Lecture 10

More on mean-variance analysis

The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is referred to as the Markowitz model.

The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is referred to as the Markowitz model.

We want to maximise the expected return and minimise the variance.

The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is referred to as the Markowitz model.

We want to maximise the expected return and minimise the variance.
The expected returns are given by

$$
\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{n}
$$

The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is referred to as the Markowitz model.

We want to maximise the expected return and minimise the variance.

The expected returns are given by

$$
\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{n}
$$

and the covariances (and variances) are given by

$$
\sigma_{i j}, i, j=1,2, \ldots, n
$$

The Markowitz model (1)

We now generalise the two-asset model to an n-asset model. This model is referred to as the Markowitz model.

We want to maximise the expected return and minimise the variance.

The expected returns are given by

$$
\bar{r}_{1}, \bar{r}_{2}, \ldots, \bar{r}_{n}
$$

and the covariances (and variances) are given by

$$
\sigma_{i j}, i, j=1,2, \ldots, n
$$

We assume that the covariance matrix $V=\left[\sigma_{i j}\right]$ is invertable and that not all the expected returns are equal.

The Markowitz model (2)

The problem we want to solve is the following:

The Markowitz model (2)

The problem we want to solve is the following:
Fix a goal level of expected rate of return and find the portfolio with the minimum variance having this expected rate of return.

The Markowitz model (3)

Mathematically we get
minimize $\quad \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j}$

The Markowitz model (3)

Mathematically we get

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r}
\end{array}
$$

The Markowitz model (3)

Mathematically we get

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

The Markowitz model (3)

Mathematically we get

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

Here \bar{r} is the wanted level of expected rate of return.

The Markowitz model (3)

Mathematically we get

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

Here \bar{r} is the wanted level of expected rate of return.
The factor $\frac{1}{2}$ is a scaling in order to get nicer formulas.

The Markowitz model (4)

To solve this problem we use Lagrange multipliers to form the Lagrangian L:

$$
L=\frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j}-\lambda\left(\sum_{i=1}^{n} w_{i} \bar{r}_{i}-\bar{r}\right)-\mu\left(\sum_{i=1}^{n} w_{i}-1\right) .
$$

The Markowitz model (4)

To solve this problem we use Lagrange multipliers to form the Lagrangian L:

$$
L=\frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j}-\lambda\left(\sum_{i=1}^{n} w_{i} \bar{r}_{i}-\bar{r}\right)-\mu\left(\sum_{i=1}^{n} w_{i}-1\right) .
$$

Here λ and μ are the Lagrange multipliers for the first and second constraint respectively.

The Markowitz model (4)

To solve this problem we use Lagrange multipliers to form the Lagrangian L:

$$
L=\frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j}-\lambda\left(\sum_{i=1}^{n} w_{i} \bar{r}_{i}-\bar{r}\right)-\mu\left(\sum_{i=1}^{n} w_{i}-1\right) .
$$

Here λ and μ are the Lagrange multipliers for the first and second constraint respectively.

The first order conditions are

$$
\frac{\partial L}{\partial w_{i}}=0, \quad i=1,2, \ldots, n, \quad \frac{\partial L}{\partial \lambda}=0 \text { and } \frac{\partial L}{\partial \mu}=0 .
$$

The Markowitz model (5)

We get

$$
\frac{\partial L}{\partial w_{i}}=\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu=0, i=1,2, \ldots, n
$$

The Markowitz model (5)

We get

$$
\begin{gathered}
\frac{\partial L}{\partial w_{i}}=\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu=0, i=1,2, \ldots, n \\
\frac{\partial L}{\partial \lambda}=-\sum_{i=1}^{n} w_{i} \bar{r}_{i}+\bar{r}=0
\end{gathered}
$$

The Markowitz model (5)

