Combining
Test Case Generation and Runtime Verification

Cyrille Artho21, Howard Barringef2, Allen Goldberd,
Klaus Havelund, Sarfraz Khurshid=3, Mike Lowry €,
Corina PasarearfuGrigore Rosli, Koushik Sert?,
Willem Visser?, Rich Washingtod

aComputer Systems Institute, ETH Zurich, Switzerland
bDepartment of Computer Science, University of MancheStegland
CKestrel Technology, NASA Ames Research Center, USA
dMIT Computer Science and Artificial Intelligence LaboratddSA
®NASA Ames Research Center, USA
"Department of Computer Science, Univ. of lllinois at UrbaPaampaign, USA
9RIACS, NASA Ames Research Center, USA

Abstract

Software testing is typically an ad-hoc process where hutesters manually write test
inputs and descriptions of expected test results, perhajasnating their execution in a
regression suite. This process is cumbersome and costly.paiper reports results on a
framework to further automate this process. The framewonisists of combining auto-
mated test case generation based on systematically exglitvé input domain of the pro-
gram with runtime verification, where execution traces aomitored and verified against
properties expressed in temporal logic. The input domath@fprogram is explored using
a model checker extended with symbolic execution. Progmedtie formulated in an expres-
sive temporal logic. A methodology is advocated that gersrproperties specific to each
input instance rather than formulating properties unifgrtrue for all inputs. Capabilities
for analyzis of concurrency errors are planned to be intedravith temporal logic moni-
toring. The paper describes an application of the techiydiog@ planetary rover controller.

Key words:
Automated testing, test case generation, model checkjynghalic execution, runtime
verification, temporal logic monitoring, concurrency s, NASA rover controller.

Preprint submitted to Theoretical Computer Science 24tle 2005

1 Introduction

A program is typically tested by manually creatintgat suitewhich in turn is a set
of test casesAn individual test case is a description of a siniglst inputto the pro-
gram, together with a description of tpeopertiesthat the corresponding output is
expected to have. This manual procedure may be unavoidabkefsr real systems
writing test cases is an inherently innovative processirgguhuman insight into
the logic of the application being tested. However, we belibat a non-trivial part
of the testing worlkcan be automated. Evidence is found in a previous case study,
where an 8,000-line Java application was tested by diffeseerent groups using
different testing techniques [14]. It was observed thatvwagt majority of faults
that were found in this system could have been found in a adlpmatic way. We
suggest a framework for generating and executing test tasegsautomated way
as illustrated by Figure 1. For a particular application ¢atdsted, one establishes
a test harness consisting of two modulegest case generat@nd anobserver

Model
input/output

Properties

Application Observer

Figure 1. Test case generation and runtime verification.

The test case generator takes as input a model of the inpudidarhthe applica-

tion to be tested. The model furthermore describes a mappnginput values to

properties: for each input element, the model defines witgtgrties an execution
on that input should satisfy. The test case generator atitatig generates inputs
to the application. For each generated input a set of prieged also generated.
The input is applied to the program, which executes, geimgran execution trace.
The observer module checks the behavior of the executedgmoggainst the gen-

1 Cyrille Artho is grateful to QSS for the partial support piaed to conduct this research.
2 Howard Barringer is grateful to RIACS/USRA and the UK's ERSRnder grant
GR/S40435/01 for the partial support provided to condustrésearch.

3 Sarfraz Khurshid is grateful to RIACS/USRA for the partiapport provided to conduct
this research.

4 Koushik Sen is grateful to RIACS/USRA for the partial suggmovided to conduct this
research.

erated set of properties. Hence, it takes the executioa &rad the set of properties
generated as input. The program itself must be instrumenteebort events that
are relevant for monitoring that the properties are satishie a particular execu-
tion. This instrumentation can in some cases be automatekleIrest of this paper
the termtest case generatios used to refer to test input generation and property
generation and the ternuntime verifications used to refer to instrumentation as
well as observation.

Test cases are generated using tRen JPATHFINDER model checker extended
with techniques for symbolic execution and the propertesegated are expressed
in the EAGLE temporal logic, capable of embedding most temporal logite
framework described is being applied to a case study, atiudéaded NASA rover
controller, which interprets and executes complicatetvii¢tplans. The individ-
ual techniques, model checking with symbolic execution mamdime verification
in EAGLE, have been described elsewhere, respectively in [38] adld The con-
tribution of this paper is to demonstrate their combinatoid on a realistic case
study. A special characteristic is that the properties todxdfied are generated
automatically from the inputs to the program to be tested.

The paper is organized as follows. Section 2 outlines oumelogy for test case
generation: symbolic execution and model checking. Se@idescribes the run-
time verification techniques: temporal logic monitoringlasoncurrency analysis.
Section 4 describes the case study, where these techrebygiapplied to a plane-
tary rover controller. Section 5 outlines some related w8#ection 6 concludes the
paper and outlines how this work will be continued.

2 Test Case Generation

This section presents the test case generation framewsnkehtioned earlier, test
case generation is considered as consistingestf input generatiomnd property
generation

2.1 Test Input Generation

2.1.1 Model-based testing

In practice today, the generation of test inputs for a pnoguader test is a time-
consuming and mostly manual activity. However, test ingrtegation lends itself
to automation and therefore has been the focus of much oksa#tention — re-
cently it has also been adopted in industry [51,66,18,2fgr& are two main ap-
proaches to generating test inputs automatically: a saégiicoach that generates

inputs from some kind of model of the system, also called mbdsed testing,
and a dynamic approach that generates tests by executipgdgeam repeatedly,
while employing criteria to rank the quality of the testsgwoed [41,65]. The dy-
namic approach is based on the observation that test inpatagon can be seen as
an optimization problem, where the cost function used fainoigation is typically
related to code coverage, e.g. statement or branch covérhgaenodel-based test
input (test case) generation approach is used more widglyhe TGV tool [2] for
the generation of conformance test suites for protocold,the AGEDIS tool [1]
for automated generation and execution of test suites &irillited component-
based software, see also Hartman’s survey of the field [314. Model used for
model-based testing is typically a model of expected systehavior and can be
derived from a number of sources, namely, a model of the requénts, use cases,
design specifications of a system [31] — even the code itaaelbe used to create a
model, e.g. approaches based on symbolic execution [4AS1jith the dynamic
approach, it is most typical to use some notion of coveraghemodel to derive
test inputs, i.e., generate inputs that cover all transsti@r branches, etc., in the
model. Constructing a model of the expected system beheaiobe a costly pro-
cess. On the other hand, generating test inputs just basadpecification of the
input structure and input pre-conditions can be very effecivhile typically less
costly. This is the approach pursued in in the following.

In [38] a framework is presented that combir@snbolic executiomnd model
checking techniques for the verification of Java progranme ffamework can be
used for test input generation farhite-boxand black-boxtesting. For white-box
testinput generation, the framework model checks the pragmder test. A testing
coverage criterion, e.g. branch coverage, is encoded impdel logic specifica-
tion. Counterexamples to the specification represent pa#itsatisfy the coverage
criterion. Symbolic execution, which is performed duringael checking, com-
putes a representation, i.e., a set of constraints, of @linputs that execute those
paths. The actual testing requires solving the input camgs in order to instantiate
test inputs that can be executed. The framework can alsodufoisblack-box test
input generation. In this case, the inputs to the prograneutest are described as
a Java input specification, i.e., a Java program, annotatedspecial instructions
to model non-determinism and to encode constraints, folbsyimexecution. The
framework is then used to check this Java specification toesystematically ex-
plore the input domain of the program under test and to gémérputs according
to this specification. It is in this latter context (blackx®dhat we use the frame-
work from [38] in this paper. Note that for black-box testutgeneration, only the
input specification is required to be expressed in Java; tbgram under test can
be written in another language, e.g. C++ as it is the casenfeipaper. Note that
in writing input specifications, we can take full advantagéhe expressive power
of the Java language and thus we can easily express inplitsovitplex structure,
e.g. linked lists, red-black search trees, executive plans

Using symbolic execution for test input generation is a skalbwn approach, but

XXy Y
, . PCitue o
int x, y; R e T
XX yrY XX yrY
read Xx,y,; 3,,PC;,X£Y,,,,S PCiX<=Y
. : 2
Lot (x>y) | XYY
2. X =X +Y; 3,,P,C;,>,<£Y ,,,,,
. - . 3
3y =Ex-y XXX
4: X =X -, LPCIX>Y
. : 4
S if (x>y) VX
6: assert(fal se); L PCIXY
' ! 5 5
} ,,,,,,,,,,,,,, / \ ,,,,,,,,,,,,,,,,
XY,y X : XY,y X :
LPCIX>Y &YX [PCIX>Y & Y<=X
S FALSE!

