the methodvalue to check if the
monitored formulas are satisfied by the sequence of observerstates. If a formula is
not satisfied the methodwarning implemented by the client is called; otherwise,
the methodnowarning is invoked.

3.8 Concurrency Analysis

A scheduler may schedule the different threads in a multi-threaded program, such
as the rover controller, in a non-deterministic manner, causing the order in which
threads access shared objects to differ among different executions on the same in-
put. This may lead to different observed execution traces, causing temporal logic
specifications to be violated in some traces while not being violated in others. Con-
sequently one cannot infer that a temporal property holds for all traces (that is,
holds for the program on some particular input) based on the observation that it

17

holds onsometrace. The ideal solution would be a framework for transforming
temporal properties to stronger properties that when checked will be less sensitive
to the non-determinism of traces. Ideally one would like to be able to infer that if
the property holds on some trace then with high probability it holds on all traces.
Or perhaps more importantly: if the property is violated on some trace then it is
so violated with high probability on any trace, thereby increasing our chance of
detecting the problem on a random trace. Although this may appear a very difficult
problem to solve for the general case, it actually can be donefor certain properties
that are generally desirable for concurrent programs: deadlock freedom and data
race freedom.

Deadlocks can occur when two or more threads acquire locks ina cyclic manner.
As an example of such a situation consider two threadsT1 andT2 both acquiring
locksA andB. ThreadT1 acquires firstA and thenB before releasingA. ThreadT2

acquiresB and thenA before releasingB. This situation poses a deadlock potential
since threadT1 can acquireA where upon threadT2 can acquireB, resulting in a
deadlocked situation. Potentials for such deadlocks can bedetected by identifying
cycles in lock graphs [12]. Another main issue for programmers of multi-threaded
applications is to avoiddata raceswhere several threads access a shared object si-
multaneously. If all threads utilize the same lock when accessing an object, mutual
exclusion is guaranteed, otherwise data races are possible. The Eraser algorithm
[57] can detect such data races by maintaining a so-called lock set for each mon-
itored variable. Recent work [5] has identified another kindof data races, termed
high-level data races, that are not detectable by the Eraser algorithm. These races
can occur when sets of fields are accessed incorrectly. Montors have been devel-
oped for analyzing traces for the three above mentioned concurrency problems. For
deadlock analysis manual instrumentation has been done using wrapping as men-
tioned ealier. For the two kinds of data race analysis, automated instrumentation of
C++ remains to be done.

Although the above mentioned concurrency algorithms have been implemented as
specialized programs, one can well imagine using EAGLE for specifying such prop-
erties. As an experiment, the deadlock detection algorithmhas been encoded in EA-
GLE as described in [9], although restricted to the detection ofdeadlocks between
pairs of threads. The general algorithm described in [12] can detect deadlock poten-
tials between any number of threads. Further work will integrate the concurrency
algorithms and EAGLE fully.

4 Case Study: A Planetary Rover Controller

The subject of the case study described here is a controller for the K9 planetary
rover, developed at NASA Ames Research Center. A full account of this controller
is described in [14]. The case study was done in collaboration with the programmer

18

Plan → Node

Node → Block | Task

Block → (block

NodeAttr

:node-list (NodeList))

NodeList → Node NodeList| ε

Task → (task

NodeAttr

:action Symbol

:duration DurationTime)

NodeAttr → :id Symbol

[:start-condition Condition]

[:end-condition Condition]

[:continue-on-failure]

Condition → (time StartTime EndTime)

(block
:id plan
:continue-on-failure
:node-list (

(task
:id drive1
:start-condition (time +1 +5)
:end-condition (time +1 +30)
:action BaseMove1
:duration 20

)
(task
:id drive2
:end-condition (time +10 +16)
:action BaseMove2
:duration 20

)))

Figure 7. Plan grammar (left) and an example of a plan (right).

of the controller. First we present a description of the rover controller, including a
description of the plan language (the input to the controller). Then, an outline is
given of how plans (test inputs) and associated temporal logic properties can be
automatically generated using model checking.

4.1 The Rover Controller

The rover controller is a multi-threaded system (35,000 lines of C++ code) that
receives flexible plans from a planner, which it executes according to a plan lan-
guage semantics. A plan is a hierarchical structure of actions that the rover must
perform. Traditionally, plans are deterministic sequences of actions. However, in-
creased rover autonomy requires added flexibility. The planlanguage therefore al-
lows for branching based on conditions that need to be checked and also for flexi-
bility with respect to the starting time and ending time of anaction.