We get

$$
\begin{aligned}
\frac{\partial L}{\partial w_{i}}=\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu & =0, i=1,2, \ldots, n \\
\frac{\partial L}{\partial \lambda}=-\sum_{i=1}^{n} w_{i} \bar{r}_{i}+\bar{r} & =0 \\
\frac{\partial L}{\partial \mu}=-\sum_{i=1}^{n} w_{i}+1 & =0
\end{aligned}
$$

The Markowitz model (5)

We get

$$
\begin{aligned}
\frac{\partial L}{\partial w_{i}}=\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu & =0, i=1,2, \ldots, n \\
\frac{\partial L}{\partial \lambda}=-\sum_{i=1}^{n} w_{i} \bar{r}_{i}+\bar{r} & =0 \\
\frac{\partial L}{\partial \mu}=-\sum_{i=1}^{n} w_{i}+1 & =0
\end{aligned}
$$

These equations determine the optimal vector \mathbf{w} of portfolio weights.

The Markowitz model (6)

To solve this system of equations we rewrite them on vector-matrix form.

The Markowitz model (6)

To solve this system of equations we rewrite them on vector-matrix form.

The first equation can be written

$$
V \mathbf{w}=\lambda \overline{\mathbf{r}}+\mu \mathbf{1}
$$

The Markowitz model (6)

To solve this system of equations we rewrite them on vector-matrix form.

The first equation can be written

$$
V \mathbf{w}=\lambda \overline{\mathbf{r}}+\mu \mathbf{1}
$$

and the second and third

$$
\mathbf{w}^{\top} \overline{\mathbf{r}}=\bar{r} \quad \text { and } \quad \mathbf{w}^{\top} \mathbf{1}=1 .
$$

The Markowitz model (6)

To solve this system of equations we rewrite them on vector-matrix form.

The first equation can be written

$$
V \mathbf{w}=\lambda \overline{\mathbf{r}}+\mu \mathbf{1}
$$

and the second and third

$$
\mathbf{w}^{\top} \overline{\mathbf{r}}=\bar{r} \quad \text { and } \quad \mathbf{w}^{\top} \mathbf{1}=1 .
$$

The optimal weights can now be found from the first equation:

$$
\mathbf{w}=V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda V^{-1} \overline{\mathbf{r}}+\mu V^{-1} \mathbf{1} .
$$

The Markowitz model (7)

To find the multipliers λ and μ we insert the expression for the optimal weights in the constraint equations.

The Markowitz model (7)

To find the multipliers λ and μ we insert the expression for the optimal weights in the constraint equations.

We get

$$
\overline{\mathbf{r}}^{T} V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda \overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}+\mu \overline{\mathbf{r}}^{T} V^{-1} \mathbf{1}=\bar{r}
$$

The Markowitz model (7)

To find the multipliers λ and μ we insert the expression for the optimal weights in the constraint equations.

We get

$$
\overline{\mathbf{r}}^{T} V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda \overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}+\mu \overline{\mathbf{r}}^{T} V^{-1} \mathbf{1}=\bar{r}
$$

and

$$
\mathbf{1}^{T} V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda \mathbf{1}^{T} V^{-1} \overline{\mathbf{r}}+\mu \mathbf{1}^{T} V^{-1} \mathbf{1}=1
$$

The Markowitz model (7)

To find the multipliers λ and μ we insert the expression for the optimal weights in the constraint equations.

We get

$$
\overline{\mathbf{r}}^{T} V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda \overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}+\mu \overline{\mathbf{r}}^{T} V^{-1} \mathbf{1}=\bar{r}
$$

and

$$
\mathbf{1}^{T} V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})=\lambda \mathbf{1}^{T} V^{-1} \overline{\mathbf{r}}+\mu \mathbf{1}^{T} V^{-1} \mathbf{1}=1
$$

This is a 2-dimensional linear system of equations:

$$
\left[\begin{array}{ll}
\overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}} & \overline{\mathbf{r}}^{T} V^{-1} \mathbf{1} \\
\mathbf{1}^{T} V^{-1} \overline{\mathbf{r}} & \mathbf{1}^{T} V^{-1} \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\bar{r} \\
1
\end{array}\right]
$$