Figure 2. Code for swapping integers and corresponding siioéxecution tree.

typically only handles sequential code with simple datd3Bj, this technique has
been extended to handle complex data structures, e.gahstsrees, concurrency
as well as linear constraints on integer data. Symbolicgi@t of a program path
results in a set of constraints that define program inputsettecute the path; these
constraints are then solved using off-the-shelf decisrocegdures to generate con-
crete test inputs. When the program represents an exeeutghlt specification,
symbolic execution of the specification enables us to géaénauts that give us,
for instance, full specification coverage. Note that thgmesications are typically
not very large — no more than a few thousand lines, in our éspee — and hence
will allow efficient symbolic execution.

2.1.2 Symbolic Execution

The enabling technology for black-box test input generafrtom an input specifi-

cation is the use of symbolic execution. In fact, the samlerteties can be applied
for white box testing. The main idea behind symbolic exexuf#0] is to use sym-

bolic values, instead of actual data, as input values andpdesent the values of
program variables as symbolic expressions. The state ofmdajcally executed

program includes, in addition to the symbolic values of pang variables and the
program counter, a path condition. The path condition isantjfier-free Boolean

formula over the symbolic inputs; it accumulates constsavhich the inputs must
satisfy in order for an execution to follow the particulasaesiated path. A sym-

bolic execution tree characterizes the execution pathkeided during the symbolic

execution of a program. The nodes represent program stadeth@ arcs represent
transitions between states.

Consider as an example, taken from [38], the code fragmehRtgare 2, which
swaps the values of integer variablesndy, whenx is greater thary. Figure 2
also shows the corresponding symbolic execution treeallyitthe path condition,
PC, istrue andx andy have symbolic valuex andY, respectively. At each branch

Decision
procedures
continue/backtrack
e eoatfcation Model | state ! path condition (data) |
PUtsp checking heap configuration

test coverage
criterion

test suite
[constraints on inputs]

Figure 3. Framework for test input generation.

point, PCis updated with assumptions about the inputs accordingetalternative
possible paths. For example, after the execution of thestasement, bothhen and

el se alternatives of thef statement are possible aR@ is updated accordingly.
If the path condition becomdalse i.e., there is no set of inputs that satisfy it, this
means that the symbolic state is not reachable and symbamugon does not
continue for that path. For example, statem)t is unreachable. In order to find
atestinputto reach branch statemhjt one needs to solve constraiit> Y, e.g.
make inputx andy 1 and O, respectively.

Symbolic execution traditionally arose in the context afigential programs with a
fixed number of integer variables. We have extended thisiigok [38] to handle
dynamically allocated data structures, e.g. lists andstreemplex preconditions,
e.g. lists that have to be acyclic, other primitive data, stgngs, and concurrency.
A key feature of our algorithm is that it starts the symbokeeution of a procedure
onuninitialized inputs and it usekzy initializationto assign values to these inputs,
i.e., itinitializes parameters when they are first accedseithg symbolic execution
of the procedure. This allows symbolic execution of procedwithout requiring
an a priori bound on the number of input objects. Procedwegmditions are used
to initialize inputs only with valid values.

2.1.3 Framework for Test Input Generation

Our symbolic execution-based framework is built on top ef #wA PATHFINDER
(JPF) model checker [67].RF is an explicit-state model checker for Java programs
that is built on top of a custom-made Java Virtual MachineMJMt can handle

all of the language features of Java and in addition treatsdsderministic choice
expressed in annotations of the program being analyzsdhds been extended
with a symbolic execution capability which is described @tail in [38].

Figure 3 illustrates our framework for test input genematibhe input specification
is given as a non-deterministic Java program that is insnied to add support for
manipulating formulas that represent path conditions.imEgumentation enables

JPF to perform symbolic execution. Essentially, the model &eeexplores the
symbolic state space of the program, for example, the syimbgécution tree in
Figure 2. A symbolic state includes information about thegheonfiguration and
the path condition on integer variables. Whenever a patlliton is updated, it
is checked for satisfiability using an appropriate decigaycedure; currently our
system uses the Omega library [53] that manipulates lingager constraints. If
the path condition is unsatisfiable, the model checker lbacks. A testing cover-
age criterion is encoded in the property the model checkaulditheck for. This
causes the model checker to produce a counter-examplewtzeeever a valid
symbolic test input has been generated.

From this trace a concrete test input is produced. Since ioplyt variables are
allowed to be symbolic, all constraints that are part of anteriexample are de-
scribed in terms of inputs. Finding a solution to these aqamsts will allow a valid
set of test data to be produced. Currently a simple appraaaked to find these
solutions: Only the first solution is considered. In futurerkvwe will refine the
solution discovery process to also consider charactesistich as boundary cases.

Currently, the model checker is not required to performestaatching, since state
matching is, in general, undecidable when states represg¢intconditions on un-
bounded data. Note that performing symbolic execution agm@mms with loops
can explore infinite execution trees, hence symbolic exacuhight not termi-
nate. Therefore, for systematic state space exploratmited depth-first search or
breadth-first search is used; our framework also supporisusheuristic search
strategies, for example, based on branch coverage [28hdoma search.

2.2 Property Generation

Any verification activity is in essence a consistency chestkvieen two artifacts. In
the framework presented here the check is between the exeaitthe program
on a given input and an automatically generated specificétiothat given input,
consisting of a set of properties about the correspondiegugion trace. In other
contexts it may be a check of the consistency between theagrognd a com-
plete specification of the program under all inputs. Thisurethncy of providing
a specification in addition to the program is expensive baoegsary. The success
of a verification technology partly depends on the cost oflpoing the specifica-
tion. The hypothesis of this work is twofold. First, focugian the test effort itself
and writing “testing-oriented” properties, rather thanoanplete formal specifica-
tion, may be a cheaper development process. Second, aidaltyajenerating the
specification from the input may be easier than writing a sjgation for all inputs.

More precisely, the artifact produced here is a programttiegs as input an input
to a program and generates a set of properties, typicakytimss in temporal logic.

The assertions are then checked against each programiexegsihg the runtime
verification tools described in Section 3.

Notice that this approach leverages the runtime verificatexhnology to great
effect, just as test case generation leverages model ctyeakd symbolic analysis.
In addition, we anticipate the development of property gatien tools specific
to a domain or class of problems. The software under test incase study is
an interpreter for a plan execution language. In this cistamce, the program to
generate properties uses the decomposition of the plarr@ggect to the grammar
of the plan language. Like a trivial compiler, the propergngrator produces test-
input-specific properties as semantic actions correspgrtdithe parse. Several of
NASA's software systems have an interpreter structure tas@nticipated that this
testing approach can be applied to several of these as well.

3 Runtime Verification

Runtime verification is divided into two partgistrumentationand event obser-
vation A monitor receives events from the executing program, techiby event
generators inserted during instrumentation and dispatttiesn to a collection of
algorithms, each of which performs a specialized traceyaigalWe consider two
kinds of such algorithms: the A&LE temporal logic monitor and three concur-
rency analyzers, that can detect deadlock potentials, Hsagvévo kinds of data
race potentials. The concurrency analyzers are currentlfully integrated in the
presented testing environment but are mentioned sincefdineyan interesting al-
ternative to temporal logic monitoring and since we haveeradls and intend to
integrate them.

Instrumentation can be achieved in a number of ways, inctudode instrumen-
tationandwrapping In thecode instrumentatioapproach, source code (or object
code) is augmented with code that generates the event stiedime wrapping
approach, system library methods are wrapped inside wfgred methods, that
themselves contain instrumentation. This is the appro&Blafy [54]. Instrumen-
tation can be done automatically or manually. Our experisibave used manual
source code instrumentation as well as manual wrappingsdtece code instru-
mentation approach is used to generate events for the tafripgic monitoring.
The wrapping approach is used to generate events for thdod&acbncurrency
analysis, where POSIX thread [4®Jck andunlockmethods are wrapped and in-
strumented. In other work, we describe an instrumentatamkage, named JSpy,
that automatically instruments Java bytecode [25]. Howelés could not be ap-
plied here as the code is written in C++. An automated insénpation is necessary
in order to perform data race analysis since all accessémted variables need to
be monitored.