This section gives a short presentation of the (simplified) language used in the de-
scription of the plans that the rover executive must execute.

4.1.1 Plan Syntax

A plan is anode; a node is either atask, corresponding to anaction to be exe-
cuted, or ablock, corresponding to a logical group of nodes. Figure 7 (left) shows
the grammar for the plan language. All node attributes, withthe exception of the
id of the node, are optional. Each node may specify a set ofconditions, e.g. the
start condition(that must be true at the beginning of node execution) and theend

19

condition(that must be true at the end of node execution). Each condition includes
information about a relative or absolute time window, indicating a lower and an
upper bound on the time. Flagcontinue-on-failureindicates what the behavior will
be when an node failure is encountered. Attributedurationspecifies the duration of
the action. Figure 7 (right) shows a plan that has one block with two tasks (drive1
anddrive2). The time windows here are relative (indicated by the ’+’ signs in the
conditions).

4.1.2 Plan Semantics

For every node, execution proceeds through the following steps:

• Wait until the start condition is satisfied; if the current time passes the end of the
start condition, the node times out and this is a node failure.

• The execution of ataskproceeds by invoking the corresponding action (e.g. a
routine that interacts with the rover software). The actiontakes the time spec-
ified in the:duration attribute. The task fails or succeeds, depending on the
status of the action that is executed. The execution of ablocksimply proceeds by
executing each of the nodes in thenode-list in order.

• If time exceeds the end condition, the node fails. On anode failure, when exe-
cution returns to the sequence, the value of flagcontinue-on-failureof the failed
node is checked. If true, execution proceeds to the next nodein the sequence.
Otherwise the node failure is propagated to any enclosing nodes. If the node fail-
ure passes out to the top level of the plan, the remainder of the plan is aborted.

4.2 Test Input Generation

Figure 8 shows part of the Java code, referred to as theuniversal planner, that is
used to generate plans (i.e., test inputs for the executive)and properties (i.e., test
oracles, as discussed in the next section). The framework described in Section 2
is used to generate test inputs from a specification written as an annotated Java
program. Model checking with symbolic execution generatesthe inputs. The input
plans are specified using non-deterministic choice (choosemethods) over the struc-
tures allowed in the grammar presented in Figure 7 and constraints over the integer
variables in the input structure (updates to the path condition _pc). For brevity,
only a small sample set of constraints is shown here (statingthat the time points
are proper positive values defining intervals and the end time is larger than the start
time of an interval). The actual testing requires solving these constraints in order to
instantiate input plans that can be then executed (methodsolution). To illustrate
the flexibility in our approach, some of the variables are considered concrete inputs,
e.g. the maximum allowed number of nodes in a generated structure (nNodes) and
yet others, e.g. the boolean values, are generated using non-deterministic choice.

20

class UniversalPlanner { ...
static int nNodes; /*max number of nodes*/
static void Plan(int nn) {

nNodes = nn;
Node plan = UniversalNode();
print(plan);
compute_and_print_properties(plan);
assert(false);

}
static Node UniversalNode() {

if (nNodes == 0) return null;
if (chooseBool()) return null;
if (chooseBool())
return UniversalTask();

return UniversalBlock();
}

static Node UniversalTask() {
int id = nNodes; nNodes--;
UniversalAttributes();
Task t = new Task(id, start, end,

continueOnFailure,duration);
return t;

}
static Node UniversalBlock() {

int id = nNodes; nNodes--;
ListOfNodes l = new ListOfNodes();
for (Node n = UniversalNode();n != null;

n = UniversalNode()) l.add(n);
UniversalAttributes();
Block b = new Block(id, l, start, end,

continueOnFailure);
return b;

}

static TimeCondition start, end;
static int duration;
static boolean continueOnFailure;

static UniversalAttributes() {
id = new Symbol();
SymInt sTime1 = new SymInt();
SymInt sTime2 = new SymInt();
SymInt eTime1 = new SymInt();
SymInt eTime2 = new SymInt();
SymInt d = new SymInt();

/* constraints */
SymInt._pc._add_GE(sTime1,0);...
SymInt._pc._add_LT(sTime1,sTime2);
SymInt._pc._add_LT(eTime1,eTime2);
SymInt._pc._add_LE(sTime1,eTime1);
...
duration = d.solution();
start = new TimeCondition(sTime1.solution(),

sTime2.solution());
end = new TimeCondition(eTime1.solution(),

eTime2.solution());
continueOnFailure = chooseBool();

} }

Figure 8. Code that generates input plans and properties.

