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SUMMARY Memory deduplication improves the utilization of physi-
cal memory by sharing identical blocks of data. Although memory dedupli-
cation is most effective when many virtual machines with same operating
systems run on a CPU, cross-user memory deduplication is a covert chan-
nel and causes serious memory disclosure attack. It reveals the existence
of an application or file on another virtual machine. The covert channel
is a difference in write access time on deduplicated memory pages that
are re-created by Copy-On-Write, but it has some interferences caused by
execution environments. This paper indicates that the attack includes im-
plementation issues caused by memory alignment, self-reflection between
page cache and heap, and run-time modification (swap-out, anonymous
pages, ASLR, preloading mechanism, and self-modification code). How-
ever, these problems are avoidable with some techniques. In our experi-
ence on KSM (kernel samepage merging) with the KVM virtual machine,
the attack could detect the security level of attacked operating systems, find
vulnerable applications, and confirm the status of attacked applications.
key words: memory disclosure attack, virtual machine, memory dedupli-
cation

1. Introduction

IaaS (Infrastructure as a Service) type cloud computing uses
a tremendous number of virtual machines. Even though data
centers offer vast resources, the efficiency of a virtual ma-
chine is very important, because it is directly linked to the
cost of cloud computing. To improve efficiency, memory
deduplication [1], [2], [7], [9], [16] reduces the consumption
of physical memory. Memory deduplication merges same-
content memory pages on a physical machine, allowing
more virtual machines to run on limited resources.

However, memory deduplication is subject to memory
disclosure attacks. A merged page has to be re-created when
a write access is issued to that page, which is called COW
(Copy-On-Write). The attack exploits this covert channel
of COW, which is known exploit to leak information [9],
[11], [17]. While the sequence of COW is logically valid
and behaves consistently, the write access time is different
between deduplicated and non-deduplicated pages. An at-
tacker can use the time difference in a memory disclosure
attack. This does not violate any restriction of SLA (Service
Level Agreements) of cloud computing. It only measures
the write access time of its own memory, and guesses mem-
ory contents of other virtual machines. The attack uses a
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characteristic of the shared resource of a virtual machine,
making it a kind of cross-VM side channel attack [13].

The attack seems to be easy, but it includes some im-
plementation issues. The attack is limited to exact matches
on memory pages, which are aligned on a certain boundary.
An attacker has to care about page caching caused by his
own binary file. Memory pages are modified more than we
expect and the attack take risks of false-negative and false-
positive. For examples, memory pages are swap-out on vic-
tim’s VM and attacker’s VM. Furthermore, the difference of
write accesses depends on the environment. This paper de-
scribes how to deal with these issues; the successes of a real
attack on Linux and Windows Guest OS.

The attack is prevented by some improvements on the
VMM (virtual machine monitor) or guest OS. However, the
countermeasures decrease the performance of the virtual
machine in general. Conversely, when the attack technique
is used for live memory forensics, it can increase security.
For example, an administrator may detect a prohibited ap-
plication or illegal file. We describe that as future work.

This paper is organized as follows. Related work is re-
viewed in Section 2 and the detail of memory deduplication
is described in Sect. 3. The issues on memory disclosure
attack on memory deduplication are described in Sect. 4.
Section 5 reports the results of the attacks to detect secu-
rity level of attacked operating systems, to find vulnerable
applications, and to confirm the status of attacked applica-
tions. Section 6 describes countermeasures and Sect. 7 notes
the application of this technique. Section 8 discusses related
issues and Sect. 9 summarizes our conclusions.

2. Related Work

Cloud storage deduplication has a same vulnerability [8],
which is exhibited on Dropbox, MozyHome, and Melpole.
The attack takes advantage of the elimination of traffic,
when the same file is already uploaded. Using this phe-
nomenon, the paper shows the vulnerability to leak some
information, for example PIN code and salary. This attack
seems to be applicable to memory deduplication, but several
constrains are different. The big difference between storage
and memory deduplication is that the former is static while
the latter is dynamic. Storage deduplication is fixed when
data is written to storage, and its status does not change.
On the other hand, memory deduplication is dynamic, be-
cause memory contents change frequently at run-time. Even
if the contents are same, the status in an operating system is
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changed For example, swap-out operation saves the mem-
ory image on a disk but the status is not change. Anony-
mous pages are not used by an application, but still exist on
the memory. The attack on memory deduplcaition has to
consider these situations.

