
Lecture 10
More on mean-variance analysis
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The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is
referred to as the Markowitz model.

We want to maximise the expected return and minimise the variance.

The expected returns are given by

r̄1, r̄2, . . . , r̄n

and the covariances (and variances) are given by

σij , i , j = 1, 2, . . . , n.

We assume that the covariance matrix V = [σij ] is invertable and that not
all the expected returns are equal.
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The Markowitz model (2)

The problem we want to solve is the following:

Fix a goal level of expected rate of return and find the portfolio with the
minimum variance having this expected rate of return.
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The Markowitz model (3)

Mathematically we get

minimize 1
2

∑n
i ,j=1 wiwjσij

subject to
∑n

i=1 wi r̄i = r̄∑n
i=1 wi = 1

Here r̄ is the wanted level of expected rate of return.

The factor 1
2 is a scaling in order to get nicer formulas.
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The Markowitz model (4)

To solve this problem we use Lagrange multipliers to form the Lagrangian
L:

L =
1

2

n∑
i ,j=1

wiwjσij − λ

(
n∑

i=1

wi r̄i − r̄

)
− µ

(
n∑

i=1

wi − 1

)
.

Here λ and µ are the Lagrange multipliers for the first and second
constraint respectively.

The first order conditions are

∂L

∂wi
= 0, i = 1, 2, . . . , n,

∂L

∂λ
= 0 and

∂L

∂µ
= 0.
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The Markowitz model (5)

We get

∂L

∂wi
=

n∑
j=1

σijwj − λr̄i − µ = 0, i = 1, 2, . . . , n

∂L

∂λ
= −

n∑
i=1

wi r̄i + r̄ = 0

∂L

∂µ
= −

n∑
i=1

wi + 1 = 0.

These equations determine the optimal vector w of portfolio weights.
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The Markowitz model (6)

To solve this system of equations we rewrite them on vector-matrix form.

The first equation can be written

Vw = λr̄ + µ1

and the second and third

wT r̄ = r̄ and wT1 = 1.

The optimal weights can now be found from the first equation:

w = V−1 (λr̄ + µ1) = λV−1r̄ + µV−11.
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The Markowitz model (7)

To find the multipliers λ and µ we insert the expression for the optimal
weights in the constraint equations.

We get
r̄TV−1 (λr̄ + µ1) = λr̄TV−1r̄ + µr̄TV−11 = r̄

and
1TV−1 (λr̄ + µ1) = λ1TV−1r̄ + µ1TV−11 = 1

This is a 2-dimensional linear system of equations:[
r̄TV−1r̄ r̄TV−11
1TV−1r̄ 1TV−11

] [
λ
µ

]
=

[
r̄
1

]
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The Markowitz model (8)

Let
a = r̄TV−1r̄, b = r̄TV−11 and c = 1TV−11.

Then we have [
a b
b c

] [
λ
µ

]
=

[
r̄
1

]
with solution[

λ
µ

]
=

1

ac − b2

[
c −b
−b a

] [
r̄
1

]
=

1

ac − b2

[
cr̄ − b
a− br̄

]
.

Here we have used that

1TV−1r̄ = r̄TV−11.

Lecture 10 9 / 25



The Markowitz model (8)

Let
a = r̄TV−1r̄, b = r̄TV−11 and c = 1TV−11.

Then we have [
a b
b c

] [
λ
µ

]
=

[
r̄
1

]

with solution[
λ
µ

]
=

1

ac − b2

[
c −b
−b a

] [
r̄
1

]
=

1

ac − b2

[
cr̄ − b
a− br̄

]
.

Here we have used that

1TV−1r̄ = r̄TV−11.

Lecture 10 9 / 25



The Markowitz model (8)

Let
a = r̄TV−1r̄, b = r̄TV−11 and c = 1TV−11.

Then we have [
a b
b c

] [
λ
µ

]
=

[
r̄
1

]
with solution[

λ
µ

]
=

1

ac − b2

[
c −b
−b a

] [
r̄
1

]
=

1

ac − b2

[
cr̄ − b
a− br̄

]
.

Here we have used that

1TV−1r̄ = r̄TV−11.

Lecture 10 9 / 25



The Markowitz model (9)

Finally

w = V−1(λr̄ + µ1)

=
1

ac − b2
V−1

(
(cr̄ − b)r̄ + (a− br̄)1

)
Recall that

r̄ is our target expected return

and
r̄ is the vector of expected returns of the basic assets.
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The Markowitz model (10)

As in the two-asset case we can insert the optimal weights in the
expression for the standard deviation:

σ(r̄) =
√
wTVw

=

√
wTV

[
1

ac − b2
V−1

(
(cr̄ − b)r̄ + (a− br̄)1

)]

=

√√√√√(cr̄ − b)wT r̄︸︷︷︸
=r̄

+(a− br̄)wT1︸︷︷︸
=1

ac − b2

=

√
a− 2br̄ + cr̄2

ac − b2
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The Markowitz model (11)

Again we see that

σ(r̄) =
√

A + Br̄ + Cr̄2.

In this case the constants A, B and C depends on the values in r̄ and V
through a, b and c .

The curve called the minimum-variance set and it is symmetric around the
minimum-variance point.
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The Markowitz model (12)

Since we want to maximise the expected return while minimising the
standard deviation, it is never optimal to hold a portfolio on the part of
the parabola below the minimum-variance point.