The Markowitz model (8)

Let

$$
a=\overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}, b=\overline{\mathbf{r}}^{T} V^{-1} \mathbf{1} \text { and } c=\mathbf{1}^{T} V^{-1} \mathbf{1}
$$

The Markowitz model (8)

Let

$$
a=\overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}, b=\overline{\mathbf{r}}^{T} V^{-1} \mathbf{1} \text { and } c=\mathbf{1}^{T} V^{-1} \mathbf{1}
$$

Then we have

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{l}
\bar{r} \\
1
\end{array}\right]
$$

The Markowitz model (8)

Let

$$
a=\overline{\mathbf{r}}^{T} V^{-1} \overline{\mathbf{r}}, b=\overline{\mathbf{r}}^{T} V^{-1} \mathbf{1} \text { and } c=\mathbf{1}^{T} V^{-1} \mathbf{1}
$$

Then we have

$$
\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]=\left[\begin{array}{l}
\bar{r} \\
1
\end{array}\right]
$$

with solution

$$
\left[\begin{array}{l}
\lambda \\
\mu
\end{array}\right]=\frac{1}{a c-b^{2}}\left[\begin{array}{cc}
c & -b \\
-b & a
\end{array}\right]\left[\begin{array}{l}
\bar{r} \\
1
\end{array}\right]=\frac{1}{a c-b^{2}}\left[\begin{array}{c}
c \bar{r}-b \\
a-b \bar{r}
\end{array}\right]
$$

Here we have used that

$$
\mathbf{1}^{T} V^{-1} \overline{\mathbf{r}}=\overline{\mathbf{r}}^{T} V^{-1} \mathbf{1}
$$

The Markowitz model (9)

Finally

$$
\mathbf{w}=V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1})
$$

The Markowitz model (9)

Finally

$$
\begin{aligned}
\mathbf{w} & =V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1}) \\
& =\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}+(a-b \bar{r}) \mathbf{1})
\end{aligned}
$$

The Markowitz model (9)

Finally

$$
\begin{aligned}
\mathbf{w} & =V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1}) \\
& =\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}+(a-b \bar{r}) \mathbf{1})
\end{aligned}
$$

Recall that
\bar{r} is our target expected return

The Markowitz model (9)

Finally

$$
\begin{aligned}
\mathbf{w} & =V^{-1}(\lambda \overline{\mathbf{r}}+\mu \mathbf{1}) \\
& =\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}+(a-b \bar{r}) \mathbf{1})
\end{aligned}
$$

Recall that
\bar{r} is our target expected return
and
$\overline{\mathbf{r}}$ is the vector of expected returns of the basic assets.

The Markowitz model (10)

As in the two-asset case we can insert the optimal weights in the expression for the standard deviation:

$$
\sigma(\bar{r})=\sqrt{\mathbf{w}^{T} V \mathbf{w}}
$$

The Markowitz model (10)

As in the two-asset case we can insert the optimal weights in the expression for the standard deviation:

$$
\begin{aligned}
\sigma(\bar{r}) & =\sqrt{\mathbf{w}^{T} V \mathbf{w}} \\
& =\sqrt{\mathbf{w}^{T} V\left[\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}+(a-b \bar{r}) \mathbf{1})\right]}
\end{aligned}
$$

The Markowitz model (10)

As in the two-asset case we can insert the optimal weights in the expression for the standard deviation:

$$
\begin{aligned}
\sigma(\bar{r}) & =\sqrt{\mathbf{w}^{T} V \mathbf{w}} \\
& \left.\left.=\sqrt{\mathbf{w}^{T} V\left[\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}\right.}+(a-b \bar{r}) \mathbf{1}\right)\right] \\
& =\sqrt{\frac{(c \bar{r}-b) \underbrace{\mathbf{w}^{T} \overline{\mathbf{r}}}_{=\bar{r}}+(a-b \bar{r}) \underbrace{\mathbf{w}^{T} \mathbf{1}}_{=1}}{a c-b^{2}}}
\end{aligned}
$$