Vulnerability on memory deduplication is described in
paper [11]. However, the paper shows the possibility of in-
formation leak and does not show the difficulty of the attack
caused by the execution environment; for example, align-
ment mismatching and page cache. This paper clarifies the
challenges for the attacker.

The IEEE 1394 (FireWire) attack is a physical side
channel attack for memory disclosure. IEEE 1394 enables
us to read from and write to physical memory by access-
ing a DMA controller, while an operating system owns the
memory. The IEEE 1394 attack is very critical attack, but
it requires physical cable connection with IEEE 1394. On
the other hand, the memory deduplication attack does not
require physical equipment. It requires a measurement of
write access times on its memory. It is a critical attack in a
multi-tenant cloud computing environment, because it does
not violate any SLA (Service Level Agreements).

3. Memory Deduplication

Memory deduplication is a technique to merge same-content
memory pages and reduce the consumption of physical
memory. It is popular on a virtual machine monitor, because
the memory images of virtual machines include many same-
content pages, especially when the same guest OS runs on
several virtual machines. Therefore, current virtual machine
monitors are equipped with memory deduplication.

3.1 Type of Memory Deduplication

The techniques of memory deduplication are divided into
two types; content-aware type and memory scan type.
Content-aware deduplication is used on Disco’s Transparent
Page Sharing (TPS) [2] and Satori [9] on Xen. TPS reads
page data from a special copy-on-write disk and checks
whether the same page data is already present in main mem-
ory. If the pages match, TPS creates a shared mapping to the
existing page. Satori has a similar policy for duplicate detec-
tion, although it does not use a special copy-on-write disk.
Satori is implemented as para-virtualization on the Xen hy-
pervisor and requires customization of the guest OS.

Memory scan type deduplication is used in Content-
based Page Sharing of VMWare ESX [16], the Differential
Engine [6] of Xen, and KSM (Kernel Samepage Merging)
[1] of the Linux kernel. Content-based Page Sharing scans
the VM’s memory periodically and records fingerprints of
each page. When the same fingerprint is found, it com-
pares the contents of the relevant two pages, and merges
them if they are identical. Differential Engine features not
only memory-scan type deduplication, but also patching and
compressing. When almost identical pages are found, the
small difference is taken as a patch and the nearly identi-

cal pages are merged. Compression is used when a page is
not active for a long time. KSM (Kernel Samepage Merg-
ing) included from Linux kernel 2.6.32 onward, is a general
memory deduplication. It was developed for its virtual ma-
chine (KVM), but it is not limited to a virtual machine. In
this paper we use KSM for memory deduplication.

3.2 KSM (Kernel Samepage Merging)

Most implementations of memory-scan type deduplication
use the hash value of a page to check the similarity between
pages. The initial implementation of KSM used the same
technique, but it was re-implemented with another method
to avoid a patent problem. KSM uses a simple 32-bit check-
sum for rough scanning. After the scanning, the exact simi-
larity is computed by memcmp().

KSM manages memory pages with two red-black trees;
one is for candidate pages of deduplication (called unstable
tree), and the other one is for duplicated pages (called stable
tree). Pages are identified by their 32-bit checksum in the
trees. When the same content of a candidate page is found in
the stable tree, the candidate page is merged with the stable
tree. When the same content of a candidate page is found in
the unstable tree, the two pages (candidate page and page in
unstable tree) move to the stable tree.

Pages are scanned at intervals, which is defined at
/sys/kernel/mm/ks m/sleep millisecs. The default period is
20 msec. The time is the interval of the kernel daemon called
“ksmd”. The maximum number of pages that ksmd can
use is limited (the default is 25% of the available memory).
Therefore, not all pages are scanned at a time.

A merged page in the stable tree is re-created when a
write access is issued to the page; this technique is called
Copy-On-Write (COW). The write access is reflected in the
new page. When the old same-contents page has no other
more buddy pages, it is removed from stable tree.