3.1 Temporal Logic Monitoring witEAGLE

Many different languages and logics have been proposedpferifying and an-
alyzing properties of program state or event traces, eatih ahiaracteristics that
make it more or less suitable for expressing various clasfdeace properties; they
range from stream-based functional, state chart, sirggezament and dataflow
languages, through pattern-matching languages basedwaréand extended reg-
ular) expressions, to a whole host of modal and, in partictireear-time temporal
logics. In Section 5, such languages and logics that have agglied directly to
run-time property analysis are discussed more fully. Saiffico say here that the
general framework of linear-time temporal logics (LTL) aaped most appropriate
for our own work but that none of the proposed temporal lofpcsun-time analy-
sis, of which we were aware, provided the right combinatibexpressivity, natu-
ralness, flexibility, effectiveness and ease of use we e@sdf course, more often
than not, it can be observed that the greater the expregssivihe property speci-
fication logic, the higher the computational cost for itslgsig. As a consequence
this has led us in the past to research efficient algorithmghfoevaluation of re-
stricted sub-logics, e.g. pure past-time LTL, pure futtinge LTL, extended regular
expressions, metric temporal logic and so forth. But we wigsatisfied that (i) we
had no unifying base logic from which these different tengptrgics could be built
and (ii) we were overly restrictive on the way propertieslddae expressed, e.g.
forcing pure past, or pure future, etc. Our research thusi$eid develop and im-
plement a core, discrete temporal logi®yd.E, that supports recursively defined
formulas, parameterizable by both logical formulas and éapressions, over a set
of four primitive modalities corresponding to the “nextjrévious”, “concatena-
tion” and “sequential temporal composition” operatorseTdgic, whilst primitive,
is expressively rich and enables users define their own sebaé complex tempo-
ral predicates tuned to the particular needs of the run-tiendication application.
Indeed, in [10] it is shown how a range of finite-trace monitgiogics, including
future-time and past-time temporal logic, extended rege¥pressions, real-time
and metric temporal logics, interval logics, forms of quized temporal logics and
context free temporal logics, can be embedded witgs IEE. However, in order to
be truly fit for purpose, the implementation oR&LE must ensure that “users only
pay for what they use”.

3.2 Syntax oEAGLE

The syntax of BGLE is shown in Figure 4. A specificatidhconsists of a declara-
tion partD and an observer pa@. The declaration parD), comprises zero or more
rule definitionsR and similarly, the observer pafd, comprises zero or more mon-
itor definitionsM, which specify the properties that are to be monitored. Bolis

and monitors are namedl), however, rules may be recursively defined, whereas

=DO

=K

= M*

{max |min } N(Ty X1,..., TaXn) =F
m=monN=F

::= Form | primitive type

m 4 2 0 O U »;w
-II:

= True | False | x; | expression
“FIRAR|RVR|R-R|FR<R
OF |OF |F1-F2 | Fy; B2 | N(Fy, ..., Fn)

Figure 4. Syntax of BGLE.

monitors are simply non-recursive formulas. Each rule defmR is preceded by

a keywordmax or min, indicating whether the interpretation given to the rule is
either maximal or minimal. Rules may be parameterized; @encule definition
may have formal arguments of typ@rm, representing formulas, or of primitive
typeint, long, float, etc., representing data values.

An atomic formula of the logic is either a logical constahtue or False, or a
boolean expression over the observer state, or a type tdoracal argumenk;,
i.e., of typeForm or of primitive typebool. Formulas can be composed in the
usual way through the traditional set of propositional togbnnectives;, A, V,
— and«. Temporal formulas are then built using the two monadic teralpop-
erators,OF (in the next statd= holds) and®F (in the previous staté& holds)
and the dyadic temporal operatoFs,; F> (concatenation) anBy; F» (sequentially
compose). Importantly, a formula may also be the recurgypdieation of a rule to
some appropriately typed actual arguments. That is, ameggtiof typeForm can
be any formula, with the restriction that if the argumentnsexpression, it must
be of boolean type; an argument of a primitive type must bexanession of that

type.

The body of a rule/monitor is thus a (boolean-valued) foaraflthe syntactic cat-
egoryForm (with meta-variable§, etc.). We further require that any recursive call
on arule is strictly guarded by a temporal operator.

3.3 Semantics dEAGLE

The models of our logic are observation (or execution) saé@ observation trace
o is a finite sequence of observed program statess;s,...S,, where|o| =nis
the length of the trace. Note that tistates of a traceo is denoted byo(i) and

10

0,i =p exp
o,i =p True

o,i ~p False

1 <i < |o| andevaluatéexp) (o(i)) == true

o,i Fp —F iff o,i#“pF
o,iFp AR iff o,i =p F1Lando,i =pk
o,iFpFRVR iff o,iEpFLoro,iEpk
giFpRh—R iff o,i =p F1impliesa,i=p F
oiFpFh<— R iff o,i F=p F1is equivalenttw,i =p R
o,i =p OF iff i <|o|ando,i+1pF
o,i Fp OF iff 1 <iando,i—1FpF
o,iFpFi-F iff 3js.ti<j<|o|+1and

olLi-1 i =p Fy andolhlol 1 =p Fy
o,iEp Fi; B iff 3js.ti<j<|o/+1and

olLi-Y i l=p Fy andoli-LI9l 1 =p R
(it 1 <i < |o] then:
o,i Ep F[Xa— F1,...,Xm+— F
0,i =p N(Fq, ..., Fm) iff where N(Ty X,...,TnXm) =F) €D
otherwise, ifi = 0 ori = |o| + 1 then:

rule N is defined asnax in D

Figure 5. Definition o, i =p F for 0 <i <|o| + 1 for some trac& = $1%. .. S|

the termol-il denotes the sub-trace @from positioni to positionj, both positions
being included. The semantics of the logic is then definednms of a satisfaction
relation between observation traces and specificatioret. i$hgiven a trace and
a specificatiorD O, satisfaction is defined as follows:

o=DO iff Y(monN=F)cO.0,1=pF

A trace satisfies a specification if the trace, observed frositipn 1 — the index of
the first observed program state — satisfies each monitoredifa. The definition

of the satisfaction relatiop-p C (Tracex nat) x Form, for a set of rule defini-
tions D, is defined inductively over the structure of the formula @@resented
in Figure 5. First of all, note that the satisfaction relatjep is actually defined
for the index range & i < |o|+ 1 and thus provides a value for a formula before
the start of observations and also after the end of obsenatThis approach was

11

taken to fit with our model of program observation and evatuabf monitoring
formulas. The observer only knows the end when it has beesegaand no more
observation states are forthcoming. It is at that point ¢haalue for the formula
needs to be determined. At these boundary points, expressieolving reference
to the observation state (where no state exists) are tgifabke. A next-time (resp.
previous-time) formula also evaluates false at the poipbbd the end (resp. before
the beginning). A rule, however, has its value at such paatermined by whether
it is maximal, in which case it is true, or minimal, in whichseait is false. Indeed,
there is a correspondence between this evaluation strateynaximal (minimal)
fixed point solutions to the recursive definitions. Thus,geample, referring to the
first three rules defined below in Section 3.4 formalaays () will evaluate to
true on an empty trace — sinééways was defined maximal, whereas formulas
Event ual | y(¢) andPr evi ousl y(¢) will evaluate to false on an empty trace — as
they were declared as minimal.

The propositional connectives are given their usual ime&ggtion. The next-time
and previous-time temporal operators are as expected. diiatenation and se-
guential temporal composition operators are, howevestaoidard in linear tempo-
ral logics, although the sequential temporal composisafien featured in interval
temporal logics and can also be found in process logics. Aatemation formula
F1 - R is true if and only if the trace can be split into two sub-traces= 0102,
such thatF is true onoy, observed from the current positiorand is true on
o, from position 1 (relative t@,). Note that the first formul&; is not checked on
the second trace, and, similarly, the second formula is not checked on the first
traceo;. Also note that eitheo; or oo may be an empty sequence. The sequential
temporal composition differs from concatenation in that st state of the first
sequence is also the first state of the second sequence.fétmslaF;; is true

if and only if tracec can be split into two overlapping sub-tracesand o, such
thato = 0[11’|°1‘_1]02 andoj(]o1|) = 02(1) and such thak, is true onoj, observed
from the current positiom, andF; is true ona, from position 1 (relative tay).
This operator captures the semantics of sequential cotiguosf finite programs.

Finally, applying a rule within the trace, i.e., positions In, consists of replacing
the call by the right-hand side of its definition, substitgtthe actual arguments for
formal parameters. At the boundaries (0 and 1) a rule application evaluates to
true if and only if it is maximal.

3.4 Programming irEAGLE

To illustrate EAGLE we describe the framework for the case study to be presented
in Section 4. Consider a controller for an autonomous mobibet, referred to as
arover, that executes actions according to a given plan. The goalabserve that
actions start and terminate in an expected order and wikpected time periods.

12

class State extends EagleState {
public int kind;
Il l=start, 2=end, 3=fail
public String action;
public int tinme;

public boolean start(String a){
return start() &% action.equal s(a);

}

publi'c bool ean start(){ public bool ean end(String a){

) return kind == 1; return end() && action.equals(a);
}
puflel ﬁrgoi: iznfndg){ public boolean fail (String a){
| o return fail() & action.equals(a);
}
public boolean fail (){ }
return kind == 3;

}

Figure 6. The state in whichAELE Java expressions are evaluated.

Actions can either end successfully, or they can fail. Thera@ontroller is instru-
mented to emit events containing an event kind (start, eni&jlp, an action name
(a string) and a time stamp (an integer) — the number of radbsds since the start
of the application.