The assertion in the program, at the end of thePlan method, specifies that it is not
possible to create a “valid” plan (i.e., executions that reach this assertion generate
valid plans). The JPF model checker model checks the universal planner and is thus
used to explore the state space of the input plans that have upto nNodes nodes.
Different search strategies find multiple counterexamples; for each counterexample
(representing a valid plan), a set of properties associatedwith the plan is computed.
The generated plan and properties are printed to files that are then used for testing
the rover.

class SymInt { ...
static PathCondition _pc;
...
int solution() { ... }

}

class PathCondition { ...
Constraints c;
void _add_LT(SymInt e1, SymInt e2){

c.add_constraint_LT(e1,e2);
if (!c.is_satisfiable())

backtrack();
return;

} }

Figure 9. Library classes for symbolic execution.

Figure 9 gives part of the library classes that enable JPF to perform symbolic execu-
tion. ClassSymInt supports manipulation of symbolic integers. Thestatic field
SymInt._pc stores the (numeric) path condition. Method_add_LT updates the path
condition with a constraint encodinge1 less-thane2. Methodis_satisfiable

21

uses the Omega library to check if the path condition is infeasible (in which case,
JPF will backtrack). Thesolution method first solves the constraints and then
returns one solution for a symbolic integer.

4.3 Property Generation

For each generated plan, a set of properties in the EAGLE temporal logic is au-
tomatically generated, according to the semantics of the planning language. It is
important to note that such a set of properties is generated for each plan and mon-
itored during the execution of that specific plan. In generating these properties, the
following predicates are used: start(id) (true immediately after the start of the ex-
ecution of the node with the correspondingid), end(id) (true when the execution
of the node ends successfully) and fail(id) (true when the execution of the node
ends with a failure). The code is instrumented to monitor these predicates and the
validity of the generated properties is checked on execution traces. As an example,
some of the generated properties for the plan from Figure 7 (right) are shown in
Figure 10.

The set of generated properties does not fully represent thesemantics of the plan.
As an example, the illustrated properties do not state the fact thatdrive1 should
only start once. A complete specification of the plan semantics would require a
more elaborate set of formulas. Since EAGLE is a very expressive logic this would
be possible. However, the current set of properties generated for a plan seems ap-
propriate to catch many kinds of errors. The effort investedin designing what prop-
erties to be generated for a particular plan was minimal and likely so due to the
fact that not all the plan semantics is modeled. The properties could be inferred
very directly from the informal plan semantics communicated by the engineer that
programmed the system.

4.4 Results

The tool is fully automated after setup and does not require any input from the user
to run. The tool generates a set of test cases, each consisting of a plan (input) and a
set of properties (expected of the output). A script will execute each test case, first
by running the controller, together with a rover hardware simulator, on the input
plan and then calling EAGLE to verify that the generated execution trace satisfies
the properties. Due to the automated nature of the process, the developer of the K9
rover controller is capable of running it himself. All test results used in the process
have been generated by the developer running the tool.

The automated testing system found a missing feature that had been overlooked by
the developers: the lower bounds on execution duration werenot enforced. Hence,

22

• M1 = Eventually(start("plan"))

i.e., the initial nodeplan should eventually start.

• M2 = Always(start("plan") -> Eventually(end("plan")))

i.e., if plan starts, then it should eventually terminate successfully.

• M3 = Always(start("plan") -> EventuallyWithin(start("drive1"),1,5))

i.e., if plan starts, thendrive1 should start within 1 and 5 time units.

• M4 = Always((end("drive2") \/ fail("drive2")) ->
Eventually(end("plan")))

i.e., successful or failed termination ofdrive2 implies successful termination
of the whole plan (due tocontinue-on-failure flag).

• M5 = Always(start("drive1") ->
(EventuallyWithin(end("drive1"),1,30) \/

Eventually(fail("drive1"))))

i.e. if drive1 starts, then it should end successfully within 1 and 30 time units or
it should eventually terminate with a failure.

• M6 = Always(fail("drive1") -> ~ Eventually(start("drive2")))

i.e., if drive1 fails, thendrive2 should not start.

• M7 = Always(end("drive1") -> Eventually(start("drive2")))

i.e., if drive1 ends successfully, thendrive2 should eventually start.