4. Attack on Memory Deduplication

Memory deduplication may be subject to a memory dis-
closure attack from the attacker’s VM to the victim’s VM.
Memory deduplication merges memory pages which have
the same contents. When data is written to a deduplicated
page, the page is re-created with a copy of its contents
(Copy-On-Write). This causes the write access time to be
slower than normal, because it includes the overhead to re-
create the same page. An attacker can use this phenomenon
as a memory disclosure attack in order to guess a process or
an opened file on a victim’s VM.

The preliminary idea of memory disclosure attack is as
follows. The attacker allocates same-content pages of a pro-
cess or file in the memory of the attacker’s VM and waits
for these pages to be deduplicaed. After that, the attacker
issues one-byte write access to the pages. If the pages are
deduplicated, the write access time is longer than normal.
In order to distinguish the write access time difference, at-
tacker must know the time difference between deduplicated
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Fig. 1 The upper figure shows the self-reflection case. Contents of the page cache and heap are the
same and deduplicated on a virtual machine. The lower figure shows the counter measure. A target file
is gzipped and the contents on the page cache and heap are different.

and non-deduplicated page in advance. The attacker mea-
sures the write access time on zero-cleared pages which are
deduplicated by themselves, and random data pages which
are not deduplicated with other pages.

The preliminary idea is simple. However, the memory
disclosure attack on memory deduplication includes some
implementation issues, which is caused by memory align-
ment, self-reflection, run-time modification, and the timing
problem. These implementation issues cause false-negatives
and false-positives.

4.1 Alignment Problem

The memory disclosure attack requires an exact match on
memory pages as well as the aligned address of the pages.
When a process is created, a binary file is loaded to memory
pages by an interpreter. On Linux, the ELF binary inter-
preter “ld-linux” is called to create a process. The contents
of a binary file are loaded to aligned memory pages. An at-
tacker has to prepare an identically aligned memory region
to guess the same contents. It means that it is important to
know the address of the alignment. Fortunately, attacker can
use the POSIX posix memalign() function to get an aligned
memory region in heap memory.

On the other hand, the address is arbitrarily assigned,
when a file is loaded by an application. The address is not
identified by an attacker. However, the contents are stored
in the page cache by the OS kernel, when a file is opened.
The page cache is aligned on memory pages, allowing an
attacker to know the exact matching pages.

The page cache is used to detect an opened file by the
attacker. However, the page cache causes the self-reflection

problem when a binary file is cached on the attacker’s VM.

4.2 Self-Reflection Problem

Memory deduplication deals with same-content memory
pages on a virtual machine. If an operating system and ap-
plications create same-content memory pages on a single
VM, memory deduplication works in the same way. The
feature makes a memory disclosure attack difficult, this is-
sue is called the “self-reflection problem”. The upper half
of Fig. 1 shows the problem.

The self-reflection problem is caused by different mem-
ory management on the page cache and heap. When attacker
program opens a target file using function open(), the con-
tents of opened file are stored in its page cache memory by
the OS kernel. After that, the attacker program loads the
matching contents to its heap memory with alignment us-
ing memalign() and read() functions. At that time, the con-
tents of the heap memory are deduplicated to the page cache
memory contents. In this situation, the write access time to
the contents on heap memory is always delayed with self
memory deduplication. This leads to spurious matchings
and causes false-positives.

To prevent self-reflection, the contents in heap and
page cache must be different. The lower half of Fig. 1 shows
this solution. The target file is compressed with gzip and ex-
panded at run time. The contents on page cache are gzipped
image. The contents of the heap memory are decompressed
by function gzread(). The contents of the heap memory are
not deduplicated with the page cache; this fact is used to
detect same-content memory pages on other VMs.

The self-reflection is caused when a target file is moved
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and copied, because the contents are stored in the page
cache. The attacker has to re-create a VM to prevent self-
reflection, because memory is not cleared perfectly by sim-
ple rebooting [4], [5]. The re-creation of a VM, however,
is the best way for clearing memory contents with zero, be-
cause the pseudo-physical memory is zero-cleared for mem-
ory isolation. An attacker can use this security countermea-
sure to his advantage.