Hence, we only hold portoflios on the upper part of the minimum-variance
set. This part is known as the efficient frontier.
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Portfolio constraints

Recall the n-asset Markowitz problem:

minimize 1
2

∑n
i ,j=1 wiwjσij

subject to
∑n

i=1 wi r̄i = r̄∑n
i=1 wi = 1

Here we allow the portfolio weight vector w to take on any real value, but
somtimes we want to restrict the allows portfolio weights. We do this by
adding more constraints to the problem above.

If we demand wi ≥ 0, i = 1, 2, . . . , n, then we do not allow
short-selling.

If we demand wi ∈ [li , ui ], i = 1, 2, . . . , n, then we require the
portfolio weight wi to lie between the lower and upper boundary li
and ui respectively.
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The two-fund theorem (1)

Let us return to the first order conditions

n∑
j=1

σijwj − λr̄i − µ = 0, i = 1, 2, . . . , n

n∑
i=1

wi r̄i − r̄ = 0

n∑
i=1

wi − 1 = 0.

Assume that we have solved the problem for two different expected rate of
return levels r̄1 and r̄2, and let the optimal weights be denoted w1 and w2

respectively.
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The two-fund theorem (2)

Now let r̄ be any expected rate of return level. Then there exists a unique
number α such that

αr̄1 + (1− α)r̄2 = r̄

,

namely

α =
r̄ − r̄2

r̄1 − r̄2
.

By using the first order conditions above, we can check that

w = αw1 + (1− α)w2

is the optimal portfolio weight vector when the expected rate of return
level is r̄ .
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The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels r̄1 and
r̄2.

After we have done that, we can easily get any other optimal portfolio
with expected return r̄ .

(1) Choose r̄ .

(2) Calculate

α =
r̄ − r̄2

r̄1 − r̄2
.

(3) The optimal portfolio corresponding to r̄ is given by

w = αw1 + (1− α)w2

=
r̄ − r̄2

r̄1 − r̄2
w1 +

r̄1 − r̄

r̄1 − r̄2
w2.
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The two-fund theorem (4)

We can now formulate this as follows.

Theorem

(The two-fund theorem)

Any portfolio on the minimum-variance set can be written as a linear
combination of two fixed minimum-variance optimal portfolios.

Any portfolio on the efficient frontier can be written as a linear
combination of two fixed efficient portfolios.
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Introducing a risk-free asset (1)

An important version of the Markowitz model is when we assume that
there exists a risk-free asset with rate of return rf .

By risk-free we mean an asset whose return has standard deviation σf = 0.

Since the fact that σf = 0 implies that the covariance matrix with the
risk-free included is non-invertable, we can not use the same analysis as
above.
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Introducing a risk-free asset (2)

Let w denote the weights in the n risky assets and let w0 denote the
weight in the risk-free asset.

The mean rate of return is given by

E

(
n∑

i=1

wi ri + w0rf

)
=

n∑
i=1

wi r̄i + w0rf

and the variance by

Var

(
n∑

i=1

wi ri + w0rf

)
=

n∑
i ,j=1

wiwjσij .
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Introducing a risk-free asset (3)

The optimization problem is

minimize 1
2

∑n
i ,j=1 wiwjσij

subject to
∑n

i=1 wi r̄i + w0rf = r̄∑n
i=1 wi + w0 = 1

Now we use the fact that

n∑
i=1

wi + w0 = 1 ⇔ w0 = 1−
n∑

i=1

wi

and replace w0 with this in the expression for the expected value.
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Introducing a risk-free asset (4)

We then arrive at the problem

minimize 1
2

∑n
i ,j=1 wiwjσij

subject to
∑n

i=1 wi (r̄i − rf ) = r̄ − rf .

Solving this problem using Lagrange multipliers yields the optimal weights
in the risky assets

w =
(r̄ − rf )V−1(r̄ − rf 1)

(r̄ − rf 1)V−1(r̄ − rf 1)
.

The standard deviation is given by

σ(r̄) =
|r̄ − rf |√

(r̄ − rf 1)V−1(r̄ − rf 1)
.
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Introducing a risk-free asset (5)

When we add a risk-free asset, both the minimum variance set and the
efficient frontier changes dramtically.

The minimum-variance set is a ‘wedge’ going out from the r̄ -axis at the
value rf of the risk-free rate, and the efficient frontier is a straight line
starting from this point and touching the old efficient frontier tangentially
at one point.

Remark

This conclusion needs that rf < r̄mvp.
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The one-fund theorem

When we have a risk-free asset, it is enough to have one non-risk-free
asset to span the minimu-variance set and efficient frontier respectively.

Theorem

(The one-fund theorem)

Any portfolio on the minimum-variance set can be written as a linear
combination of one non-risk-free fixed minimum-variance optimal portfolio
and the risk-free asset.

Any portfolio on the efficient frontier can be written as a linear
combination of one fixed efficient non-risk-free portfolio and the risk-free
asset.
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The tangent portfolio

An important portfolio when we we have a risk-free asset is the tangent
portfolio.

This is the portfolio that has 100% in risky assets, i.e. its weights fulfills

wT
tan1 = 1.

By inserting this condition in the general expression for optimal weights we
get

wtan =
V−1(r̄ − rf 1)

1TV−1(r̄ − rf 1)
.
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