<event> ::= <kind> <string> <int>

<kind> ::= start | end| fail

As events are received by the monitor, they are parsed areblstoa state, which
the EAGLE formulas can refer to. The state is an object of a user-deflaea class
and an example is given in Figure 6. The class defines thesstdta set of methods
observing the state, which can be referred to AGEE formulas. To illustrate the
use of formulas as parameters to rules, the followiag EE fragment defines three
rules,Al ways, Event ual | y andPr evi ousl y — corresponding to the usual temporal
operators for “always in the future”, “eventually in the doe” and “previously in
the past”.

max Al ways(Form f) = f AOA ways(f)
min Eventual | y(Form f) = f v (OFEventual | y(f)
min Previ ousl y(Form f) = f v ©Previously(f)

The following two monitors check that every observed sththe particular action
“turn” is matched by a subsequent end of that action and convetsatyevery end

13

of the action is preceded by a start of the action.

mon ML = Al ways(start(“turn”) — Event ual | y(end(“turn”))

mon M2 = Al ways(end(“turn”) — Previ ousl y(start (“turn”))

To illustrate data patameterization, consider the moreegemproperty: for any
action, if it starts it must eventually eh@nd conversely for the past-time case.
This is stated as follows.

min Event ual | yEnd(String a) = Event ual | y(end(a))

min Previ ousl yStart (String a) = Previ ousl y(start (a))
mon M3 = Al ways(start() — Event ual | yEnd(activity))
mon M4 = Al ways(end() — Previ ousl ySt art (activity))

Consider the following properties about real-time behgwsach as the property
“when the rover starts a turn, the turn should end within 10 s&8nd$ For this,
a real-timed version of thevent ual | y operator is needed. The formula
Event ual | yWt hi n(f,l,u) monitors thatf occurs within the relative time bounds
| (lower bound) andi (upper bound), measured in seconds. It is defined with the
help of the auxiliary ruld&vent ual | yAbs, which is an absolute-timed version.
min Event ual | yAbs(Form f,int al,int au) =
time<auAa
((f A time>al) Vv

(=f A OEventual | yAbs(f,al,au)))

min Event ual | yW t hi n(Form fint I, int u) =

Event ual | yAbs(f,time+ (1 x1000),time-+ (ux1000))))

Note that variabléimeis defined in the state and contains the latest time stamp in
milliseconds since the start of the application. The prgparhen the rover starts
a turn, the turn should end within 10 — 30 secdhcsn now be stated as follows:

mon Mo = Al ways (start(“turn”) — Event ual | yW t hi n(end(“turn”),10,30))

3.5 Online Evaluation Algorithm

A monitoring algorithmfor EAGLE determines whether a tracemodels a mon-
itoring specificatiorD O. Our algorithm operates in an online fashion. That is, it

14

is applied sequentially at each statecodnd does not refer back to prior states or
forward to future states. This allows the algorithm to beduseonline-monitoring
contexts.

Ideally, if a monitoring specification is expressible in amnoestricted system,
e.g. LTL, then the BGLE algorithm should perform about as well as an efficient
algorithm for the restricted system. We have proved thit¢1dr and other logics.

The algorithm employs a functie@val F, s) that examines a state,and transforms
a monitorF into a monitor~’ such thas~o0,1p Fiff s~ 0,2 p F'.

The algorithm is, where possible, a direct implementatibthe definition of the
EAGLE semantics. So for example @ monitors a formulaF, v R, then (with a
slight overloading of the notation)

evalF, VvV F,s) =evalF,s) VevalF,s).

Furthermore,
evalOF,s) =F.

However, an online algorithm that examines a trace in teadpwder cannot treat
the previous-state operator so easily. Thus the algoritmtains an auxiliary data
structure used bgvalon sub-formulas headed by tt® operator, that records the
result of (partially) evaluating the formula in the prevacatate.

This is illustrated as follows.

min R(int k) = O(y+1==Kk)
mon M= Event ual | y(R(x))

This monitor will be true if somewhere in the trace there are successive states
such that the value ofin the first state is one less than the valu of the second
state. More generally, notice that the combination of patanizing rules with data
values and use of the next and previous state operatorsesc@idtraints that relate
the values of state variables occurring in different states

Sinceevalrecursively decomposes the formulas, eventualigl will be called on
O(y+1==Kk). Note the state variablerefers to the value ofin the previous state,
while the formal parametdeis bound to the value ofin the current state. Since the
previous state is unavailable, in the prior step the algoritnust take some action to
record relevant information. Our algorithm pre-evaluated caches the evaluation
of any formulaP headed by a previous-state operator, in this case foryaulb==

k. However, since the value &fwill not be known at that point, the evaluation is
partial. In particular note that the atomic formulas and ahderlying expression

15

language (in our case this is Java expressions), must bellysevaluate® . Also
note that since formulB can be arbitrarily complex, in particular another previous
state operator may be nested within, the pre-evaluationng ty a recursive call
to eval

This is basic idea of the algorithm. One subtle point is thatgub-formulas that
must be pre-evaluated must be identified and properly lizéid prior to process-
ing the first state. This is done by expanding monitor formaddg unfolding rule
definitions, while avoiding infinite expansion due to receegule definitions. At
the end of the trace, functioralueis called yielding a truth value as the final result
of evaluating each monitor over the trace. Functiaiueimplements the EGLE
semantics with respect to boundary conditions regardiegtid of the trace.

Functionevalyields a formula that may be simplified without altering tloerect-
ness of the algorithm. Indeed the key to efficient monitoing provable space
bounds is adequate simplification. In our implementatiormiulas are represented
in disjunctive normal form where each literal is an instaotaegation, the previ-
ous, next, concatentation or sequential composition ¢@eoa a rule application.
Subsumption, i.e., simplifyinga A b) v ato a, is essential.

3.6 Complexity oEAGLE

It is evident from the semantics given in Section 3.3 thathigory, EAGLE is a
highly expressive and powerful language; indeed, giverutirestricted nature of
the data types and expression language, it is straightfdrézasee it is Turing-
complete. However, what is of interest is the performanc&atLE on special
cases, i.e., for arbitrary monitors defined over fixed ruts Hsat implement stan-
dard temporal logics. Furthermore one must distinguishgtexity due to any data
computation ascribed to methods defined for state updatpradiitate evaluation
from the evaluation of the purely temporal aspects of theclogn alternative way
of viewing this is to show that our algorithm can meet knowtiropl bounds for
various sub-logics embedded within Eagle. To that endethex some initial com-
plexity results that are of interest.

Our first result relates to an embedding of propositionadirtime temporal logic
(LTL), over both future and past. In [9], we show that the stegluation for an ini-
tial LTL formula of sizemhas an upper time complexity bound®fm*22™log? m)
and a space bound @f(m?2™logm), thus showing that the evaluation at any point
is not dependent on the length of the history, i.e., the igpeh so far. The result is
close to the lower bound @(2\/5) for monitoring LTL given in [60].

5 A simpler alternative to partial evaluation is to form a clasand do the complete eval-
uation when all variables are bound.

16

For metric temporal logic (MTL) where time constants areestaas natural num-
bers, embedded inAGLE, it can be shown that the time and space complexity
of monitoring of a formula is 2™ wherem is the size of the monitored formula
plus the sum of all time constants that appear in the forniNide that the bound,
although exponential, is independent of the length of theetr The proof for this
complexity bound is similar to the proof of the same resu[6#i.

For real-time logic where time constants are stated as tgabers, embedded in
EAGLE, the time and complexity bound, although independent ofehgth of the
trace, is dependent on the minimum of all time differencew/ben any two events
in the trace. The bound is given b§®%% wheremis the size of the formuld,is
the sum of all time constants appearing in the formula@isithe minimum time
difference between any two events in the trace monitored.

3.7 A Java Library for MonitorindeAGLE Properties

The EAGLE monitoring engine implements theaELE monitoring algorithm as a
Java library. The library provides three basic methgdsse, eval andval ue,
that can be called by any client program for the purpose ofitoong. The first
methodpar se takes a file containing a specification involving several itora
(sets of monitored formulas) written inAELE and compiles them internally into
data structures representing monitors. After compilatiba client program calls
the methodeval iteratively with an observer state. This call internally difees
the monitors according to the definition e¥alin subsection 3.5. If a monitored
formula becomes false during this modification, it calls ahmoder r or which the
client program is expected to implement. Similarly, if anfmla becomes true the
methodsuccess is called. It is up to the client program to define the observer
state. The client program also modifies the observer staeeay event. Once all
the events are consumed the client program calls the me#ia to check if the
monitored formulas are satisfied by the sequence of obsstatss. If a formula is
not satisfied the methogar ni ng implemented by the client is called; otherwise,
the methodowar ni ng is invoked.

