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Introduction

In risk theory one studies the probability that an insurance company does
not have enough money to cover the claims.

Risk theory is also called ruin theory.

We will mainly study the most basic model, but will also give some
directions of extensions.

Lecture 20 2 / 24



Introduction

In risk theory one studies the probability that an insurance company does
not have enough money to cover the claims.

Risk theory is also called ruin theory.

We will mainly study the most basic model, but will also give some
directions of extensions.

Lecture 20 2 / 24



Introduction

In risk theory one studies the probability that an insurance company does
not have enough money to cover the claims.

Risk theory is also called ruin theory.

We will mainly study the most basic model, but will also give some
directions of extensions.

Lecture 20 2 / 24



The basic risk theory model

The following are the basic ingredients in the model:

The initial capital x

The premium rate p

The claim sizes Yi , i = 1, 2, . . .

The arrival process N

Using these we construct the surplus process:

Xt = x + pt −
Nt∑
i=1

Yi .
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The basic risk theory model (2)

We are interested in the ruin probabilities given that the initial capital is x .

We let

ψ(x ,T ) = P

(
inf

0≤t≤T
Xt < 0

)
denote the probability of being ruined before time T , and let

ψ(x) = P

(
inf
t≥0

Xt < 0

)
denote the probability of ultimate ruin.
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The Cramér-Lundberg model (1)

When we add the assumptions

The Yi ’s are independent and identically distributed with mean µ > 0

N is a Poisson process with constant intensity λ > 0

The Yi ’s are all independent of N

The premium rate p > 0

then we get the Cramér-Lundberg model.

We will also add

The Yi ’s are exponentially distributed.

Goal

Calculate ψ(x) in this model.
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The Cramér-Lundberg model (2)

First of all we note that
X0 = x ,

so if the initial capital x < 0 then ψ(x) = 1.

Hence from now on we can focus on when x ≥ 0.

The expected value of Xt is given by

E [Xt ] = x + pt − E

[
Nt∑
i=1

Yi

]
= x + pt − E [Nt ]E [Y1]

= x + pt − (λt)µ

= x + (p − λµ)t.
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The Cramér-Lundberg model (3)

One can show that for every x

p − λµ ≤ 0 ⇔ ψ(x) = 1.

It follows that we need to assume

p − λµ > 0 ⇔ p > λµ.

This is called the net profit condition (NPC) and it means that we have a
strictly positive drift in the expected value of Xt .

Note that p is the income per time unit for the insurance company, and
λµ is the cost per time unit for the company; it follows that p − λµ is the
net profit.
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The Cramér-Lundberg model (4)

We will now formally derive ψ(x) for x ≥ 0 in the Cramér-Lundberg model.

We start by introducing the complementary function

ψc(x) = 1− ψ(x).

The idea is to study the stochastic process Xt under the interval
[0,min(T1, h)], where T1 is the first jump time of the Poisson process and
h > 0.
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The Cramér-Lundberg model (5)

The key observaton is that on [0,min(T1, h)]

ψc(x) = ψc(x + ph) · e−λh

+

∫ h

0

[∫ x+ph

0
ψc(x + pt − y)

1

µ
e−y/µdy

]
λe−λtdt

The first term represents no jumps on [0, h].

The second term represents the fact that the first jump will not ruin
us.
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The Cramér-Lundberg model (6)

We can rewrite this equation as

p
ψc(x + ph)− ψc(x)

ph
=

1− e−λh

h
ψc(x + ph)

−λ
µ
· 1

h

∫ h

0

[∫ x+pt

0
ψc(x + pt − y)e−y/µdye−λt

]
dt

(We have reshuffled and then divided by h.)

Now let h ↓ 0.
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The Cramér-Lundberg model (7)

This yields

pψ′c(x) = λψc(x)− λ

µ

∫ x

0
ψc(x − y)e−y/µdy .

