Lecture 20
Risk theory and premium principles
In risk theory one studies the probability that an insurance company does not have enough money to cover the claims.
In risk theory one studies the probability that an insurance company does not have enough money to cover the claims.

Risk theory is also called ruin theory.
In risk theory one studies the probability that an insurance company does not have enough money to cover the claims.

Risk theory is also called ruin theory.

We will mainly study the most basic model, but will also give some directions of extensions.
The basic risk theory model

The following are the basic ingredients in the model:

- The initial capital x

The surplus process is constructed as:

$$X_t = x + pt - \sum_{i=1}^{N_t} Y_i$$
The basic risk theory model

The following are the basic ingredients in the model:

- The **initial capital** x
- The **premium rate** p
The basic risk theory model

The following are the basic ingredients in the model:

- The initial capital x
- The premium rate p
- The claim sizes Y_i, $i = 1, 2, \ldots$
The basic risk theory model

The following are the basic ingredients in the model:

- The initial capital x
- The premium rate p
- The claim sizes $Y_i, i = 1, 2, \ldots$
- The arrival process N
The basic risk theory model

The following are the basic ingredients in the model:

- The initial capital x
- The premium rate p
- The claim sizes Y_i, $i = 1, 2, \ldots$
- The arrival process N

Using these we construct the surplus process:

$$X_t = x + pt - \sum_{i=1}^{N_t} Y_i.$$
We are interested in the **ruin probabilities** given that the initial capital is x.
We are interested in the ruin probabilities given that the initial capital is x. We let

$$\psi(x, T) = P\left(\inf_{0 \leq t \leq T} X_t < 0 \right)$$

denote the probability of being ruined before time T.
We are interested in the ruin probabilities given that the initial capital is x. We let

$$
\psi(x, T) = P \left(\inf_{0 \leq t \leq T} X_t < 0 \right)
$$

denote the probability of being ruined before time T, and let

$$
\psi(x) = P \left(\inf_{t \geq 0} X_t < 0 \right)
$$

denote the probability of ultimate ruin.
The Cramér-Lundberg model (1)

When we add the assumptions

- The Y_i’s are independent and identically distributed with mean $\mu > 0$

The premium rate $p > 0$ then we get the Cramér-Lundberg model.

Goal
Calculate $\psi(x)$ in this model.
When we add the assumptions

- The \(Y_i \)'s are independent and identically distributed with mean \(\mu > 0 \)
- \(N \) is a Poisson process with constant intensity \(\lambda > 0 \)
When we add the assumptions

- The Y_i's are independent and identically distributed with mean $\mu > 0$
- N is a Poisson process with constant intensity $\lambda > 0$
- The Y_i's are all independent of N
The Cramér-Lundberg model (1)

When we add the assumptions

- The Y_i’s are independent and identically distributed with mean $\mu > 0$
- N is a Poisson process with constant intensity $\lambda > 0$
- The Y_i’s are all independent of N
- The premium rate $p > 0$
When we add the assumptions

- The Y_i’s are independent and identically distributed with mean $\mu > 0$
- N is a Poisson process with constant intensity $\lambda > 0$
- The Y_i’s are all independent of N
- The premium rate $p > 0$

then we get the Cramér-Lundberg model.
The Cramér-Lundberg model (1)

When we add the assumptions

- The \(Y_i \)'s are independent and identically distributed with mean \(\mu > 0 \)
- \(N \) is a Poisson process with constant intensity \(\lambda > 0 \)
- The \(Y_i \)'s are all independent of \(N \)
- The premium rate \(p > 0 \)

then we get the \textbf{Cramér-Lundberg model}.

We will also add

- The \(Y_i \)'s are exponentially distributed.
When we add the assumptions
- The Y_i’s are independent and identically distributed with mean $\mu > 0$
- N is a Poisson process with constant intensity $\lambda > 0$
- The Y_i’s are all independent of N
- The premium rate $p > 0$

then we get the Cramér-Lundberg model.

We will also add
- The Y_i’s are exponentially distributed.

Goal

Calculate $\psi(x)$ in this model.
First of all we note that

\[X_0 = x, \]

so if the initial capital \(x < 0 \) then \(\psi(x) = 1 \).
First of all we note that

\[X_0 = x, \]

so if the initial capital \(x < 0 \) then \(\psi(x) = 1 \).