The Markowitz model (10)

As in the two-asset case we can insert the optimal weights in the expression for the standard deviation:

$$
\begin{aligned}
\sigma(\bar{r}) & =\sqrt{\mathbf{w}^{T} V \mathbf{w}} \\
& =\sqrt{\mathbf{w}^{T} V\left[\frac{1}{a c-b^{2}} V^{-1}((c \bar{r}-b) \overline{\mathbf{r}}+(a-b \bar{r}) \mathbf{1})\right]} \\
& =\sqrt{\frac{(c \bar{r}-b) \underbrace{\mathbf{w}^{T} \overline{\mathbf{r}}}_{=\bar{r}}+(a-b \bar{r}) \underbrace{\mathbf{w}^{T} \mathbf{1}}_{=1}}{a c-b^{2}}} \\
& =\sqrt{\frac{a-2 b \bar{r}+c \bar{r}^{2}}{a c-b^{2}}}
\end{aligned}
$$

The Markowitz model (11)

Again we see that

$$
\sigma(\bar{r})=\sqrt{A+B \bar{r}+C \bar{r}^{2}} .
$$

The Markowitz model (11)

Again we see that

$$
\sigma(\bar{r})=\sqrt{A+B \bar{r}+C \bar{r}^{2}} .
$$

In this case the constants A, B and C depends on the values in $\overline{\mathbf{r}}$ and V through a, b and c.

The Markowitz model (11)

Again we see that

$$
\sigma(\bar{r})=\sqrt{A+B \bar{r}+C \bar{r}^{2}} .
$$

In this case the constants A, B and C depends on the values in $\overline{\mathbf{r}}$ and V through a, b and c.

The curve called the minimum-variance set and it is symmetric around the minimum-variance point.

The Markowitz model (12)

Since we want to maximise the expected return while minimising the standard deviation, it is never optimal to hold a portfolio on the part of the parabola below the minimum-variance point.

The Markowitz model (12)

Since we want to maximise the expected return while minimising the standard deviation, it is never optimal to hold a portfolio on the part of the parabola below the minimum-variance point.

Hence, we only hold portoflios on the upper part of the minimum-variance set. This part is known as the efficient frontier.

Portfolio constraints

Recall the n-asset Markowitz problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

Here we allow the portfolio weight vector w to take on any real value, but somtimes we want to restrict the allows portfolio weights. We do this by adding more constraints to the problem above.

Portfolio constraints

Recall the n-asset Markowitz problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

Here we allow the portfolio weight vector w to take on any real value, but somtimes we want to restrict the allows portfolio weights. We do this by adding more constraints to the problem above.

- If we demand $w_{i} \geq 0, i=1,2, \ldots, n$, then we do not allow short-selling.

Portfolio constraints

Recall the n-asset Markowitz problem:

$$
\begin{aligned}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}=1
\end{aligned}
$$

Here we allow the portfolio weight vector w to take on any real value, but somtimes we want to restrict the allows portfolio weights. We do this by adding more constraints to the problem above.

- If we demand $w_{i} \geq 0, i=1,2, \ldots, n$, then we do not allow short-selling.
- If we demand $w_{i} \in\left[I_{i}, u_{i}\right], i=1,2, \ldots, n$, then we require the portfolio weight w_{i} to lie between the lower and upper boundary l_{i} and u_{i} respectively.

