

Software Side Channel Attack on Memory Deduplication
Kuniyasu Suzaki, Kengo Iijima, Toshiki Yagi, Cyrille Artho

 National Institute of Advanced Industrial Science and Technology, RCIS, Tsukuba, Japan

1. Introduction
Memory deduplication merges same-content memory pages
and reduces the consumption of physical memory. It is
effective on environments that run many virtual machines
with the same operating system. However, memory
deduplication is subject to software side channel attacks,
which discloses memory contents. It can be used to reveal
the existence of an application or file on another virtual
machine. Such an attack takes advantage of a difference in
write access times on deduplicated memory pages that are
re-created by Copy-On-Write [4]. Previously published
exploits were immature. In this work we show untouched
problems and refined exploits. Furthermore we show new
applications of this technique, which enables secret
communication between virtual machines on a processor. A
secret marker on memory is used to detect the existence of a
VM on a processor in a multi-tenant cloud computing
environment.

2. Attack on Memory Deduplication
Memory deduplication is subject to a memory disclosure
attack from an attacker’s VM to a victim’s VM. When data
is written to a deduplicated page, the page is re-created with
a copy of its contents by COW (Copy-On-Write). This
causes the write access time to be slower than normal,
because it includes the overhead to re-create the same-
content page.

The preliminary idea of our memory disclosure attack
is as follows. An attacker allocates same-content pages of a
process or file in the memory of the attacker’s VM and
waits for these pages to be deduplicated. After that, the
attacker issues a one-byte write access to the pages. If the
pages are deduplicated, the write access time is longer than
normal. In order to recognize the write access time
difference, the attacker must know the time difference
between deduplicated and non-deduplicated pages in
advance. The write access time to zero-cleared pages
(which are always deduplicated), and random data pages
(which are not deduplicated) can be used for comparison.

A successful memory disclosure attack requires a
careful implementation, adding issues caused by memory
alignment, self-reflection, and run-time modification. These
implementation issues cause false-negatives and false-
positives.

2.1 Alignment Problem
The memory disclosure attack requires an exact match on
memory pages as well as the aligned address of the pages.

When a process is created, a binary file is loaded to
memory pages by an interpreter. On Linux, ELF binary
interpreter “ld-linux” is called to create a process. The
contents of the binary file are loaded to aligned memory
pages. An attacker has to prepare an identically aligned
memory region to recognize the same content. To achieve
this, an attacker can use the posix_memalign() function to
allocate an aligned memory region in heap memory.

2.2 Self-Reflection Problem
If an operating system and applications create same-content
pages on a single VM, memory deduplication works in the
same way as on multiple VMs. The feature makes it
difficult to execute a memory disclosure attack; this is
called the “self-reflection problem”.

The self-reflection problem is caused by different
memory management of the page cache and the heap. When
the attacker’s program opens a target file using function
open(), the contents of the opened file are stored in page
cache memory by the Linux kernel. After that, the attacker’s
program loads the matching contents in its aligned heap
memory using functions posix_memalign() and read(). At
that time, the contents in heap memory are deduplicated to
the page cache memory contents. In this situation, write
access to the contents in heap memory is always delayed by
self memory deduplication.

To prevent self-reflection, the images in the heap and
page cache must be different. We compress the target file
with gzip and expand it at run time. The contents in the
page cache are the gzipped image. The contents in heap
memory are decompressed by function gzread() and the
contents in the heap memory are not deduplicated with the
page cache, while being used to detect the same-content
memory pages on the other VM.

2.3 Run-Time Modification Problem
Memory pages are modified more often than we expect. We
call this phenomenon “run-time modification”, which
includes memory page swap-out, anonymous pages, ASLR
(Address Space Layout Randomization), pre-loading, and
self-modifying code. They cause false-negatives and false-
positives in a memory disclosure attack.

The most common modification is memory page swap-
out on a victim’s VM. At that time, memory deduplication
is disabled, and an attacker cannot detect it. However, the
targeted process or file still exists in the process list (shown
by command “ps”) or the list of opened files (shown by
command “lsof”) on the victim’s VM. This corresponds to a

false-negative. On the other hand, the attacker’s memory is
also swapped-out. In this case, access is delayed by the
swap-in operation on the attacker’s VM and causes a false-
positive. This is solved by setting no-swap on the attacker’s
VM.