Hence from now on we can focus on when \(x \geq 0 \).
First of all we note that
\[X_0 = x, \]
so if the initial capital \(x < 0 \) then \(\psi(x) = 1 \).

Hence from now on we can focus on when \(x \geq 0 \).

The expected value of \(X_t \) is given by
\[
E[X_t] = x + pt - E \left[\sum_{i=1}^{N_t} Y_i \right]
\]
First of all we note that
\[X_0 = x, \]
so if the initial capital \(x < 0 \) then \(\psi(x) = 1. \)

Hence from now on we can focus on when \(x \geq 0. \)

The expected value of \(X_t \) is given by
\[
E [X_t] = x + pt - E \left[\sum_{i=1}^{N_t} Y_i \right] = x + pt - E [N_t] E [Y_1]
\]
The Cramér-Lundberg model (2)

First of all we note that
\[X_0 = x, \]
so if the initial capital \(x < 0 \) then \(\psi(x) = 1. \)

Hence from now on we can focus on when \(x \geq 0. \)

The expected value of \(X_t \) is given by
\[
E[X_t] = x + pt - E \left[\sum_{i=1}^{N_t} Y_i \right] \\
= x + pt - E[N_t] E[Y_1] \\
= x + pt - (\lambda t) \mu
\]
The Cramér-Lundberg model (2)

First of all we note that

\[X_0 = x, \]

so if the initial capital \(x < 0 \) then \(\psi(x) = 1. \)

Hence from now on we can focus on when \(x \geq 0. \)

The expected value of \(X_t \) is given by

\[
E [X_t] = x + pt - E \left[\sum_{i=1}^{N_t} Y_i \right]
\]

\[
= x + pt - E [N_t] E [Y_1]
\]

\[
= x + pt - (\lambda t) \mu
\]

\[
= x + (p - \lambda \mu) t.
\]
One can show that for every x

$$p - \lambda \mu \leq 0 \iff \psi(x) = 1.$$
One can show that for every x

$$p - \lambda \mu \leq 0 \iff \psi(x) = 1.$$

It follows that we need to assume

$$p - \lambda \mu > 0 \iff p > \lambda \mu.$$
One can show that for every x

$$p - \lambda \mu \leq 0 \iff \psi(x) = 1.$$

It follows that we need to assume

$$p - \lambda \mu > 0 \iff p > \lambda \mu.$$

This is called the **net profit condition (NPC)** and it means that we have a strictly positive drift in the expected value of X_t.

Note that p is the income per time unit for the insurance company, and $\lambda \mu$ is the cost per time unit for the company; it follows that $p - \lambda \mu$ is the net profit.
One can show that for every x

$$p - \lambda \mu \leq 0 \iff \psi(x) = 1.$$

It follows that we need to assume

$$p - \lambda \mu > 0 \iff p > \lambda \mu.$$

This is called the net profit condition (NPC) and it means that we have a strictly positive drift in the expected value of X_t.

Note that p is the income per time unit for the insurance company, and $\lambda \mu$ is the cost per time unit for the company; it follows that $p - \lambda \mu$ is the net profit.
We will now formally derive $\psi(x)$ for $x \geq 0$ in the Cramér-Lundberg model.
We will now formally derive $\psi(x)$ for $x \geq 0$ in the Cramér-Lundberg model.

We start by introducing the complementary function

$$
\psi_c(x) = 1 - \psi(x).
$$
We will now formally derive $\psi(x)$ for $x \geq 0$ in the Cramér-Lundberg model.

We start by introducing the complementary function

$$\psi_c(x) = 1 - \psi(x).$$

The idea is to study the stochastic process X_t under the interval $[0, \min(T_1, h)]$, where T_1 is the first jump time of the Poisson process and $h > 0$.
The Cramér-Lundberg model (5)

The key observation is that on \([0, \min(T_1, h)]\)

\[
\psi_c(x) = \psi_c(x + ph) \cdot e^{-\lambda h}
+ \int_0^h \left[\int_0^{x + ph} \psi_c(x + pt - y) \frac{1}{\mu} e^{-y/\mu} dy \right] \lambda e^{-\lambda t} dt
\]
The Cramér-Lundberg model (5)