• M8 = Always(start("drive2") -> Eventually(fail("drive2")))

i.e., if drive2 starts, then it should eventually fail (due to the time conditions).

Figure 10. Properties representing partial semantics of plan in Fig. 7.

where a certain generated temporal logic formula predictedfailure, the execution in
fact wrongly succeeded, and this was detected as a violationof the temporal prop-
erty. The error was not corrected immediately after its detection, and showed up
later during actual rover operation in a field test before it was corrected. A prelim-
inary version of the testing environment, not using automated test case generation,
found a deadlock and a data race. The data race, involving access to a shared vari-
able used to communicate between threads, was suspected by the developer, but
had not been confirmed in code. The trace analysis allowed thedeveloper to see the
read/write pattern clearly and redesign the communication.

The K9 rover controller, essentially an interpreter, seemed to be very well suited
for this kind of testing framework. It was in particular a simple matter to determine
what temporal properties should be generated for a plan. This is, however, not easy
in general for other kinds of applications. The other main criticism one can raise
is the fact that only events of the formstart, endand fail are monitored. Hence,
failures which could only be detected by monitoring actionsbetween these events

23

cannot be detected.

5 Related Work

5.1 Test Case Generation

In section 2 we have already discussed some of the related work on specification-
based testing. Here we link our approach to test input generation tools.

The idea of using constraints to represent inputs dates backat least three decades
[37,17,40,55]; the idea has been implemented in various tools including EFFIGY
[40], TEGTGEN [42] and INKA [26]. Most of this work has been focused on solv-
ing constraints on primitive data, such as integers and booleans.

Some recent frameworks, most notably TestEra [46] and Korat[13,45], do sup-
port generation of complex structures. TestEra generates inputs from constraints
given in Alloy, a first-order declarative language based on relations. TestEra uses
off-the-shelf SAT solvers to solve constraints. Korat generates inputs from con-
straints given as Java predicates. The Korat algorithm has recently been included
in the AsmL Test Generator [22] to enable generation of structures. TestEra and
Korat focus on solving structural constraints. They do not directly solve constraints
on primitive data as we do in our framework. Instead, they systematically try all
primitive values within given bounds, which may be inefficient.

The first version of AsmLT Test Generator [27] was based on finite-state machines
(FSMs): an AsmL [30] specification is transformed into an FSMand different
traversals of the FSM are used to construct test inputs. Korat adds structure gen-
eration to generation based on finite-state machines [27]. AsmLT was successfully
used for detecting faults in a production-quality XPath compiler [63].

Several researchers have investigated the use of model checking for test input gen-
eration (see [36] for a good survey). Gargantini and Heitmeyer [23] use a model
checker to generate tests that violate known properties of aspecification given in
the SCR notation. Ammann and Black [4] combine model checking and mutation
analysis to generate test cases from a specification. Rayadurgam et al. use a struc-
tural coverage-based approach to generate test cases from specifications given in
RSML−e by using a model checker [35]. Hong et al. formulate a theoretical frame-
work for using temporal logic to specify data-flow test coverage in [36]. These
approaches cannot handle structurally complex inputs.

There are many tools that produce test inputs from a description of tests. QuickCheck
[16] is a tool for testing Haskell programs. It requires the tester to write Haskell

24

functions that can produce valid test inputs; executions ofsuch functions with dif-
ferent random seeds produce different test inputs. Our workdiffers in that it requires
only a specification that characterizes valid test inputs and then uses a general-
purpose search to generateall valid inputs up to a certain size. DGL [48] and
lava [62] generate test inputs from production grammars. They were used mostly
for random testing, although they can also systematically generate test inputs. How-
ever, they cannot easily represent inputs with complex structure, as we do by using
Java as a specification language.

5.2 Runtime verification

Several runtime verification systems have recently been developed, a collection of
which have been presented at a series of international runtime verification (RV)
workshops [3]. Linear temporal logic (LTL) [52] has been core to several of these
attempts. The MaC tool [39] supports a past-time interval temporal logic. Real-
time is modelled by introducing an explicit state in the specification, containing
explicit clock variables, which get updated when new eventsarrive. The commer-
cial tools Temporal Rover and DBRover [18,19], support future-time and past-time
LTL properties, annotated with real-time and data constraints. Alternating automata
algorithms to monitor LTL properties are proposed in [21] and a specialized LTL
collecting statistics along the execution trace is described in [20]. Various algo-
rithms to generate testing automata from temporal logic formulas are discussed in
[56,50]. Complexity results for testing a finite trace against temporal formulas ex-
pressed in different temporal logics are investigated in [47]. A technique where ex-
ecution events are stored in an SQL database at runtime is proposed in [43]. These
events are then analyzed by queries derived from interval logic temporal formulas
after the program terminates. The PET tool [29] uses a future-time temporal logic
formula to guide the execution of a program for debugging purposes. The model-
based specification language AsmL is being used for runtime verification [7], as
well as for test case generation (see Section 5.1). AsmL is a very comprehensive
general-purpose specification language for abstractly specifying computation steps.
It does, however, not directly support temporal logic.