3.8 Concurrency Analysis

A scheduler may schedule the different threads in a muldatied program, such
as the rover controller, in a non-deterministic mannerscaythe order in which
threads access shared objects to differ among differeccuéras on the same in-
put. This may lead to different observed execution tracassing temporal logic
specifications to be violated in some traces while not beiolgted in others. Con-
sequently one cannot infer that a temporal property holdsliotraces (that is,
holds for the program on some particular input) based on bsemation that it

17

holds onsometrace. The ideal solution would be a framework for transfogn

temporal properties to stronger properties that when atbekll be less sensitive
to the non-determinism of traces. Ideally one would like éodble to infer that if

the property holds on some trace then with high probabilityoids on all traces.
Or perhaps more importantly: if the property is violated oms trace then it is
so violated with high probability on any trace, thereby easing our chance of
detecting the problem on a random trace. Although this magaipa very difficult

problem to solve for the general case, it actually can be floneertain properties
that are generally desirable for concurrent programs: ldeedreedom and data
race freedom.

Deadlocks can occur when two or more threads acquire lockscytlic manner.

As an example of such a situation consider two thredsnd T, both acquiring
locks A andB. ThreadT; acquires firsA and therB before releasing. ThreadT,
acquiresB and therA before releasin®. This situation poses a deadlock potential
since threadl; can acquireA where upon thread, can acquireB, resulting in a
deadlocked situation. Potentials for such deadlocks catetexted by identifying
cycles in lock graphs [12]. Another main issue for programsyad multi-threaded
applications is to avoidata racesvhere several threads access a shared object si-
multaneously. If all threads utilize the same lock when asitgy an object, mutual
exclusion is guaranteed, otherwise data races are passimeEraser algorithm
[57] can detect such data races by maintaining a so-caltdddet for each mon-
itored variable. Recent work [5] has identified another kofidiata races, termed
high-level data raceghat are not detectable by the Eraser algorithm. Thesa race
can occur when sets of fields are accessed incorrectly. Mohtve been devel-
oped for analyzing traces for the three above mentioned.rogrecy problems. For
deadlock analysis manual instrumentation has been dong wsapping as men-
tioned ealier. For the two kinds of data race analysis, aatethinstrumentation of
C++ remains to be done.

Although the above mentioned concurrency algorithms haesnlmplemented as
specialized programs, one can well imagine usiagEE for specifying such prop-
erties. As an experiment, the deadlock detection algoritasgbeen encoded imE
GLE as described in [9], although restricted to the detectiotieafdlocks between
pairs of threads. The general algorithm described in [18]d=tect deadlock poten-
tials between any number of threads. Further work will indég the concurrency
algorithms and BGLE fully.

4 Case Study: A Planetary Rover Controller

The subject of the case study described here is a controliehé K9 planetary
rover, developed at NASA Ames Research Center. A full actotithis controller
is described in [14]. The case study was done in collaboratith the programmer

18

(bl ock
Plan — Node “id p| an
Node — Block]| Task rcontinue-on-failure
Block — (bl ock ‘node-1i st (
NodeAttr (t ask
:node-list (NodeLis}) “id drivel
NodeList — Node NodeListe :start-condition (tine +1 +5)
Task - (task cend-condition (time +1 +30)
NodeAttr raction BaseMvel
:acti on Symbol sduration 20
: durati on DurationTime)
NodeAttr — :id Symbol (t ask
[: start-condition Conditior] tid drive2
[: end- condi t i on Conditior] rend-condition (time +10 +16)
[: conti nue-on-fail ure] racti O_n BaseMbve2
Condition — (time StartTime EndTime))) +duration 20

Figure 7. Plan grammar (left) and an example of a plan (right)

of the controller. First we present a description of the ramantroller, including a
description of the plan language (the input to the contrplléhen, an outline is
given of how plans (test inputs) and associated temporat lpgperties can be
automatically generated using model checking.

4.1 The Rover Controller

The rover controller is a multi-threaded system (35,00@dinf C++ code) that
receives flexible plans from a planner, which it execute®uting to a plan lan-

guage semantics. A plan is a hierarchical structure of mstibat the rover must
perform. Traditionally, plans are deterministic sequenakactions. However, in-
creased rover autonomy requires added flexibility. The [@laguage therefore al-
lows for branching based on conditions that need to be cldeskd also for flexi-

bility with respect to the starting time and ending time ofeation.

This section gives a short presentation of the (simplifiadglage used in the de-
scription of the plans that the rover executive must execute

4.1.1 Plan Syntax

A plan is anode a node is either gask corresponding to aactionto be exe-
cuted, or alock corresponding to a logical group of nodes. Figure 7 (lé¢foves

the grammar for the plan language. All node attributes, Withexception of the
id of the node, are optional. Each node may specify a sebatlitions e.g. the
start condition(that must be true at the beginning of node execution) aneride

19

condition(that must be true at the end of node execution). Each condiicludes
information about a relative or absolute time window, iradicg a lower and an
upper bound on the time. Flagpntinue-on-failurendicates what the behavior will
be when an node failure is encountered. Attrililideationspecifies the duration of
the action. Figure 7 (right) shows a plan that has one bloth tmio tasksqri vel
anddri ve2). The time windows here are relative (indicated by thesigns in the
conditions).

4.1.2 Plan Semantics
For every node, execution proceeds through the followiagsst

e Wait until the start condition is satisfied; if the curremh& passes the end of the
start condition, the node times out and this is a node failure

e The execution of daskproceeds by invoking the corresponding action (e.g. a
routine that interacts with the rover software). The actakes the time spec-
ified in the: durati on attribute. The task fails or succeeds, depending on the
status of the action that is executed. The executionabdek simply proceeds by
executing each of the nodes in thee- | i st in order.

¢ If time exceeds the end condition, the node fails. Qrode failure when exe-
cution returns to the sequence, the value of flagtinue-on-failureof the failed
node is checked. If true, execution proceeds to the next nmotee sequence.
Otherwise the node failure is propagated to any enclosidgsdf the node fail-
ure passes out to the top level of the plan, the remaindereqgfltm is aborted.

4.2 Test Input Generation

Figure 8 shows part of the Java code, referred to asitiversal plannerthat is
used to generate plans (i.e., test inputs for the execuive)properties (i.e., test
oracles, as discussed in the next section). The framewatribed in Section 2
is used to generate test inputs from a specification writtearaannotated Java
program. Model checking with symbolic execution gener#tiesnputs. The input
plans are specified using non-deterministic chaib@¢se methods) over the struc-
tures allowed in the grammar presented in Figure 7 and @ngrover the integer
variables in the input structure (updates to the path cmmditpc). For brevity,
only a small sample set of constraints is shown here (stétiagthe time points
are proper positive values defining intervals and the end t&narger than the start
time of an interval). The actual testing requires solvirgsthconstraints in order to
instantiate input plans that can be then executed (methlogt i on). To illustrate
the flexibility in our approach, some of the variables aresodered concrete inputs,
e.g. the maximum allowed number of nodes in a generatedtisteu@Nodes) and
yet others, e.g. the boolean values, are generated usindeterministic choice.

20

class Universal Planner { ...
static int nNodes; /*max number of nodes*/
static void Plan(int nn) {

nNodes = nn;
Node plan = Uni versal Node(); static TinmeCondition start, end;
print(plan); static int duration;
conpute_and_print_properties(plan); static bool ean continueOnFailure;
assert(fal se);
} static Universal Attributes() {
static Node Universal Node() { id = new Symbol ();
if (nNodes == 0) return null; Symint sTinmel = new Symnt()
if (chooseBool ()) return null; Symnt sTinme2 = new Sym nt();
if (chooseBool ()) Symint eTinmel = new Symnt();
return Universal Task(); Symnt eTime2 = new Symnt();
return Universal Bl ock(); Symint d = new Symnt();
}
stati ¢ Node Universal Task() { /* constraints */
int id = nNodes; nNodes--; Symnt. _pc. _add_GE(sTinel, 0);...
Uni versal Attributes(); Symnt. _pc. _add_LT(sTinel, sTime2);
Task t = new Task(id, start, end, Symint. _pc. _add_LT(eTinel, eTi me2);
conti nueOnFai | ure, duration); Sym nt. _pc. _add_LE(sTinel, eTi mel);
return t; .
} duration = d.solution();
static Node Universal Bl ock() { start = new Ti meCondition(sTinmel.solution(),
int id = nNodes; nNodes--; sTi me2. sol ution());
Li st Of Nodes | = new Li st Of Nodes(); end = new Ti meCondi tion(eTi nel. sol ution(),
for (Node n = Universal Node();n != null; eTi me2. sol ution());
n = Universal Node()) [|.add(n); conti nueOnFai | ure = chooseBool ();
Uni versal Attributes(); }}
Block b = new Bl ock(id, I, start, end,
continueOnFai l ure);
return b;

Figure 8. Code that generates input plans and properties.