4.3 Run-Time Modification Problem

Memory pages are modified more often than we expect. We
call this phenomenon “run-time modification”, which in-
cludes memory page swap-out, anonymous pages, ASLR
(Address Space Layout Randomization), self-modifying
code, and pre-loading. They cause false-negatives and false-
positives on memory disclosure attack.

The most common modification is memory page swap-
out on a victim’s VM. At that time, memory deduplication is
dissolved, and attacker cannot detect. However, the targeted
process or file still exists on the process list (which is shown
by command “ps” on Linux) or the list of open files (which
is shown by command “lsof” on Linux) on a victim’s VM.
This causes a false-negative.

On the other hand, the attacker’s memory is also
swapped-out. In this case, the access time is delayed by the
swap-in operation on the attacker’s VM and causes a false-
positive. Fortunately, this is solved by using the no-swap
setting on the attacker’s VM.

Anonymous pages do not change the contents of mem-
ory, but the status of a process or file is changed. Even if a
process has terminated or a file becomes unused, the mem-
ory contents still exist as anonymous pages for a long time
[4], [5]. Memory deduplication merges anonymous pages
and causes a false-positive on the memory disclosure attack.
It means that the attacker cannot know the status of applica-
tion and file in general.

ASLR (Address Space Layout Randomization) is a
computer security technique to make it difficult for an at-
tacker to predict target addresses, which used on shellcode
injection attacks. It changes the position of the base of code,
libraries, heap, and stack for each process. Current operat-
ing systems have this mechanism as a default. The Linux
kernel started to include ASLR in version 2.6.12, released
June 2005. Even though it seems to decrease the effect of
memory deduplication, the contents on most pages are un-
changed by ASLR. An attacker need not care about ASLR.

Some operating systems have a pre-load mechanism in
order to start applications quickly. Linux has a “readahead”
system call, which populates the page cache with contents
of a file before it executes. The target process and file is not
listed on victim’s VM but the attacker detects the memory
contents. This can be considered as a false-positive, but the
function is usually used just before an application is used.
An attacker need not care about pre-loading.

Self-modifying code causes a false-negative, because
the code alters its own instructions while it is executing. In

general, attacker does not know the status of self-modifying
code and cannot successfully carry out a memory disclosure
attack. However, self-modifying code is not used in normal
applications. An attacker need not care about it.

The mentioned run-time modifications make a memory
disclosure attack difficult. However, it is a matter of pos-
sibility and the vulnerability still exists. Furthermore, the
success of an attack also depends on the number of dedu-
plicated pages. When the attacker gets many deduplicated
pages, the possibility of successful attack increases. A case
study is presented in Sect. 5.2.

4.4 Timing Problem

A memory scan type deduplication takes time to be carried
out, because candidate pages are examined on being identi-
cal during a certain interval. Therefore, an attacker has to
wait for a period of time. This period depends on the envi-
ronment and the size of matching memory. If the period is
too short, the prepared pages are not deduplicated by target
pages on the victim’s VM. If the period is too long, the at-
tack leads to a false-negative or -positive, due to some noise
caused by swap-out, anonymous-page, and so on. Usually,
attacker has to decide on the suitable period in a real envi-
ronment. This requires many attack trials and rebooting his
VM. However, here trials are easy because rebooting VM is
commonly-performed to save CPU power and the risk to be
noticed is very low.

5. Experiments

In our experiments, the target of our memory disclosure at-
tack consists of applications on a VM running Linux or Win-
dows. We reveal that the attack can detect the security level
of attacked operating systems, find of vulnerable applica-
tions, and confirm the status of attacked applications.

The memory disclosure attack uses the technique for
the alignment problem, mentioned in Sect. 4.1, and self-
reflection problem, mentioned in Sect. 4.2. The runtime
modification problem mentioned in Sect. 4.3 occurs occa-
sionally. We refer to the runtime modification problem in
each case in this section. The timing problem is confirmed
in Sect. 5.1.

We ran the experiments on a machine with an Intel
Core2Quad 3.0 GHz processor and 8 GB of memory. The
host OS was Debian squeeze with the standard Linux kernel
2.6.32 being augmented with KSM. The attacker’s and vic-
tim’s VMs were running on KVM (0.12.5). The guest OS is
also same Debian squeeze.