Our own previous work includes the development of several algorithms for mon-
itoring with temporal logic, such as generating dynamic programming algorithms
for past-time logic [34], using a rewriting system for monitoring future-time logic
[33,32], or generating Büchi automata inspired algorithmsadapted to finite-trace
LTL [24]. A logic based on extended regular expressions is described in [59].
Java MultiPathExplorer [61] is a tool which checks a past-time LTL safety formula
against a partial order extracted online from an execution trace. POTA [58] is an-
other partial-order trace analyzer system. Java-MoP [15] is a generic logic monitor-
ing tool encouraging “monitoring-oriented programming”.Specialized algorithms
have been developed, dedicated to checking for specific errors, such as deadlocks

25

[12] and high-level data races [5]. JNuke [6] is a framework that combines runtime
verification and model checking. It is written in C, achieving scalability through
high performance and low memory usage.

The EAGLE logic and its implementation for runtime monitoring has been signif-
icantly influenced by earlier work on the executable, trace-generating as well as
trace-checking, temporal logic METATEM [8]. In the parallel work [44] a frame-
work is described where recursive equations are used to implement a real-time
logic. Although this is a similar approach to the one presented in this paper, EAGLE

goes much further and provides the language of recursive equations to the user, sup-
porting a mixture of future-time and past-time operators and treating real time as a
special case of data values, hence allowing a more general logic. Other work [11]
describes a framework for generating monitors from timed automata for the same
rover controller described in this paper. For each plan a timed automata is generated
that represents the complete semantics of the plan. This approach is promising and
could be combined with the one presented in this paper since EAGLE with some
modification will be capable of embedding timed automata.

6 Conclusions and Future Work

A framework for testing based on automated test case generation and runtime ver-
ification has been presented. This paper proposed and demonstrated the use of
model checking and symbolic execution for test case generation using the JAVA

PATHFINDER tool, and the use of temporal logic monitoring in EAGLE during the
execution of the test cases. The framework requires construction of a test input
generator and a property generator for the application. From that, a large test suite
can be automatically generated, executed and verified to be in conformity with the
properties. For each input (generated by the test input generator) the property gen-
erator constructs a set of EAGLE properties that must hold when the program under
test is executed on that input. The program is instrumented to emit an execution log
of events. An observer checks that the event log satisfies theset of properties.

We take the position that writing test oracles as temporal logic formulas is both
natural and leverages algorithms that efficiently check if execution on a test input
conforms to the properties. While property definition is often difficult, at least for
some domains, an effective approach is to write a property generator, rather than
a universal set of properties that are independent of the test input. Note also that
the properties need not completely characterize correct execution. Instead, a user
can choose among a spectrum of weak but easily generated properties to strong
properties that may require construction of complex formulas.

In the near future, we will be exploring how to improve the quality of the generated
test suite by altering the search strategy of the model checker and by improving

26

the symbolic execution technology. We will also investigate improvements to the
EAGLE logic and its engine. In particular an attempt will be made tointegrate the
concurrency analysis algorithms fully into EAGLE. We are continuing the work on
instrumentation of Java bytecode and will extend this work to C and C++. Our re-
search group has done fundamental research in other areas, such as software model
checking (model checking the application itself and not just the input domain) and
static analysis. In general, our ultimate goal is to combinethe different technologies
into a single coherent framework.

References

[1] AGEDIS - model based test generation tools. http://www.agedis.de.

[2] The test sequence generator TGV. http://www-verimag.imag.fr/~async/TGV.

[3] 1st, 2nd, 3rd and 4th Workshops on Runtime Verification (RV’01 - RV’04), volume
55(2), 70(4), 89(2), (RV’04 to be published) ofENTCS. Elsevier Science: 2001, 2002,
2003, 2004. http://ase.arc.nasa.gov/rv2004.