The two-fund theorem (1)

Let us return to the first order conditions

$$
\begin{aligned}
\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu & =0, i=1,2, \ldots, n \\
\sum_{i=1}^{n} w_{i} \bar{r}_{i}-\bar{r} & =0 \\
\sum_{i=1}^{n} w_{i}-1 & =0
\end{aligned}
$$

The two-fund theorem (1)

Let us return to the first order conditions

$$
\begin{aligned}
\sum_{j=1}^{n} \sigma_{i j} w_{j}-\lambda \bar{r}_{i}-\mu & =0, i=1,2, \ldots, n \\
\sum_{i=1}^{n} w_{i} \bar{r}_{i}-\bar{r} & =0 \\
\sum_{i=1}^{n} w_{i}-1 & =0
\end{aligned}
$$

Assume that we have solved the problem for two different expected rate of return levels \bar{r}^{1} and \bar{r}^{2}, and let the optimal weights be denoted \mathbf{w}^{1} and \mathbf{w}^{2} respectively.

The two-fund theorem (2)

Now let \bar{r} be any expected rate of return level. Then there exists a unique number α such that

$$
\alpha \bar{r}^{1}+(1-\alpha) \bar{r}^{2}=\bar{r}
$$

The two-fund theorem (2)

Now let \bar{r} be any expected rate of return level. Then there exists a unique number α such that

$$
\alpha \bar{r}^{1}+(1-\alpha) \bar{r}^{2}=\bar{r},
$$

namely

$$
\alpha=\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} .
$$

The two-fund theorem (2)

Now let \bar{r} be any expected rate of return level. Then there exists a unique number α such that

$$
\alpha \bar{r}^{1}+(1-\alpha) \bar{r}^{2}=\bar{r},
$$

namely

$$
\alpha=\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} .
$$

By using the first order conditions above, we can check that

$$
\mathbf{w}=\alpha \mathbf{w}^{1}+(1-\alpha) \mathbf{w}^{2}
$$

is the optimal portfolio weight vector when the expected rate of return level is \bar{r}.

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}.

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}. After we have done that, we can easily get any other optimal portfolio with expected return \bar{r}.

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}. After we have done that, we can easily get any other optimal portfolio with expected return \bar{r}.
(1) Choose \bar{r}.

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}. After we have done that, we can easily get any other optimal portfolio with expected return \bar{r}.
(1) Choose \bar{r}.
(2) Calculate

$$
\alpha=\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} .
$$

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}. After we have done that, we can easily get any other optimal portfolio with expected return \bar{r}.
(1) Choose \bar{r}.
(2) Calculate

$$
\alpha=\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} .
$$

(3) The optimal portfolio corresponding to \bar{r} is given by

$$
\mathbf{w}=\alpha \mathbf{w}^{1}+(1-\alpha) \mathbf{w}^{2}
$$

The two-fund theorem (3)

Hence, we only need to solve the Markowitz problem for two levels \bar{r}^{1} and \bar{r}^{2}. After we have done that, we can easily get any other optimal portfolio with expected return \bar{r}.
(1) Choose \bar{r}.
(2) Calculate

$$
\alpha=\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} .
$$

(3) The optimal portfolio corresponding to \bar{r} is given by

$$
\begin{aligned}
\mathbf{w} & =\alpha \mathbf{w}^{1}+(1-\alpha) \mathbf{w}^{2} \\
& =\frac{\bar{r}-\bar{r}^{2}}{\bar{r}^{1}-\bar{r}^{2}} \mathbf{w}^{1}+\frac{\bar{r}^{1}-\bar{r}}{\bar{r}^{1}-\bar{r}^{2}} \mathbf{w}^{2} .
\end{aligned}
$$

The two-fund theorem (4)

We can now formulate this as follows.

Theorem

(The two-fund theorem)
Any portfolio on the minimum-variance set can be written as a linear combination of two fixed minimum-variance optimal portfolios.

The two-fund theorem (4)

We can now formulate this as follows.

Theorem

(The two-fund theorem)
Any portfolio on the minimum-variance set can be written as a linear combination of two fixed minimum-variance optimal portfolios.