5.1 Waiting Time for Deduplication

The memory disclosure attack must wait for memory 4 KB
pages to be deduplicated. The period depends on the target
environment and we measured it with several trials.

After one byte of data was written on a target page,
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Table 1 Average write access time on 100 random 4 KB pages (400 KB)
and 100 zero-cleared 4 KB pages (400 KB) (microseconds).

the write access time was measured, because the page is re-
created with first write request by COW, when the page is
deduplicated. We compared the write access time of pages
containing random data and zero-cleared data. Pages with
random data are unique and are not merged with the stable
tree of KSM. Their write access time is normal. Pages with
zero-cleared data exist many times and are merged to stable
tree of KSM. The write access time is delayed by COW.

Table 1 shows the average write access time on 100 ran-
dom 4 KB pages (400 KB) and 100 zero-cleared 4 KB pages
(400 KB) after certain period (1, 3, and 5 minutes) the pages
are loaded on memory. The results show that a 1-minute
wait time is enough. However, the access time on each page
is not so clear, as shown in Fig. 2.

Although the write access time on non-deduplicated
page is stable at all time periods, the deduplicated pages
are different. Figure 2(a) shows that many deduplicated
pages are not delayed. This is caused by non merged
pages, which is confirmed by the status information on
/sys/kernel/mm/ksm. The status of most pages becomes sta-
ble after 3 minutes. However, this occasionally changes de-
pending on the load of the CPU. In this paper, we use 5
minutes wait time to prevent false-negatives on each trials.

5.2 Detected Security-Level

At the beginning of an attack, the attacker wants to know the
security level on a target operating system. An attack is easy
when the attacker knows that there are no running security
tools. We tried to disclose the existence of security tools
on a victim’s VM. In our experiments, these applications
are Snort, which is an IDS (Intrusion Detection System) on
Linux, and Symantec Anti Virus on Windows. The security
tools are executed at boot time.

The size of the Snort ELF file is 708,780 bytes, and the
size of Symantec Anti Virus PE file is 1,777,248 bytes. The
matching target pages of Snort and Symantec Anti Virus are
177 and 444 pages, respectively. The last page which is less
than 4 KB is not the target of matching, because the tail of
4 KB is arbitrary contents. We measured the write access
time of same-content pages on the attacker’s heap memory,
before and after the applications were invoked.

Table 2 shows the average access time of the same
memory image of target applications on the attacker’s mem-
ory. These results indicate that thresholds exist but they de-
pend on the situation. Figure 3 shows the write access time
to each page. Figures 3(a) and (b) show the results of Snort

Fig. 2 Write access time on random and zero-cleared pages a certain pe-
riod (1, 3, and 5 minutes) after the data are loaded.

Table 2 Average write access time of contests of Snort and Symantec
Anti Virus (microseconds).

and Symantec Anti Virus, respectively. The result of Snort
is easy to distinguish. The write access time is clearly sep-
arated into running and not-running cases. Although there
are some spikes in the case of running, the noise is little and
negligible.

However, the result of running Symantec Anti Virus
(Fig. 4(b)) shows many drops on page 71–259 and 262–
272, which causes a false-negative on the attack. We guess
these pages are not loaded from disk, because the binary of
Symantec Anti Virus is very large and some parts of the bi-
nary are normally not used at run time. On the other hand,
the result of not running Symantec Anti Virus shows the



220
IEICE TRANS. FUNDAMENTALS, VOL.E96–A, NO.1 JANUARY 2013

Fig. 3 Write access time on attacker’s VM. (a) shows the result of Snort
on Linux and (b) shows the resut of Symantec Anti Virus on Windows.

Table 3 Average write access time of contests of Adobe Reader and
Java-VM (microseconds).

spikes on page 260–262, which causes a false-positive on
the attack. Fortunately, the size of Symantec Anti Virus
is large and the noise is compensated when the average is
taken.