[4] P. Ammann and P. Black. A Specification-Based Coverage Metric to Evaluate Test
Sets. InProceedings of the 4th IEEE International Symposium on HighAssurance
Systems and Engineering, 1999.

[5] C. Artho, K. Havelund, and A. Biere. High-level Data Races. In VVEIS’03: The
First International Workshop on Verification and Validation of Enterprise Information
Systems, France, April 2003.

[6] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller. JNuke:
Efficient Dynamic Analysis for Java. InProc. of CAV’04: Computer Aided Verification
– to appear, Lecture Notes in Computer Science. Springer-Verlag, 2004.

[7] M. Barnett and W. Schulte. Contracts, Components, and their Runtime Verification.
Technical Report MSR-TR-2002-38, Microsoft Research, April 2002. Download:
http://research.microsoft.com/fse.

[8] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. METATEM: An
Introduction.Formal Aspects of Computing, 7(5):533–549, 1995.

[9] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Program Monitoring with LTL
in EAGLE. In Proceedings of Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD’04) – to appear, Santa Fe, New Mexico, USA, April 2004.

[10] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-Based Runtime
Verification. In B. Steffen and G. Levi, editors,Proceedings of Fifth International
Conference on Verification, Model Checking and Abstract Interpretation, volume 2937
of Lecture Notes in Computer Science, pages 44–57. Springer, January 2004.

27

[11] S. Bensalem, M. Bozga, M. Krichen, and Stavros Tripakis. Testing Conformance of
Real-Time Software by Automatic Generation of Observers. In Proceedings of the
4th International Workshop on Runtime Verification (RV’04)[3].
http://ase.arc.nasa.gov/rv2004.

[12] S. Bensalem and K. Havelund. Deadlock Analysis of Multi-Threaded Java Programs.
Internal report, October 2002.

[13] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated Testing Based on
Java Predicates. InProc. International Symposium on Software Testing and Analysis
(ISSTA), pages 123–133, July 2002.

[14] G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
A. Venet, and W. Visser. Experimental Evaluation of Verification and Validation
Tools on Martian Rover Software. InSEI Software Model Checking Workshop, 2003.
Extended version to appear in the journalFormal Methods in System Design.

[15] F. Chen and G. Roşu. Towards Monitoring-Oriented Programming: A Paradigm
Combining Specification and Implementation. InProc. of RV’03: the Third
International Workshop on Runtime Verification, volume 89 of Electronic Notes
in Theoretical Computer Science, pages 106–125, Boulder, Colorado, USA, 2003.
Elsevier Science.

[16] K. Claessen and J. Hughes. Testing Monadic Code with QuickCheck. InProc. ACM
SIGPLAN workshop on Haskell, pages 65–77, 2002.

[17] L. A. Clarke. A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, September 1976.

[18] D. Drusinsky. The Temporal Rover and the ATG Rover. InProc. of SPIN’00: SPIN
Model Checking and Software Verification, volume 1885 ofLecture Notes in Computer
Science, pages 323–330, Stanford, California, USA, 2000. Springer.

[19] D. Drusinsky. Monitoring Temporal Rules Combined withTime Series. InProc. of
CAV’03: Computer Aided Verification, volume 2725 ofLecture Notes in Computer
Science, pages 114–118, Boulder, Colorado, USA, 2003. Springer-Verlag.

[20] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting Statistics over Runtime
Executions. InProc. of RV’02: The Second International Workshop on Runtime
Verification, volume 70 ofElectronic Notes in Theoretical Computer Science, Paris,
France, 2002. Elsevier.

[21] B. Finkbeiner and H. Sipma. Checking Finite Traces using Alternating Automata. In
Proc. of RV’01: The First International Workshop on RuntimeVerification, volume
55(2) of Electronic Notes in Theoretical Computer Science, Paris, France, 2001.
Elsevier Science.

[22] Foundations of Software Engineering, Microsoft Research. The AsmL test generator
tool. http://research.microsoft.com/fse/asml/doc/AsmLTester.html.

[23] A. Gargantini and C. Heitmeyer. Using Model Checking toGenerate Tests from
Requirements Specifications. InProceedings of the 7th European engineering

28

conference held jointly with the 7th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 146–162. Springer-Verlag, 1999.

[24] D. Giannakopoulou and K. Havelund. Automata-Based Verification of Temporal
Properties on Running Programs. InProc. of ASE’01: International Conference
on Automated Software Engineering, pages 412–416. Institute of Electrical and
Electronics Engineers, Coronado Island, California, 2001.