The assertion in the program, at the end ofRhan method, specifies that it is not
possible to create a “valid” plan (i.e., executions thathethis assertion generate
valid plans). The BF model checker model checks the universal planner and is thus
used to explore the state space of the input plans that have niipdes nodes.
Different search strategies find multiple counterexamptgsach counterexample
(representing a valid plan), a set of properties associaitixthe plan is computed.
The generated plan and properties are printed to files teahan used for testing
the rover.
class PathCondition { ...
Constraints c;
void _add LT(Symnt el, Symnt e2){
c.add _constraint LT(el, e2);
if (!c.is_satisfiable())
backtrack();
return;

}}

Figure 9. Library classes for symbolic execution.

class Symnt { ...
static PathCondition _pc;

|nt solution() { ... }

}

Figure 9 gives part of the library classes that enabltd perform symbolic execu-
tion. ClassSym nt supports manipulation of symbolic integers. iat i c field
Sym nt. _pc stores the (numeric) path condition. Methadid_LT updates the path
condition with a constraint encodirgl less-thane2. Methodi s_sati sfi abl e

21

uses the Omega library to check if the path condition is sif#a (in which case,
JPF will backtrack). Thesol uti on method first solves the constraints and then
returns one solution for a symbolic integer.

4.3 Property Generation

For each generated plan, a set of properties in theLE temporal logic is au-
tomatically generated, according to the semantics of tharphg language. It is
important to note that such a set of properties is generateelich plan and mon-
itored during the execution of that specific plan. In genegathese properties, the
following predicates are used: sta) (true immediately after the start of the ex-
ecution of the node with the correspondiing, endid) (true when the execution
of the node ends successfully) and i) (true when the execution of the node
ends with a failure). The code is instrumented to monitos¢heredicates and the
validity of the generated properties is checked on exeouteces. As an example,
some of the generated properties for the plan from Figuréghtjrare shown in
Figure 10.

The set of generated properties does not fully represergdhmntics of the plan.
As an example, the illustrated properties do not state ttietifatdr i vel should
only start once. A complete specification of the plan sensantiould require a
more elaborate set of formulas. SincedtE is a very expressive logic this would
be possible. However, the current set of properties gegetfat a plan seems ap-
propriate to catch many kinds of errors. The effort investedkesigning what prop-
erties to be generated for a particular plan was minimal &aedyl so due to the
fact that not all the plan semantics is modeled. The praggeould be inferred
very directly from the informal plan semantics communidatg the engineer that
programmed the system.

4.4 Results

The tool is fully automated after setup and does not requiydrgout from the user

to run. The tool generates a set of test cases, each cogo$tplan (input) and a
set of properties (expected of the output). A script will@xe each test case, first
by running the controller, together with a rover hardwarawator, on the input
plan and then calling EGLE to verify that the generated execution trace satisfies
the properties. Due to the automated nature of the prodesdgiveloper of the K9
rover controller is capable of running it himself. All tessults used in the process
have been generated by the developer running the tool.

The automated testing system found a missing feature thabéan overlooked by
the developers: the lower bounds on execution duration marenforced. Hence,

22

e ML = Eventual | y(start("plan"))

i.e., the initial nodepl an should eventually start.

e M2 = Always(start("plan") -> Eventual | y(end("plan")))

i.e., if pl an starts, then it should eventually terminate successfully.

e M3 = Always(start("plan") -> Eventual [yWthin(start("drivel"),1,5))

i.e., ifpl an starts, therdri vel should start within 1 and 5 time units.

e M4 = Always((end("drive2") \/ fail("drive2")) ->
Eventual | y(end("pl an")))

i.e., successful or failed termination dfi ve2 implies successful termination
of the whole plan (due toont i nue- on-f ai | ur e flag).

e Mb = Always(start("drivel") ->
(Eventual lyWthin(end("drivel”),1,30) \/
Eventual [y(fail ("drivel”))))

i.e. ifdrivel starts, then it should end successfully within 1 and 30 tinitswr
it should eventually terminate with a failure.

e M6 = Always(fail ("drivel") -> ~ Eventually(start("drive2")))

i.e., ifdrivel fails, thendri ve2 should not start.

e M = Always(end("drivel") -> Eventually(start("drive2")))

i.e., ifdri vel ends successfully, theni ve2 should eventually start.

e MB = Always(start("drive2") -> Eventually(fail("drive2")))

i.e., ifdri ve2 starts, then it should eventually fail (due to the time ctiods).
Figure 10. Properties representing partial semanticsaof il Fig. 7.

where a certain generated temporal logic formula predietéare, the execution in
fact wrongly succeeded, and this was detected as a violafithre temporal prop-
erty. The error was not corrected immediately after its cieia, and showed up
later during actual rover operation in a field test beforeasworrected. A prelim-
inary version of the testing environment, not using aut@uaést case generation,
found a deadlock and a data race. The data race, involvirggado a shared vari-
able used to communicate between threads, was suspectée bigvteloper, but
had not been confirmed in code. The trace analysis allowedeveoper to see the
read/write pattern clearly and redesign the communication

The K9 rover controller, essentially an interpreter, setoebe very well suited
for this kind of testing framework. It was in particular a gile matter to determine
what temporal properties should be generated for a plas.i$hihowever, not easy
in general for other kinds of applications. The other maitiacsm one can raise
is the fact that only events of the forstart, endandfail are monitored. Hence,
failures which could only be detected by monitoring actibesveen these events

23

cannot be detected.

5 Related Work

5.1 Test Case Generation

In section 2 we have already discussed some of the related amospecification-
based testing. Here we link our approach to test input génarols.

The idea of using constraints to represent inputs dates &idelast three decades
[37,17,40,55]; the idea has been implemented in various iooluding EFFIGY
[40], TEGTGEN [42] and INKA [26]. Most of this work has beercigsed on solv-
ing constraints on primitive data, such as integers anddaol.

Some recent frameworks, most notably TestEra [46] and Ka&u5], do sup-
port generation of complex structures. TestEra generafags from constraints
given in Alloy, a first-order declarative language basedealations. TestEra uses
off-the-shelf SAT solvers to solve constraints. Korat gates inputs from con-
straints given as Java predicates. The Korat algorithm é@ently been included
in the AsmL Test Generator [22] to enable generation of stres. TestEra and
Korat focus on solving structural constraints. They do niaally solve constraints
on primitive data as we do in our framework. Instead, theyesysatically try all
primitive values within given bounds, which may be ineffidie

The first version of AsmLT Test Generator [27] was based otefisiate machines
(FSMs): an AsmL [30] specification is transformed into an F&N different
traversals of the FSM are used to construct test inputs.tkaalds structure gen-
eration to generation based on finite-state machines [ZfhlA was successfully
used for detecting faults in a production-quality XPath pder [63].

Several researchers have investigated the use of moddicbdor test input gen-
eration (see [36] for a good survey). Gargantini and Heinej23] use a model
checker to generate tests that violate known propertiesspiaification given in
the SCR notation. Ammann and Black [4] combine model cherkimd mutation
analysis to generate test cases from a specification. Reyadiet al. use a struc-
tural coverage-based approach to generate test casesgamifications given in
RSML € by using a model checker [35]. Hong et al. formulate a thézakframe-
work for using temporal logic to specify data-flow test cage in [36]. These
approaches cannot handle structurally complex inputs.

There are many tools that produce test inputs from a degumipt tests. QuickCheck
[16] is a tool for testing Haskell programs. It requires thstér to write Haskell

24

functions that can produce valid test inputs; executiorsuch functions with dif-
ferent random seeds produce different test inputs. Our diffides in that it requires
only a specification that characterizes valid test input$ @#ien uses a general-
purpose search to generai# valid inputs up to a certain size. DGL [48] and
lava [62] generate test inputs from production grammargyMere used mostly
for random testing, although they can also systematicalhegate test inputs. How-
ever, they cannot easily represent inputs with complexgira, as we do by using
Java as a specification language.

5.2 Runtime verification

Several runtime verification systems have recently beesldped, a collection of
which have been presented at a series of internationalnmenterification (RV)
workshops [3]. Linear temporal logic (LTL) [52] has beene&to several of these
attempts. The MaC tool [39] supports a past-time intervalgeral logic. Real-
time is modelled by introducing an explicit state in the sfpegtion, containing
explicit clock variables, which get updated when new evantise. The commer-
cial tools Temporal Rover and DBRover [18,19], support fettime and past-time
LTL properties, annotated with real-time and data constsaAlternating automata
algorithms to monitor LTL properties are proposed in [21¢l anspecialized LTL
collecting statistics along the execution trace is descrilm [20]. Various algo-
rithms to generate testing automata from temporal logimidas are discussed in
[56,50]. Complexity results for testing a finite trace agaitemporal formulas ex-
pressed in different temporal logics are investigated #).[A technique where ex-
ecution events are stored in an SQL database at runtimepsged in [43]. These
events are then analyzed by queries derived from intergit kemporal formulas
after the program terminates. The PET tool [29] uses a ftiiore temporal logic
formula to guide the execution of a program for debuggingpses. The model-
based specification language AsmL is being used for runtiengication [7], as
well as for test case generation (see Section 5.1). AsmL &ryaaomprehensive
general-purpose specification language for abstractlyifyjieg computation steps.
It does, however, not directly support temporal logic.