Even if a process terminates or a file becomes unused,
the memory image still exists as anonymous pages for a
long time. Anonymous pages do not change the contents in
memory; instead the status of process or file is changed.
Memory deduplication merges anonymous pages and
causes a false-positive in a memory disclosure attack. This
means that an attacker cannot always know the status of an
application or file.

ASLR is a computer security technique to make it
difficult for shellcode injection attacks to predict target
addresses. It changes the position of the base of the code,
libraries, heap, and stack for each process. Current
operating systems have this mechanism enabled by default.
Even though it seems to decrease the effect of memory
deduplication, the contents in the most pages are unchanged
by ASLR. An attacker need not care about ASLR.

Some operating systems have a pre-load mechanism in
order to start applications quickly. Linux has a “readahead”
system call which populates the page cache with contents of
a file before it executes. The target process and file must
not yet be listed on victim’s VM, but an attacker detects the
memory image. This causes a false-positive.

Self modifying code also causes false-negatives,
because the code alters its own instructions while it is
executing. In general, an attacker does not know the status
of self-modifying code and cannot successfully carry out a
memory disclosure attack.

Run-time modification makes an attack on memory
deduplication difficult. However, the vulnerability and
potential for an exploit still exist. Furthermore, the success
of an attack also depends on the number of deduplicated
pages. When an attacker gets many deduplicated pages, the
confidence in the result increases.

3. Experiments
In our experience on KSM (kernel samepage merging) with
the KVM virtual machine, the attack could detect the
existence of “sshd” and “apache2” on Linux, and “Firefox”
on WindowsXP. The results included some noise
potentially causing false positives or false negatives.
However, the results generally showed clear detection.

The attack also could detect a downloaded file on the
Firefox browser when the caching is enabled. Even if the
network is encrypted by TLS/SSL, a downloaded file is
detected. However, when caching is disabled, the file
cannot be detected because of the alignment issue.

4. Countermeasures
Countermeasures against memory disclosure attacks are
considered in advanced virtual machine monitors. For
example, Overshadow [1] encrypts the VM’s memory and
prevents the attack. However, this style hampers the
effectiveness of memory deduplication. Another
countermeasure is to use a sandbox which encrypts the
memory of a process. This measure allows memory
deduplication for other processes.

5. New Application: Searching a VM on Cloud
Our memory disclosure attack is able to detect a VM on a
multi-tenant cloud computing environment. A VM can set a
secret marker on its memory in order to announce its
existence to other VMs unseen by administrator. The other
VMs detect the secret marker using the memory disclosure
attack. This secret channel is not easily detected by an
administrator, because an attacker can cause spurious
memory deduplication.

Such a marker must be used to prevent a conflict of
interest between VMs on a processor. This implements a
user-level exclusive allocation control, which is offered by
sHype [3] as an administrator control. A marker may also
help to collect VMs on a processor. This is also a kind of
user level optimization. When a new VM does not find the
marker, the user terminates the VM and recreates it till the
VM is allocated on the same processor running the target
VM. This allows VMs to reduce communication overhead.

Cloud storage deduplication exhibits the same
vulnerability as described in paper [2]. This attack takes
advantage of the elimination of traffic, when data is
deduplicated. The method has the same restrictions. As our
work, the alignment problem occurs if an attacker tries to
exploit block-level deduplication. The run-time
modification problem occurs when a target file is deleted
but the storage service retains its copy for a certain period.

6. Conclusions
We present a disclosure attack based on memory
deduplication. Countermeasures and other applications of
this technique are also mentioned. Administrators of multi-
tenant cloud computing should be aware of them.

References

[1] Chen, X., et.al, Overshadow: A Virtualization-Based
Approach to Retrofitting Protection in Commodity Operating
Systems, ASPLOS’08.

[2] Harnik, D., Pinkas, B., and Shulman-Peleg, A., Side
Channles in Cloud Service Deduplication in Cloud Storage,
IEEE Security & Privacy, Vol. 8 Issue.6, 2010. Nov.

[3] Sailer, R., et.al, Building a MAC-Based Security Architecture
for the Xen Open-Source Hypervisor, ACSAC’05.

[4] Suzaki, K., Yagi, T., Iijima, K., and Artho, C., Memory
Deduplication as a Threat to the Guest OS, EuroSec’11.

	1. Introduction
	2. Attack on Memory Deduplication
	2.1 Alignment Problem
	2.2 Self-Reflection Problem
	2.3 Run-Time Modification Problem

	3. Experiments
	4. Countermeasures
	5. New Application: Searching a VM on Cloud
	6. Conclusions