Here we used that

lim
h↓0

1

h

∫ h

0
f (t)dt = f (0)

if f is nice.
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The Cramér-Lundberg model (8)

In order to solve the equation for ψc(x) we start by rewriting the integral.∫ x

0
ψc(x − y)e−y/µdy = {Replace x − y with u}

=

∫ 0

x
ψc(u)e−(x−u)/µ(−du)

= e−x/µ
∫ x

0
ψc(u)eu/µdu.
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The Cramér-Lundberg model (8)

The equation for ψc(x) now becomes

pψ′c(x) = λψc(x)− λ

µ
e−x/µ

∫ x

0
ψc(u)eu/µdu.

Differenting with respect to x yields (after simplification!)

pψ′′c (x) =

(
λ− p

µ

)
ψ′c(x).

This is a first-order ODE in ψ′c(x),

[ψ′c(x)]′ +

(
1

µ
− λ

p

)
ψ′c(x) = 0.
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The Cramér-Lundberg model (9)

The solution is
ψ′c(x) = Ae−(1/µ−λ/p)x ,

where A is a constant.

Integrating once more yields

ψc(x) = B1 + B2e
−(1/µ−λ/p)x ,

where B1,B2 are two constants.
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The Cramér-Lundberg model (10)

How can we find B1 and B2?

Recall the NPC:

p − λµ > 0 ⇔ 1

µ
− λ

p
> 0.

Hence

R :=
1

µ
− λ

p
> 0.

This constant is called the Lundberg exponent.
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The Cramér-Lundberg model (11)

Now
ψc(x)→ 1 as x →∞,

i.e. the probability of not going into ruin goes to one as the initial capital
goes to infinity.

And since R > 0 we get

1 = lim
x→∞

ψc(x) = lim
x→∞

(
B1 + B2e

−Rx
)

= B1.

Using ψ(x) = 1− ψc(x) we get

ψ(x) = 1−
(

1 + B2e
−Rx
)

= −B2e
−Rx .
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The Cramér-Lundberg model (12)

Note that
ψ(0) = −B2 ⇔ B2 = −ψ(0),

so we can write
ψ(x) = ψ(0)e−Rx .

This is the qualitative behavior of the ultimate ruin probability in the
Cramér-Lundberg model.

Using the integro-differential equation for ψc(x) one can show that

ψc(0) = 1− λ

µp
.

It follows that

ψ(0) = 1− ψc(0) =
λ

µp
.
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The Cramér-Lundberg model (13)

Theorem

In the Cramér-Lundberg model, if the NPC

p > λµ

is satisfied

, then the ultimate ruin probability is given by

ψ(x) =

{
1 when x < 0
λ
µp e
−Rx when x ≥ 0,

where the Lundberg exponent R is given by

R =
1

µ
− λ

p
.

If the NPC is not satsified, then

ψ(x) = 1 for every x ∈ R.
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Extensions of the Cramér-Lundberg model

Use another claim size distribution than the exponential distribution.
In order to model the possibility of extreme claims, a subexponential
distribution can be used. In this case the Lundberg exponent does not
exist.

Use a more general claim arrival process than the Poisson process. If
a renewal process is used, then the model is often referred to as the
Sparre Andersen model.
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Premium principles (1)

The premium rate p is set by the insurance company. We know from the
NPC that in the Cramér-Lundberg model we must have

p > λµ

in order to rule out ψ(x) = 1.

But the question is how large should p be, and how should we set it?
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Premium principles (2)

In some way the premium p must reflect the claim’s properties.

Here we will consider a general claim size distribution (i.e. not confine us
to only the exponential distribution). We let σ denote the standard
deviation of any of the Yi ’s

We will also normalise and set λ = 1. This implies that we need to ensure
that

p > µ.
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Premium principles (3)

The following are three classical examples of premium principles. Here
θ > 0 is a given constant.

The expected value principle

p = (1 + θ)µ

In this case θ > 0 is known as the safety loading.

The variance principle
p = µ+ θσ2

The standard deviation principle

p = µ+ θσ
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Premium principles (4)

We can also use utility functions to set the premium.

Assume that the insurance company has utility function U and wealth W .
If the insurance company sets the premium p accodring to

U(W )︸ ︷︷ ︸
utility without claim

= E [U(W + p − Y )]︸ ︷︷ ︸
utility with claim

,

then the company is indifferent between not taking the claim Y and
taking the claim.
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Reference

I have used

Lecture notes on Risk theory by Hanspeter Schmidli

for this lecture.
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