The key observation is that on $[0, \min(T_1, h)]$

$$\psi_c(x) = \psi_c(x + ph) \cdot e^{-\lambda h}$$

$$+ \int_0^h \left[\int_0^{x+ph} \psi_c(x + pt - y) \frac{1}{\mu} e^{-y/\mu} dy \right] \lambda e^{-\lambda t} dt$$

- The first term represents no jumps on $[0, h]$.
The key observation is that on \([0, \min(T_1, h)]\)

\[
\psi_c(x) = \psi_c(x + ph) \cdot e^{-\lambda h} \\
+ \int_0^h \left[\int_0^{x+ph} \psi_c(x + pt - y) \frac{1}{\mu} e^{-y/\mu} dy \right] \lambda e^{-\lambda t} dt
\]

- The first term represents no jumps on \([0, h]\).
- The second term represents the fact that the first jump will not ruin us.
We can rewrite this equation as

$$\frac{\psi_c(x + ph) - \psi_c(x)}{ph} = \frac{1 - e^{-\lambda h}}{h} \psi_c(x + ph)$$

$$-\frac{\lambda}{\mu} \cdot \frac{1}{h} \int_0^h \left[\int_0^{x+pt} \psi_c(x + pt - y) e^{-y/\mu} dy \right] e^{-\lambda t} dt$$

(We have reshuffled and then divided by h.)
The Cramér-Lundberg model (6)

We can rewrite this equation as

\[p \frac{\psi_c(x + ph) - \psi_c(x)}{ph} = \frac{1 - e^{-\lambda h}}{h} \psi_c(x + ph) \]

\[-\frac{\lambda}{\mu} \cdot \frac{1}{h} \int_0^h \left[\int_0^{x+pt} \psi_c(x + pt - y) e^{-y/\mu} dy \right] e^{-\lambda t} dt \]

(We have reshuffled and then divided by \(h \).)

Now let \(h \downarrow 0 \).
This yields

\[p\psi'_c(x) = \lambda \psi_c(x) - \frac{\lambda}{\mu} \int_0^x \psi_c(x - y)e^{-y/\mu} dy. \]

Here we used that

\[\lim_{h \downarrow 0} \frac{1}{h} \int_0^h f(t)dt = f(0) \]

if \(f \) is nice.
In order to solve the equation for $\psi_c(x)$ we start by rewriting the integral.

$$
\int_0^x \psi_c(x - y) e^{-y/\mu} \, dy = \{\text{Replace } x - y \text{ with } u\}
$$
In order to solve the equation for $\psi_c(x)$ we start by rewriting the integral.

$$
\int_0^x \psi_c(x - y)e^{-y/\mu} dy = \{\text{Replace } x - y \text{ with } u\}
$$

$$
= \int_x^0 \psi_c(u)e^{-(x-u)/\mu}(-du)
$$
The Cramér-Lundberg model (8)

In order to solve the equation for $\psi_c(x)$ we start by rewriting the integral.

$$\int_0^x \psi_c(x - y) e^{-y/\mu} dy = \{\text{Replace } x - y \text{ with } u\}$$

$$= \int_x^0 \psi_c(u) e^{-(x-u)/\mu} (-du)$$

$$= e^{-x/\mu} \int_0^x \psi_c(u) e^{u/\mu} du.$$

Lecture 20
The equation for $\psi_c(x)$ now becomes

$$p \psi'_c(x) = \lambda \psi_c(x) - \frac{\lambda}{\mu} e^{-x/\mu} \int_0^x \psi_c(u) e^{u/\mu} du.$$
The Cramér-Lundberg model (8)

The equation for $\psi_c(x)$ now becomes

$$p\psi'_c(x) = \lambda \psi_c(x) - \frac{\lambda}{\mu} e^{-x/\mu} \int_0^x \psi_c(u) e^{u/\mu} du.$$

Differenting with respect to x yields (after simplification!)

$$p\psi''_c(x) = \left(\lambda - \frac{p}{\mu} \right) \psi'_c(x).$$
The Cramér-Lundberg model (8)

The equation for $\psi_c(x)$ now becomes

$$p\psi'_c(x) = \lambda \psi_c(x) - \frac{\lambda}{\mu} e^{-x/\mu} \int_0^x \psi_c(u)e^{u/\mu} du.$$