Our own previous work includes the development of sevegdrghms for mon-
itoring with temporal logic, such as generating dynamicgpaonming algorithms
for past-time logic [34], using a rewriting system for mamihg future-time logic
[33,32], or generating Blchi automata inspired algorittadapted to finite-trace
LTL [24]. A logic based on extended regular expressions iscdbed in [59].
Java MultiPathExplorer [61] is a tool which checks a pasietL TL safety formula
against a partial order extracted online from an executiacet POTA [58] is an-
other partial-order trace analyzer system. Java-MoP El&peneric logic monitor-
ing tool encouraging “monitoring-oriented programmingpecialized algorithms
have been developed, dedicated to checking for specificseisach as deadlocks

25

[12] and high-level data races [5]. JNuke [6] is a framewdrkt tcombines runtime
verification and model checking. It is written in C, achiayiscalability through
high performance and low memory usage.

The EAGLE logic and its implementation for runtime monitoring has meenif-
icantly influenced by earlier work on the executable, trgeaerating as well as
trace-checking, temporal logic ®fATEM [8]. In the parallel work [44] a frame-
work is described where recursive equations are used tcemmait a real-time
logic. Although this is a similar approach to the one preseint this paper, EGLE
goes much further and provides the language of recursivatieas to the user, sup-
porting a mixture of future-time and past-time operators tneating real time as a
special case of data values, hence allowing a more gengjial [Other work [11]
describes a framework for generating monitors from timedmata for the same
rover controller described in this paper. For each plan ediautomata is generated
that represents the complete semantics of the plan. Thieagipis promising and
could be combined with the one presented in this paper sin@ E with some
modification will be capable of embedding timed automata.

6 Conclusions and Future Work

A framework for testing based on automated test case gemestd runtime ver-
ification has been presented. This paper proposed and deatedsthe use of
model checking and symbolic execution for test case geperasing the AvA
PATHFINDER tool, and the use of temporal logic monitoring in&._E during the
execution of the test cases. The framework requires cangtruof a test input
generator and a property generator for the applicatiormRhat, a large test suite
can be automatically generated, executed and verified to tenformity with the
properties. For each input (generated by the test inputrgeore the property gen-
erator constructs a set oRELE properties that must hold when the program under
test is executed on that input. The program is instrumetediit an execution log
of events. An observer checks that the event log satisfiesethef properties.

We take the position that writing test oracles as tempomgikcléormulas is both
natural and leverages algorithms that efficiently check@oaition on a test input
conforms to the properties. While property definition iseofdifficult, at least for
some domains, an effective approach is to write a propengigeor, rather than
a universal set of properties that are independent of tharest. Note also that
the properties need not completely characterize correstigion. Instead, a user
can choose among a spectrum of weak but easily generatedrpespto strong
properties that may require construction of complex foasul

In the near future, we will be exploring how to improve the kijyaf the generated
test suite by altering the search strategy of the model @vesid by improving

26

the symbolic execution technology. We will also investeggahprovements to the
EAGLE logic and its engine. In particular an attempt will be madetegrate the

concurrency analysis algorithms fully int;dELE. We are continuing the work on
instrumentation of Java bytecode and will extend this woriCtand C++. Our re-

search group has done fundamental research in other anehsassoftware model
checking (model checking the application itself and not jas input domain) and
static analysis. In general, our ultimate goal is to combiealifferent technologies
into a single coherent framework.

References

[1] AGEDIS - model based test generation tools. http://wagedis.de.
[2] The test sequence generator TGV. http://www-verinmagg.fr~async/TGV.

[3] 1st, 2nd, 3rd and 4th Workshops on Runtime Verification (RVY'&V’04) volume
55(2), 70(4), 89(2), (RV’'04 to be published) BNTCS Elsevier Science: 2001, 2002,
2003, 2004. http://ase.arc.nasa.gov/rv2004.

[4] P. Ammann and P. Black. A Specification-Based Coverag&idM® Evaluate Test
Sets. InProceedings of the 4th IEEE International Symposium on Highurance
Systems and Engineering999.

[5] C. Artho, K. Havelund, and A. Biere. High-level Data Raceln VVEIS'03: The
First International Workshop on Verification and Validatiof Enterprise Information
SystemsFrance, April 2003.

[6] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, andZBieimuller. JNuke:
Efficient Dynamic Analysis for Java. Iroc. of CAV'04: Computer Aided Verification
— to appear Lecture Notes in Computer Science. Springer-Verlag, 2004

[7] M. Barnett and W. Schulte. Contracts, Components, ae@t fRuntime Verification.
Technical Report MSR-TR-2002-38, Microsoft Research,ilApp02. Download:
http://research.microsoft.com/fse.

[8] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. OwendETATEM: An
Introduction. Formal Aspects of Computing(5):533-549, 1995.

[9] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. PargrMonitoring with LTL
in EAGLE. In Proceedings of Workshop on Parallel and Distributed Systeélasting
and Debugging (PADTAD’04) — to apped@anta Fe, New Mexico, USA, April 2004.

[10] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. RBlased Runtime
Verification. In B. Steffen and G. Levi, editor®roceedings of Fifth International
Conference on Verification, Model Checking and Abstradrpetation volume 2937
of Lecture Notes in Computer Scienpages 44-57. Springer, January 2004.

27

[11] S. Bensalem, M. Bozga, M. Krichen, and Stavros TripaKiesting Conformance of
Real-Time Software by Automatic Generation of ObserversProceedings of the
4th International Workshop on Runtime \Verification (RV'04]3].
http://ase.arc.nasa.gov/rv2004.

[12] S. Bensalem and K. Havelund. Deadlock Analysis of MUihreaded Java Programs.
Internal report, October 2002.

[13] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Autommé Testing Based on
Java Predicates. IAroc. International Symposium on Software Testing and ysisl
(ISSTA) pages 123-133, July 2002.

[14] G. Brat, D. Giannakopoulou, A. Goldberg, K. Havelund, Mowry, C. Pasareanu,
A. Venet, and W. Visser. Experimental Evaluation of Verifica and Validation
Tools on Martian Rover Software. BEI Software Model Checking Worksh@p03.
Extended version to appear in the jourfRafrmal Methods in System Design

[15] F. Chen and G. Rosu. Towards Monitoring-Oriented Paogning: A Paradigm
Combining Specification and Implementation. Rroc. of RV'03: the Third
International Workshop on Runtime Verificatjiomolume 89 of Electronic Notes
in Theoretical Computer Sciencpages 106125, Boulder, Colorado, USA, 2003.
Elsevier Science.

[16] K. Claessen and J. Hughes. Testing Monadic Code witltk@heck. InProc. ACM
SIGPLAN workshop on Haskeplages 65-77, 2002.

[17] L. A. Clarke. A System to Generate Test Data and SymhblthicExecute Programs.
IEEE Transactions on Software Engineerit®eptember 1976.

[18] D. Drusinsky. The Temporal Rover and the ATG Rover.Phoc. of SPIN'00: SPIN
Model Checking and Software Verificatiormlume 1885 of_ecture Notes in Computer
Sciencepages 323-330, Stanford, California, USA, 2000. Springer

[19] D. Drusinsky. Monitoring Temporal Rules Combined withne Series. IrProc. of
CAV’03: Computer Aided Verificatiorvolume 2725 ofLecture Notes in Computer
Sciencepages 114-118, Boulder, Colorado, USA, 2003. Springdaye

[20] B. Finkbeiner, S. Sankaranarayanan, and H. Sipmae€@olg Statistics over Runtime
Executions. InProc. of RV’'02: The Second International Workshop on Rumtim
Verification volume 70 ofElectronic Notes in Theoretical Computer Scienearis,
France, 2002. Elsevier.

[21] B. Finkbeiner and H. Sipma. Checking Finite Traces ggMternating Automata. In
Proc. of RV'01: The First International Workshop on Runtiverification volume
55(2) of Electronic Notes in Theoretical Computer Scien&aris, France, 2001.
Elsevier Science.

[22] Foundations of Software Engineering, Microsoft Reska The AsmL test generator
tool. http://research.microsoft.com/fse/asml/doc/A%aster.html.

[23] A. Gargantini and C. Heitmeyer. Using Model CheckingGenerate Tests from
Requirements Specifications. IRroceedings of the 7th European engineering

28

conference held jointly with the 7th ACM SIGSOFT internagiosymposium on
Foundations of software engineeringages 146-162. Springer-Verlag, 1999.

[24] D. Giannakopoulou and K. Havelund. Automata-Basedifi¢gation of Temporal
Properties on Running Programs. Mroc. of ASE'01: International Conference
on Automated Software Engineeringages 412-416. Institute of Electrical and
Electronics Engineers, Coronado Island, California, 2001

[25] A. Goldberg and K. Havelund. Instrumentation of Javatd@pde for Runtime
Analysis. In Proc. Formal Techniques for Java-like Program@lume 408 of
Technical Reports from ETH ZuricBwitzerland, 2003. ETH Zurich.

