
A Novel Approach on Centralizing Networked Applications

Cyrille Artho, National Institute of Informatics, Tokyo, Japan∗

October 28, 2005

Abstract

Software model checkers can directly be applied to
single-process programs, which typically are multi-
threaded. However, multi-process applications cannot be
model checked so easily. One approach is the manual
merging of several processes into one, removing inter-
process communication which is usually network-based.
This process is very labor-intensive and a major obstacle
towards model checking of client-server applications.

Previous work has addressed the merging of multiple
applications but mostly omitted network communication.
Remote procedure calls were simply inlined, creating
similar results for simple cases but also removing much
of the inherent complexities involved. Our approach is a
fully transparent replacement of network communication,
resulting in a program that is much closer to the original.
This makes our approach suitable for testing, debugging,
and software model checking.

1 Introduction

Model checking [2] tries to explore the entire behavior of
a system under test (SUT) by investigating each reachable
system state. Recently, model checking has been applied
directly to software, sometimes even on concrete systems.
Java [3] is a popular object-oriented, multi-threaded pro-
gramming language. Verification of Java programs has
become increasingly important. Several model checkers
for Java-based programs have been created, e.g. [1, 6].
Existing software model checkers can only explore a sin-
gle process and are not applicable to networked applica-
tions, where several processes interact. Most non-trivial
programs which are in use today use network communi-
cation. Such programs are typically part of a larger sys-
tem where several processes interact.

Process centralizationis a possible solution: Processes
are converted intothreadsand merged into a single appli-
cation [5]. Networked applications can then run as one
multi-threaded application. This approach is applicable if
all programs to be merged are available in the same for-
mat and inter-program communication can be modeled
accurately. The latter has not been addressed satisfac-
torily yet. Previous work inlined parts of one program
in another one, modelling certain patterns of interaction

∗Funding: Special Coordination Funds for Promoting Scienceand
Technology.

Client Server

accepts communication (b)

connects (b) → established connection
↓ ↓

bi-directional communication possible

Figure 1: Client-server communication.

using Remote Method Invocation (RMI) under Java [5].
Unfortunately, this implementation is very specific to cer-
tain RMI-based programs and cannot cover more general,
TCP/IP-based communication. Our approach can fully
replace the widely used socket mechanism. It is therefore
more generic and closer to the original program than the
previous inlining approach.

2 Network communication, RMI

Network communication can be modeled as an interac-
tion of two peers, aclient and aserver.The server allows
for incoming communication by accepting connections to
a certain port. The client can subsequently connect to
that port. After a connection is established, a bidirec-
tional communication channel exists between the client
and the server. Communication can then be performed
in an asynchronous manner: Underlying transport mech-
anisms (commonly TCP/IP) ensure that sent messages
arrive eventually (if a connection is available), but with
some delay. This applies to messages in both directions.
A connection can be closed by the client or the server,
terminating communication.

Figure 1 illustrates this: The client has to wait until
the server is available, and retry a connection attempt if
necessary. When the server accepts a new connection, its
execution blocks until a client has connected. A blocked
state is shown as (b) in the figure. As soon as a client con-
nects, the server is unblocked, and a connection is estab-
lished by underlying system libraries. The corresponding
connect call is in turn blocking for the client, unblocking
as soon as the response from the server is received.

Remote Method Invocation (RMI) in Java builds in
sockets and behaves in a similar way, as shown by Fig-
ure 2. RMI offers a naming mechanism which allows
clients to find a server. After the lookup is performed,

1



Client Server

Client looks up stub
↓

Stub serializes arguments→ Remote stub called
↓

Client stub receives result ← Result sent by stub
↓

Client receives result

Figure 2: Remote Method Invocation.

Client

Client looks up stub
↓

Stub serializes arguments
↓ Local computation

Stub returns result
↓

Client receives result

Figure 3: Inlined RMI call.

the client communicates with the server viastubs,which
hide network communications and make (blocking) RMI
calls appear to be local. Arguments for calls have to be
serialized (converted into raw data) before transmission.
The client blocks until it receives the response from the
server. The stub receives the serialized result, unblocking
execution, and relays the result to the calling client.

Previous work [5] has inlined the remote computation
of the server, replacing a blocking remote call with a local
call, as shown by Figure 3. This idea “cannibalizes” on
the blocked client thread for simulating remote computa-
tion. In doing so, it greatly simplifies the original pro-
gram, which is desirable for model checking. However,
it also removes a lot of the structural complexity, which
may be harmful because it may mask problems.

3 Our solution

We kept the idea of replacing multiple processes with
multiple threads in a single process. The client and server
applications are still merged into a single application as
done before [5], but communication is treated in a totally
different way. Due to the complex nature of true bidirec-
tional communication in client-server programs, a simple
inlining mechanism is no longer applicable.

General network communication was broken down into
two steps: Connection establishment, and bidirectional
communication. We used a two-step barrier [4] to model
the blocking connection mechanism shown in Figure 1.
In a first step, the server blocks during theaccept call.
When the client callsconnect, the server is unblocked
while the client blocks and waits for completion of the

connection. This ensures that the sequence of each orig-
inal application passing through blocking library calls
is preserved in the centralized version. Upon connec-
tion, two unidirectional inter-thread pipes are set up,
as available throughjava.io.PipedInputStream and
java.io.PipedOutputStream. They model the under-
lying network communication normally provided by sys-
tem libraries, replacing inter-process communication by
inter-thread communication.

Due to the complex inter-thread interactions, develop-
ment of a correct socket replacement was non-trivial. We
used the JavaPathFinder model checker [6] to verify cor-
rectness of our implementation, which currently supports
one connection per port but could be extended to multiple
connections. We have also successfully used this socket
replacement for running and model checking centralized
example applications, such as an echo server.

4 Summary

Distributed programs include several processes and typi-
cally use network communication. For model checking,
processes have to be replaced by threads and merged into
a centralized application. Replacement of communication
mechanisms is also necessary for non-trivial applications.
While Remote Method Invocation can be replaced by in-
lining, this replacement is not very accurate and cannot
be extended to arbitrary socket-based communication.

Our approach replaces the socket connection mecha-
nism by barriers and the communication channels by two
unidirectional, inter-thread pipes, as available by the Java
library. We have successfully model checked our imple-
mentation using example client-server applications.

References

[1] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur,
and B. Zweimüller. JNuke: Efficient Dynamic Anal-
ysis for Java. InProc. CAV ’04, Boston, USA, 2004.
Springer.

[2] E. Clarke, O. Grumberg, and D. Peled.Model check-
ing. MIT Press, 1999.

[3] J. Gosling, B. Joy, G. Steele, and G. Bracha.The Java
Language Specification, Third Edition. Addison-
Wesley, 2005.

[4] D. Lea. Concurrent Programming in Java, Second
Edition. Addison-Wesley, 1999.

[5] S. Stoller. Model-Checking Multi-threaded Dis-
tributed Java Programs. InSPIN Model Checking and
Software Verification, volume 1885 ofLNCS, pages
224–244. Springer, 2000.

[6] W. Visser, K. Havelund, G. Brat, S. Park, and
F. Lerda. Model checking programs.Automated Soft-
ware Engineering Journal, 10(2), April 2003.

2