5.3 Detected Vulnerable Applications

After detecting the security level on OS, an attacker will
search for vulnerable applications. We tried to detect Adobe
Reader 10.0 on Windows and Java VM Version 6 Update 27
on Linux. The Adobe Reader has vulnerability (CVE-2011-
061) to allow remote attackers to execute arbitrary code.
The Java VM has vulnerabilities (CVE-2011-3548, CVE-
2011-3521, CVE-2011-3554, and CVE-2011-3544) to be
exploited through untrusted Java applets. The size of the
Java VM is 25,634 bytes (6 pages), and the size of Adobe
Reader is 1,289,624 bytes (332 pages). Java VM is con-
structed many libraries and the size of main binary is small.

Table 3 shows the average access time. The results
show a clear difference between the case of not running and
running. Figure 4 shows the write access time of each page.
Figure 4(a) shows that there are sporadic spikes in the case
of Adobe Reader not running. The Adobe Reader uses many

Fig. 4 Write access time on attacker’s VM. (a) shows the result of Adobe
Reader on Windows and (b) shows the result of Java-VM on Linux.

pages and we can distinguish them from noise. On the other
hand, Fig. 4(b) shows that the Java VM uses few pages, but
they are clearly separated by the write access time. This
case is easily distinguished, but the case of a few pages may
cause a false-positive or false-negative. The attacker should
use as large memory contents as possible.

5.4 Detection of the Status of Applications

An attacker wants to know the status of an application in or-
der to carry out an the attack. The memory disclosure attack
is used in such a case, because it is not limited to executable
binaries. For example, it detects whether an attached file is
read from a mail reader and whether a browser visits a target
home page on Linux. These applications open a file when
they carry out some actions and the memory disclosure at-
tack searches the file.

We try to detect whether Outlook Express reads a 1MB
attached file and whether FireFox visits a given home page.
The memory disclosure attack could detect a file when Out-
look Express saves the file. When outlook accepts an email
with an attached file and reads the email with the file name,
the detection does not work well. It means that Outlook Ex-
press does not touch the contents of file before the file is
saved.

When FireFox visits a home page which includes a
large file, the memory disclosure attack can detect the visit.
However, currently popular home page does not use a large
file. Even if a file is large, it is changed frequently. An ac-
curate attack requires frequent update of the target file. An
advanced point of this attack is that the attack does not care
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Table 4 Average write access time of (microseconds).

Fig. 5 Write access time on attacker’s VM. (a) shows the result of Out-
look on Windows and (b) shows the result on FireFox on Windows.

about network encryption. Even if the network is encrypted
by TLS/SSL, the downloaded file is plain and detectable.

Table 4 shows the average write access time when
a 1MB (250 pages) attached file on Outlook Express is
saved and FireFox visits the home page of Gentoo Linux
(http://www.gentoo.org/) and downloads a 318,659-byte (79
pages) figure file. The files are detected clearly. Figure 5
shows the write access time of each page. Both figures have
spikes when there is no file. However the spike occurs only
one time on each trial. It is easily recognized as noise.

6. Countermeasures

The attack has to issue a write access to the deduplicated
pages. Even if the victim VM allocates memory image to
read-only pages, the page is merged with the read-write page
on the attacker’s memory, because current memory dedupli-
cation does not care the permissions of pages. If memory
deduplication is allowed only on read-only pages between
virtual machines, the memory disclosure attack is prevented.
However, in order to distinguish the permission of memory,
memory deduplication has to know the information of page
table which is managed by virtual machine monitor. Current

memory deduplication does not inspect it. KSM is imple-
mented as independent of virtual machine monitor and can-
not get this information. Even if memory deduplication is
integrated in virtual machine monitor, it is not easy to get the
information of the page table because the page table for cur-
rent virtual machine is managed by hardware; for examples,
EPT (Extended Page Table) of Intel and NPT (Nested Page
Table) of AMD. In order to know read-only permissions, a
hardware mechanism to trace permission is required.

A covert channel of memory deduplication is men-
tioned in Satori [9]. Satori can prevent this attack because
Satori is content-aware type deduplication and can recog-
nize illegal matching. Satori also has a mechanism to refuse
memory deduplication to prevent the exploit. These are
strong defenses, but Satori requires para-virtualization on
the guest OS and is not applicable to any OS. The mecha-
nism also requires the OS and application to know the im-
portance of data and manage the memory pages.