Differenting with respect to x yields (after simplification!)

$$p\psi''_c(x) = \left(\lambda - \frac{p}{\mu}\right) \psi'_c(x).$$

This is a first-order ODE in $\psi'_c(x)$,

$$[\psi'_c(x)]' + \left(\frac{1}{\mu} - \frac{\lambda}{p}\right) \psi'_c(x) = 0.$$
The solution is

$$\psi'_c(x) = Ae^{-(1/\mu - \lambda/p)x},$$

where A is a constant.
The solution is

\[\psi'_c(x) = Ae^{-(1/\mu - \lambda/p)x}, \]

where \(A \) is a constant.

Integrating once more yields

\[\psi_c(x) = B_1 + B_2 e^{-(1/\mu - \lambda/p)x}, \]

where \(B_1, B_2 \) are two constants.
How can we find B_1 and B_2?
How can we find B_1 and B_2?

Recall the NPC:

\[p - \lambda \mu > 0 \iff \frac{1}{\mu} - \frac{\lambda}{p} > 0. \]
How can we find B_1 and B_2?

Recall the NPC:

$$p - \lambda \mu > 0 \Leftrightarrow \frac{1}{\mu} - \frac{\lambda}{p} > 0.$$

Hence

$$R := \frac{1}{\mu} - \frac{\lambda}{p} > 0.$$

This constant is called the Lundberg exponent.
The Cramér-Lundberg model (11)

Now

$$\psi_c(x) \to 1 \text{ as } x \to \infty,$$

i.e. the probability of not going into ruin goes to one as the initial capital goes to infinity.
The Cramér-Lundberg model (11)

Now

\[\psi_c(x) \to 1 \text{ as } x \to \infty, \]

i.e. the probability of not going into ruin goes to one as the initial capital goes to infinity. And since \(R > 0 \) we get

\[1 = \lim_{x \to \infty} \psi_c(x) = \lim_{x \to \infty} \left(B_1 + B_2 e^{-Rx} \right) = B_1. \]
Now

$$\psi_c(x) \to 1 \text{ as } x \to \infty,$$

i.e. the probability of not going into ruin goes to one as the initial capital goes to infinity. And since $R > 0$ we get

$$1 = \lim_{x \to \infty} \psi_c(x) = \lim_{x \to \infty} \left(B_1 + B_2 e^{-Rx} \right) = B_1.$$

Using $\psi(x) = 1 - \psi_c(x)$ we get

$$\psi(x) = 1 - \left(1 + B_2 e^{-Rx} \right) = -B_2 e^{-Rx}.$$
The Cramér-Lundberg model (12)

Note that

\[\psi(0) = -B_2 \iff B_2 = -\psi(0), \]

so we can write

\[\psi(x) = \psi(0)e^{-Rx}. \]
The Cramér-Lundberg model (12)

Note that
\[\psi(0) = -B_2 \iff B_2 = -\psi(0), \]
so we can write
\[\psi(x) = \psi(0)e^{-Rx}. \]

This is the qualitative behavior of the ultimate ruin probability in the Cramér-Lundberg model.
The Cramér-Lundberg model (12)

Note that
\[\psi(0) = -B_2 \iff B_2 = -\psi(0), \]
so we can write
\[\psi(x) = \psi(0)e^{-Rx}. \]

This is the qualitative behavior of the ultimate ruin probability in the Cramér-Lundberg model.

Using the integro-differential equation for \(\psi_c(x) \) one can show that
\[\psi_c(0) = 1 - \frac{\lambda}{\mu p}. \]

It follows that
\[\psi(0) = 1 - \psi_c(0) = \frac{\lambda}{\mu p}. \]
Theorem

In the Cramér-Lundberg model, if the NPC

\[p > \lambda \mu \]

is satisfied
The Cramér-Lundberg model (13)

Theorem

In the Cramér-Lundberg model, if the NPC

\[p > \lambda \mu \]

is satisfied, then the ultimate ruin probability is given by

\[\psi(x) = \begin{cases}
1 & \text{when } x < 0 \\
\frac{\lambda}{\mu p} e^{-Rx} & \text{when } x \geq 0,
\end{cases} \]

where the Lundberg exponent \(R \) is given by

\[R = \frac{1}{\mu} - \frac{\lambda}{p}. \]
The Cramér-Lundberg model (13)