[26] A. Gotlieb, B. Botella, and M. Rueher. Automatic Testt®aseneration using
Constraint Solving Techniques. Rroc. International Symposium on Software Testing
and Analysis (ISSTALlearwater Beach, FL, 1998.

[27] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes. n&ating Finite State
Machines from Abstract State Machines. Rroc. International Symposium on
Software Testing and Analysis (ISSTgages 112—-122, July 2002.

[28] A. Groce and W. Visser. Model Checking Java ProgramsguSitructural Heuristics.
In Proceedings of the 2002 International Symposium on Saftiwesting and Analysis
(ISSTA) pages 12 — 21. ACM Press, July 2002.

[29] E. Gunter and D. Peled. Tracing the Executions of CameurPrograms. IdProc.
of RV'02: Second International Workshop on Runtime Vetifica volume 70 of
Electronic Notes in Theoretical Computer Scign@openhagen, Denmark, 2002.
Elsevier.

[30] Y. Gurevich. Evolving Algebras 1993: Lipari Guide. 8pecification and Validation
Methods pages 9-36. Oxford University Press, 1995.

[31] A. Hartman. Model Based Test Generation Tools.
http://ww. agedi s. de/ docunent s/ Model BasedTest Gener ati onTool s_cs. pdf .

[32] K. Havelund and G. Rosu. Monitoring Programs using Rivg. In Proceedings
of the International Conference on Automated Software f@®ging (ASE’'01)pages
135-143. IEEE CS Press, Coronado Island, California, 20B4tended version to
appear in the journalutomated Sofware Engineering

[33] K. Havelund and G. Rosu. An Overview of the Runtime Yfeation Tool Java
PathExplorer. Formal Methods in System Desjg84(2):189-215, March 2004.
Special Issue on Selected Papers from the First InterratiMorkshop on Runtime
Verification Held in Paris, July 2001 (RV’01).

[34] K. Havelund and G. Rosu. Synthesizing Monitors foredaProperties. ITools and
Algorithms for Construction and Analysis of Systems (TAQASvolume 2280 of
LNCS pages 342-356. Springer, 2002. Extended version to appiszinternational
Journal on Software Tools for Technology Transfer

[35] M. P. E. Heimdahl, S. Rayadurgam, W. Visser, D. Georgel 4. Gao. Auto-
Generating Test Sequences using Model Checkers: A Case. Stld Proc. 3rd

29

International Workshop on Formal Approaches to Testing oftvaare (FATES)
Montreal, Canada, October 2003.

[36] H. Seok Hong, I. Lee, O. Sokolsky, and H. Ural. A Tempdrabic Based Theory
of Test Coverage and Generation. Pmoc. 8th International Conference on Tools
and Algorithms for Construction and Analysis of System&€@®) Grenoble, France,
April 2002.

[37] J. C. Huang. An approach to program testidgcM Computing Surveyg(3), 1975.

[38] S. Khurshid, C. Pasareanu, and W. Visser. Generaligetb8lic Execution for Model
Checking and Testing. IRroceedings of TACAS'03: Tools and Algorithms for the
Construction and Analysis of Systeraslume 2619 oLNCS Warsaw, Poland, April
2003.

[39] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: aaffme Assurance Tool
for Java. InProc. of RV'01: First International Workshop on Runtime iffeation,
volume 55 ofElectronic Notes in Theoretical Computer Sciegnéaris, France, 2001.
Elsevier Science.

[40] J. C. King. Symbolic Execution and Program Testi@pmmunications of the ACM
19(7):385—-394, 1976.

[41] B. Korel. Automated Software Test Data GeneratilBEE Transaction on Software
Engineering 16(8):870-879, August 1990.

[42] B. Korel. Automated Test Data Generation for Prograrith Wrocedures. San Diego,
CA, 1996.

[43] D. Kortenkamp, T. Milam, R. Simmons, and J. Fernandealle€ting and Analyzing
Data from Distributed Control Programs. Proc. of RV'01: First International
Workshop on Runtime Verificatiorrolume 55 ofElectronic Notes in Theoretical
Computer SciengdParis, France, 2001. Elsevier Science.

[44] K. Jelling Kristoffersen, C. Pedersen, and H. R. Andars Runtime Verification
of Timed LTL using Disjunctive Normalized Equation Systenls Proceedings of
the 3rd International Workshop on Runtime Verification (B3)73], pages 146-161.
http://ase.arc.nasa.gov/rv2004.

[45] D. Marinov. Testing Using a Solver for Imperative Constrain®D thesis, Computer
Science and Atrtificial Intelligence Laboratory, Massadtissinstitute of Technology,
2004. (to appear).

[46] D. Marinov and S. Khurshid. TestEra: A Novel Framewook Automated Testing of
Java Programs. IRroc. 16th IEEE International Conference on Automatedviat
Engineering (ASE)San Diego, CA, November 2001.

[47] N. Markey and P. Schnoebelen. Model Checking a PatHi(®rary Report). InProc.
of CONCUR’03: International Conference on Concurrency drigevolume 2761 of
Lecture Notes in Computer Sciengages 251-265, Marseille, France, August 2003.
Springer.

30

[48] P. M. Maurer. Generating Test Data with Enhanced Cdsfieze GrammarsIEEE
Software 7(4):50-55, July 1990.

[49] B. Nichols, D. Buttlar, and J. P. FarreRthreads ProgrammingO’Reilly, 1998.

[50] T. O'Malley, D. Richardson, and L. Dillon. Efficient Spification-Based Oracles for
Critical Systems. IProc. of the California Software Symposiuh®996.

[51] Parasofthtt p: // www. par asoft. com

[52] A. Pnueli. The Temporal Logic of Programs. Rroceedings of the 18th IEEE
Symposium on Foundations of Computer Sciepages 46—77, 1977.

[53] W. Pugh. A practical algorithm for exact array depermeanalysisCommunications
of the ACM 35(8):102 — 114, August 1992.

[54] Purify: Fast Detection of Memory Leaks and Access Etrdenuary 1992.

[55] C. V. Ramamoorthy, Siu-Bun F. Ho, and W. T. Chen. On théofated Generation
of Program Test DatdEEE Transactions on Software Engineer,ir2§4), 1976.

[56] D. J. Richardson, S. L. Aha, and T. O. O’'Malley. Speciiima-Based Test Oracles
for Reactive Systems. IRroc. of ICSE’'92: International Conference on Software
Engineering pages 105-118, Melbourne, Australia, 1992.

[57] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, anch@iekson. Eraser: A Dynamic
Data Race Detector for Multithreaded Program®CM Transactions on Computer
Systems15(4):391-411, November 1997.

[58] A. Senand V. K. Garg. Partial Order Trace Analyzer (PQik Distributed Programs.
In Proc. of RV'03: the Third International Workshop on Runtirierification
volume 89 ofElectronic Notes in Theoretical Computer ScienBeulder, Colorado,
USA, 2003. Elsevier Science.

[59] K. Sen and G. Rosu. Generating Optimal Monitors fordexted Regular Expressions.
In Proceedings of the 3rd International Workshop on Runtimdiv@ation (RV'03)[3],
pages 162-181. http://ase.arc.nasa.gov/rv2004.

[60] K. Sen, G. Rosu, and G. Agha. Generating Optimal Linkamporal Logic Monitors
by Coinduction. In V.A. Saraswat, editétroceedings of 8th Asian Computing Science
Conference (ASIAN’'03\olume 2896 ofLecture Notes in Computer Sciengages
260-275, December 2003.

[61] K. Sen, G. Rosu, and G. Agha. Runtime Safety Analysisloftithreaded Programs.
In Proc. of ESEC/FSE’'03: European Software Engineering Genfee and ACM
SIGSOFT International Symposium on the Foundations ofw@&adt Engineering
pages 337 — 346. ACM, Helsinki, Finland, September 2003.

[62] E. G. Sirer and B. N. Bershad. Using Production Gramnrafoftware Testing. In
Proc. 2nd conference on Domain-specific languageges 1-13, 1999.

[63] K. Stobie. Advanced Modeling, Model Based Test Genenatand Abstract state
machine Language AsmL. http://www.sasqag.org/pastmgetisml.ppt, 2003.

31

[64] P. Thati and G. Rosu. Monitoring Algorithms for Metritemporal Logic. In
Proceedings of the 4th Workshop on Runtime Verification RyVvolume to appear
of Electronic Notes in Theoretical Computer Sciergksevier Science, 2004.

[65] N. Tracey, J. Clark, and K. Mander. The Way Forward forifying Dynamic Test-
Case Generation: The Optimisation-Based Approachinternational Workshop on
Dependable Computing and Its Applications (DGlpaages 169-180. IFIP, January
1998.

[66] T-VEC. http://ww.t-vec. com

[67] W. Visser, K. Havelund, G. Brat, S.-J. Park, and F. Lenslamdel Checking Programs
. Automated Software Engineering Journi0(2), April 2003.

32