Overshadow [3] and SP3 [14] offer a mechanism to en-
crypt a VM’s memory to prevent memory disclosure. The
memory is encrypted by a different key on each VM. This
completely prevents the attack, but ruins the effect of mem-
ory deduplication. If we use encryption to prevent a memory
disclosure attack, the contents should be limited to impor-
tant data and be made as small as possible.

This attack is also prevented, if the victim’s OS uses
obfuscation code to change every runtime memory image.
We think the mechanism can be implemented by a sandbox
or a binary loader. Then, an attacker cannot prepare an iden-
tical page for a target application. Even if the change is only
the shift of the start point of memory image, it becomes diffi-
cult to predict the existence of an application. For example,
GNU debugger “gdb” shifts 8 bytes of starting point of a bi-
nary, and we struggled to find the reason of this for a long
time.

It is not good idea to include a delay in write access, be-
cause that destroys the merit of deduplication. Since mem-
ory access affects the performance of applications severely,
few users want to use a slow memory-access environment.
Furthermore, it is not clear how much delay time is suitable
and how one randomly inserts a delay.

Tool sHype [10] offers a security mechanism to prevent
a cross-VM attack. It does not allow VMs to run simultane-
ously, when the VMs have a conflict of interest. Namely,
the policy of sHype defines that VMs which have a conflict
of interest are scheduled exclusively. Our technique is not
affected by such a security mechanism, because it does not
assume a running victim VM. Even if a victim VM is not
running, the memory contents are shared by memory dedu-
plication and our proposed technique is applicable.

Memory sanitization seems to prevent a memory dis-
closure attack. However, it also works the other way. Mem-
ory sanitization helps an attacker to know that an applica-
tion is running on a victim’s VM. Because the cache and
anonymous page are cleaned up, an attacker knows the ex-
act launch and termination time of an application.
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7. Applications of This Technique

The technique of memory disclosure attack is not limited to
disclose contents on memory. It can be used for secret com-
munication on multi-tenant cloud computing environment
and for education on security.

7.1 Secret Communication

Our memory disclosure attack is able to detect a VM on a
multi-tenant cloud computing environment. A VM can set
a secret marker in its memory in order to announce its exis-
tence to other VMs unseen by an administrator. The other
VMs detect the secret marker using the memory disclosure
attack. This secret channel is not easily detected by an ad-
ministrator, because an attacker can cause spurious memory
deduplication.

Such a marker must be used to prevent a conflict of
interest between VMs on a processor. This implements a
user-level exclusive allocation control, which is offered by
sHype [10] as an administrator control.

A marker may also help to collect VMs on a processor.
This is also a kind of user level optimization. When a new
VM does not find the marker, the user terminates the VM
and recreates it till the VM is allocated on the same proces-
sor running the target VM. As a result, the VMs can reduce
communication overhead.

7.2 Education for Security

Papers [4], [5] mention that data life time in memory is
longer than we expect. Most users do not realize that mem-
ory keeps important data after an application terminates.
The technique of our memory deduplication attack can be
used to warn about the remaining data on memory. This is
especially useful for education because we confirm the ef-
fect of using virtual machines.

For an administrator of cloud computing, memory
deduplication attack may be used for live memory forensics.
It can detect prohibited applications and files on other VMs.
For example, insecure applications, a P2P downloader, or il-
legal data can be detected. The benefit of our method is that
it only measures the write access time on the attacker’s own
VM. If an administrator can use live migration on any VM,
he may move suspicious VMs to another CPU to narrow
down the search for a particular VM containing the prohib-
ited application or file.

8. Discussions

The proposed techniques are closely related to cross-VM
side channel attacks [13] and the functionality of a virtual
machine monitor.

8.1 Comparison with Cross-VM Side Channel Attacks

A cross-VM side channel attack on Amazon EC2 instances

has been proposed in related work [13]. That attack uses
the IP address to guess that a victim VM runs on the same
CPU. Then, it monitors the behavior of the shared cache on
a hyper-threading or multi-core CPU, and detects an appli-
cation running on a victim VM. The attack is based on the
covert channel of a shared cache on a hyper-threading or
multi-core CPU.