Theorem

In the Cramér-Lundberg model, if the NPC

\[p > \lambda \mu \]

is satisfied, then the ultimate ruin probability is given by

\[\psi(x) = \begin{cases}
1 & \text{when } x < 0 \\
\frac{\lambda}{\mu p} e^{-Rx} & \text{when } x \geq 0,
\end{cases} \]

where the Lundberg exponent \(R \) is given by

\[R = \frac{1}{\mu} - \frac{\lambda}{p}. \]

If the NPC is not satisfied, then

\[\psi(x) = 1 \text{ for every } x \in \mathbb{R}. \]
Extensions of the Cramér-Lundberg model

- Use another claim size distribution than the exponential distribution. In order to model the possibility of extreme claims, a subexponential distribution can be used. In this case the Lundberg exponent does not exist.
Extensions of the Cramér-Lundberg model

- Use another claim size distribution than the exponential distribution. In order to model the possibility of extreme claims, a subexponential distribution can be used. In this case the Lundberg exponent does not exist.

- Use a more general claim arrival process than the Poisson process. If a renewal process is used, then the model is often referred to as the Sparre Andersen model.
The premium rate p is set by the insurance company. We know from the NPC that in the Cramér-Lundberg model we must have

$$p > \lambda \mu$$

in order to rule out $\psi(x) = 1$.
The premium rate p is set by the insurance company. We know from the NPC that in the Cramér-Lundberg model we must have

$$p > \lambda \mu$$

in order to rule out $\psi(x) = 1$.

But the question is how large should p be, and how should we set it?
In some way the premium p must reflect the claim’s properties.
In some way the premium p must reflect the claim’s properties.

Here we will consider a general claim size distribution (i.e. not confine us to only the exponential distribution). We let σ denote the standard deviation of any of the Y_i’s.
In some way the premium p must reflect the claim’s properties.

Here we will consider a general claim size distribution (i.e. not confine us to only the exponential distribution). We let σ denote the standard deviation of any of the Y_i’s

We will also normalise and set $\lambda = 1$. This implies that we need to ensure that

$$p > \mu.$$
Premium principles (3)

The following are three classical examples of premium principles. Here \(\theta > 0 \) is a given constant.

\[
\text{The expected value principle} \\
p = (1 + \theta) \mu
\]

In this case \(\theta > 0 \) is known as the safety loading.

\[
\text{The variance principle} \\
p = \mu + \theta \sigma^2
\]

\[
\text{The standard deviation principle} \\
p = \mu + \theta \sigma
\]
The following are three classical examples of premium principles. Here \(\theta > 0 \) is a given constant.

- **The expected value principle**

\[
p = (1 + \theta)\mu
\]

In this case \(\theta > 0 \) is known as the **safety loading**.
The following are three classical examples of premium principles. Here \(\theta > 0 \) is a given constant.

- The **expected value principle**

 \[
 p = (1 + \theta)\mu
 \]

 In this case \(\theta > 0 \) is known as the **safety loading**.

- The **variance principle**

 \[
 p = \mu + \theta\sigma^2
 \]
The following are three classical examples of premium principles. Here \(\theta > 0 \) is a given constant.

- **The expected value principle**

 \[p = (1 + \theta)\mu \]

 In this case \(\theta > 0 \) is known as the **safety loading**.

- **The variance principle**

 \[p = \mu + \theta\sigma^2 \]

- **The standard deviation principle**

 \[p = \mu + \theta\sigma \]
We can also use utility functions to set the premium.
We can also use utility functions to set the premium.

Assume that the insurance company has utility function U and wealth W. If the insurance company sets the premium p according to

$$U(W)$$

utility without claim

utility with claim,

then the company is indifferent between not taking the claim Y and taking the claim.
We can also use utility functions to set the premium.

Assume that the insurance company has utility function U and wealth W. If the insurance company sets the premium p according to

$$U(W) = E[U(W + p - Y)],$$

utility without claim

utility with claim

then the company is indifferent between not taking the claim Y and taking the claim.
I have used

- *Lecture notes on Risk theory* by Hanspeter Schmidli

for this lecture.