[25] A. Goldberg and K. Havelund. Instrumentation of Java Bytecode for Runtime
Analysis. In Proc. Formal Techniques for Java-like Programs, volume 408 of
Technical Reports from ETH Zurich, Switzerland, 2003. ETH Zurich.

[26] A. Gotlieb, B. Botella, and M. Rueher. Automatic Test Data Generation using
Constraint Solving Techniques. InProc. International Symposium on Software Testing
and Analysis (ISSTA), Clearwater Beach, FL, 1998.

[27] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. Generating Finite State
Machines from Abstract State Machines. InProc. International Symposium on
Software Testing and Analysis (ISSTA), pages 112–122, July 2002.

[28] A. Groce and W. Visser. Model Checking Java Programs using Structural Heuristics.
In Proceedings of the 2002 International Symposium on Software Testing and Analysis
(ISSTA), pages 12 – 21. ACM Press, July 2002.

[29] E. Gunter and D. Peled. Tracing the Executions of Concurrent Programs. InProc.
of RV’02: Second International Workshop on Runtime Verification, volume 70 of
Electronic Notes in Theoretical Computer Science, Copenhagen, Denmark, 2002.
Elsevier.

[30] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. InSpecification and Validation
Methods, pages 9–36. Oxford University Press, 1995.

[31] A. Hartman. Model Based Test Generation Tools.
http://www.agedis.de/documents/ModelBasedTestGenerationTools_cs.pdf.

[32] K. Havelund and G. Roşu. Monitoring Programs using Rewriting. In Proceedings
of the International Conference on Automated Software Engineering (ASE’01), pages
135–143. IEEE CS Press, Coronado Island, California, 2001.Extended version to
appear in the journalAutomated Sofware Engineering.

[33] K. Havelund and G. Roşu. An Overview of the Runtime Verification Tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, March 2004.
Special Issue on Selected Papers from the First International Workshop on Runtime
Verification Held in Paris, July 2001 (RV’01).

[34] K. Havelund and G. Roşu. Synthesizing Monitors for Safety Properties. InTools and
Algorithms for Construction and Analysis of Systems (TACAS’02), volume 2280 of
LNCS, pages 342–356. Springer, 2002. Extended version to appearin theInternational
Journal on Software Tools for Technology Transfer.

[35] M. P. E. Heimdahl, S. Rayadurgam, W. Visser, D. George, and J. Gao. Auto-
Generating Test Sequences using Model Checkers: A Case Study. In Proc. 3rd

29

International Workshop on Formal Approaches to Testing of Software (FATES),
Montreal, Canada, October 2003.

[36] H. Seok Hong, I. Lee, O. Sokolsky, and H. Ural. A TemporalLogic Based Theory
of Test Coverage and Generation. InProc. 8th International Conference on Tools
and Algorithms for Construction and Analysis of Systems (TACAS), Grenoble, France,
April 2002.

[37] J. C. Huang. An approach to program testing.ACM Computing Surveys, 7(3), 1975.

[38] S. Khurshid, C. Pasareanu, and W. Visser. Generalized Symbolic Execution for Model
Checking and Testing. InProceedings of TACAS’03: Tools and Algorithms for the
Construction and Analysis of Systems, volume 2619 ofLNCS, Warsaw, Poland, April
2003.

[39] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: a Run-time Assurance Tool
for Java. InProc. of RV’01: First International Workshop on Runtime Verification,
volume 55 ofElectronic Notes in Theoretical Computer Science, Paris, France, 2001.
Elsevier Science.

[40] J. C. King. Symbolic Execution and Program Testing.Communications of the ACM,
19(7):385–394, 1976.

[41] B. Korel. Automated Software Test Data Generation.IEEE Transaction on Software
Engineering, 16(8):870–879, August 1990.

[42] B. Korel. Automated Test Data Generation for Programs with Procedures. San Diego,
CA, 1996.

[43] D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandez. Collecting and Analyzing
Data from Distributed Control Programs. InProc. of RV’01: First International
Workshop on Runtime Verification, volume 55 ofElectronic Notes in Theoretical
Computer Science, Paris, France, 2001. Elsevier Science.

[44] K. Jelling Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime Verification
of Timed LTL using Disjunctive Normalized Equation Systems. In Proceedings of
the 3rd International Workshop on Runtime Verification (RV’03) [3], pages 146–161.
http://ase.arc.nasa.gov/rv2004.