That cross-VM side channel attack can be replaced
with our technique, if a victim VM runs on memory dedu-
plication offered by VMM running on a CPU. Our technique
can also detect whether a victim VM runs on a VMM or not,
if a marker exists in the memory of a victim VM as men-
tioned in Sect. 7.1. An application running on a victim VM
is also detected by the technique proposed in Sect. 4, which
does not require the shared cache of a hyper-threading or
multi-core CPU.

The difference between a cross-VM side channel at-
tack and our technique is the assumption that a target victim
VM runs simultaneously. The cross-VM side channel at-
tack monitors behavior of the shared cache. Therefore, it
can be protected by sHype [10], which does not allow VMs
to run simultaneously, when the VMs have a conflict of in-
terest. Our technique is applicable whether a victim VM is
running or not, because the delay in the write access time on
a deduplicated page is caused by COW, which occurs inde-
pendently of the status of the victim VM.

The deficiencies of both techniques are that they can-
not determine an exact VM instance when multiple VMs
are running on a CPU or a VMM. Both techniques can de-
termine only the existence of an application on a VM on
a CPU. This is caused by a kind of semantic gap which is
lack of knowledge of the software implementation. How-
ever, the information is still useful for an attacker, because
the attacker may learn about the existence of a vulnerability.

8.2 Virtual Machine Monitor and Proposed Technique

Our proposed technique can be applied on a VMM, if mem-
ory deduplication covers the memory of a VMM. How-
ever, most implementations of memory deduplication do not
cover the memory of a VMM, because the aim of mem-
ory deduplication is to reduce the memory consumption of a
VM with identical pages. In general, the memory of a VMM
is treated as another isolated layer. Furthermore, some
implementations of memory deduplication require special
treatment. For example, KSM requires madvise() to know
the region of memory deduplication. This means that not all
memory is target of memory deduplication. KVM is cus-
tomized to use KSM with madvise(), and memory dedupli-
cation is applied on the memory of all VM instances.

On the other hand, most VMMs can peek into the mem-
ory of a guest OS (e.g., XenAccess on Xen). This means an
attacker does not need to use our technique, if the attacker
obtains control of a VMM. Therefore, the memory forensic
tool “Volatility” [15] can be applied on a VMM to obtain
information on the guest OS. It can designate a target VM
accurately and tell which VM runs a targeted application.
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This manipulation, however, requires a privileged-level ex-
ploit. On the other hand, our proposed technique is imple-
mented as a user level-application on an attacker’s VM. It
does not require special privileges on the VMM.

9. Conclusions

This paper describes a memory disclosure attack on another
VM that uses memory deduplication. The attack measures
the write access time on pages that are re-created by COW
(Copy-On-Write) of memory deduplication.

The attack seems to be easy to implement but it has
some implementation issues caused by memory alignment,
self-reflection between page cache and heap, and run-time
modification (swap-out, anonymous pages, ASLR, preload-
ing mechanism, and self-modification code) problems. The
problems cause false-positives and false-negatives, but most
of them are avoidable with techniques presented in this pa-
per.

In our experiments on KSM (kernel samepage merg-
ing) with the KVM virtual machine, the attack could de-
tect the security level of attacked operating systems (Syman-
tec Anti Virus on Windows and Snort on Linux), find vul-
nerable applications (Adobe Reader which has vulnerabil-
ity of CVE-2011-061 and Java VM which has vulnerabil-
ity of (CVE-2011-3548, CVE-2011-3521, CVE-2011-3554,
and CVE-2011-3544), and confirm the status of attacked ap-
plications (saving of attacked file with Outlook Express on
Windows and downloading of a file with Firefox on Linux).
The attack does not care about network encryption because
it attacks the downloaded and decrypted contents on mem-
ory. These results show the possibility of attacks on multi-
tenant cloud computing environments.

Fortunately, the attack can be prevented by some coun-
termeasures: restriction of deduplication to read-only pages
which requires the virtual machine monitor to check the
page table entries, or encryption of information data. These
countermeasures, however, decrease the performance of
deduplication. The analysis of the trade-off between secu-
rity and performance constitutes future work.
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