[45] D. Marinov. Testing Using a Solver for Imperative Constraints. PhD thesis, Computer
Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
2004. (to appear).

[46] D. Marinov and S. Khurshid. TestEra: A Novel Framework for Automated Testing of
Java Programs. InProc. 16th IEEE International Conference on Automated Software
Engineering (ASE), San Diego, CA, November 2001.

[47] N. Markey and P. Schnoebelen. Model Checking a Path (Preliminary Report). InProc.
of CONCUR’03: International Conference on Concurrency Theory, volume 2761 of
Lecture Notes in Computer Science, pages 251–265, Marseille, France, August 2003.
Springer.

30

[48] P. M. Maurer. Generating Test Data with Enhanced Context-Free Grammars.IEEE
Software, 7(4):50–55, July 1990.

[49] B. Nichols, D. Buttlar, and J. P. Farrell.Pthreads Programming. O’Reilly, 1998.

[50] T. O’Malley, D. Richardson, and L. Dillon. Efficient Specification-Based Oracles for
Critical Systems. InProc. of the California Software Symposium, 1996.

[51] Parasoft.http://www.parasoft.com.

[52] A. Pnueli. The Temporal Logic of Programs. InProceedings of the 18th IEEE
Symposium on Foundations of Computer Science, pages 46–77, 1977.

[53] W. Pugh. A practical algorithm for exact array dependence analysis.Communications
of the ACM, 35(8):102 – 114, August 1992.

[54] Purify: Fast Detection of Memory Leaks and Access Errors. January 1992.

[55] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen. On the Automated Generation
of Program Test Data.IEEE Transactions on Software Engineering, 2(4), 1976.

[56] D. J. Richardson, S. L. Aha, and T. O. O’Malley. Specification-Based Test Oracles
for Reactive Systems. InProc. of ICSE’92: International Conference on Software
Engineering, pages 105–118, Melbourne, Australia, 1992.

[57] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A Dynamic
Data Race Detector for Multithreaded Programs.ACM Transactions on Computer
Systems, 15(4):391–411, November 1997.

[58] A. Sen and V. K. Garg. Partial Order Trace Analyzer (POTA) for Distributed Programs.
In Proc. of RV’03: the Third International Workshop on RuntimeVerification,
volume 89 ofElectronic Notes in Theoretical Computer Science, Boulder, Colorado,
USA, 2003. Elsevier Science.

[59] K. Sen and G. Roşu. Generating Optimal Monitors for Extended Regular Expressions.
In Proceedings of the 3rd International Workshop on Runtime Verification (RV’03)[3],
pages 162–181. http://ase.arc.nasa.gov/rv2004.

[60] K. Sen, G. Roşu, and G. Agha. Generating Optimal LinearTemporal Logic Monitors
by Coinduction. In V.A. Saraswat, editor,Proceedings of 8th Asian Computing Science
Conference (ASIAN’03), volume 2896 ofLecture Notes in Computer Science, pages
260–275, December 2003.

[61] K. Sen, G. Roşu, and G. Agha. Runtime Safety Analysis ofMultithreaded Programs.
In Proc. of ESEC/FSE’03: European Software Engineering Conference and ACM
SIGSOFT International Symposium on the Foundations of Software Engineering,
pages 337 – 346. ACM, Helsinki, Finland, September 2003.

[62] E. G. Sirer and B. N. Bershad. Using Production Grammarsin Software Testing. In
Proc. 2nd conference on Domain-specific languages, pages 1–13, 1999.

[63] K. Stobie. Advanced Modeling, Model Based Test Generation, and Abstract state
machine Language AsmL. http://www.sasqag.org/pastmeetings/asml.ppt, 2003.

31

[64] P. Thati and G. Roşu. Monitoring Algorithms for MetricTemporal Logic. In
Proceedings of the 4th Workshop on Runtime Verification (RV’04), volume to appear
of Electronic Notes in Theoretical Computer Science. Elsevier Science, 2004.

[65] N. Tracey, J. Clark, and K. Mander. The Way Forward for Unifying Dynamic Test-
Case Generation: The Optimisation-Based Approach. InInternational Workshop on
Dependable Computing and Its Applications (DCIA), pages 169–180. IFIP, January
1998.

[66] T-VEC. http://www.t-vec.com.

[67] W. Visser, K. Havelund, G. Brat, S.-J. Park, and F. Lerda. Model Checking Programs
. Automated Software Engineering Journal, 10(2), April 2003.

32