Any portfolio on the efficient frontier can be written as a linear combination of two fixed efficient portfolios.

Introducing a risk-free asset (1)

An important version of the Markowitz model is when we assume that there exists a risk-free asset with rate of return r_{f}.

Introducing a risk-free asset (1)

An important version of the Markowitz model is when we assume that there exists a risk-free asset with rate of return r_{f}.

By risk-free we mean an asset whose return has standard deviation $\sigma_{f}=0$.

Introducing a risk-free asset (1)

An important version of the Markowitz model is when we assume that there exists a risk-free asset with rate of return r_{f}.

By risk-free we mean an asset whose return has standard deviation $\sigma_{f}=0$.
Since the fact that $\sigma_{f}=0$ implies that the covariance matrix with the risk-free included is non-invertable, we can not use the same analysis as above.

Introducing a risk-free asset (2)

Let \mathbf{w} denote the weights in the n risky assets and let w_{0} denote the weight in the risk-free asset.

Introducing a risk-free asset (2)

Let \mathbf{w} denote the weights in the n risky assets and let w_{0} denote the weight in the risk-free asset.

The mean rate of return is given by

$$
E\left(\sum_{i=1}^{n} w_{i} r_{i}+w_{0} r_{f}\right)=\sum_{i=1}^{n} w_{i} \bar{r}_{i}+w_{0} r_{f}
$$

and the variance by

$$
\operatorname{Var}\left(\sum_{i=1}^{n} w_{i} r_{i}+w_{0} r_{f}\right)=\sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j}
$$

Introducing a risk-free asset (3)

The optimization problem is

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}+w_{0} r_{f}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}+w_{0}=1
\end{array}
$$

Introducing a risk-free asset (3)

The optimization problem is

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i} \bar{r}_{i}+w_{0} r_{f}=\bar{r} \\
& \sum_{i=1}^{n} w_{i}+w_{0}=1
\end{array}
$$

Now we use the fact that

$$
\sum_{i=1}^{n} w_{i}+w_{0}=1 \Leftrightarrow w_{0}=1-\sum_{i=1}^{n} w_{i}
$$

and replace w_{0} with this in the expression for the expected value.

Introducing a risk-free asset (4)

We then arrive at the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i}\left(\bar{r}_{i}-r_{f}\right)=\bar{r}-r_{f}
\end{array}
$$

Solving this problem using Lagrange multipliers yields the optimal weights in the risky assets

$$
\mathbf{w}=\frac{\left(\bar{r}-r_{f}\right) V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)}{\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right) V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)} .
$$

Introducing a risk-free asset (4)

We then arrive at the problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \sum_{i, j=1}^{n} w_{i} w_{j} \sigma_{i j} \\
\text { subject to } & \sum_{i=1}^{n} w_{i}\left(\bar{r}_{i}-r_{f}\right)=\bar{r}-r_{f}
\end{array}
$$

Solving this problem using Lagrange multipliers yields the optimal weights in the risky assets

$$
\mathbf{w}=\frac{\left(\bar{r}-r_{f}\right) V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)}{\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right) V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)} .
$$

The standard deviation is given by

$$
\sigma(\bar{r})=\frac{\left|\bar{r}-r_{f}\right|}{\sqrt{\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right) V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)}}
$$

Introducing a risk-free asset (5)

When we add a risk-free asset, both the minimum variance set and the efficient frontier changes dramtically.

Introducing a risk-free asset (5)

When we add a risk-free asset, both the minimum variance set and the efficient frontier changes dramtically.

The minimum-variance set is a 'wedge' going out from the \bar{r}-axis at the value r_{f} of the risk-free rate, and the efficient frontier is a straight line starting from this point and touching the old efficient frontier tangentially at one point.

Introducing a risk-free asset (5)

When we add a risk-free asset, both the minimum variance set and the efficient frontier changes dramtically.

The minimum-variance set is a 'wedge' going out from the \bar{r}-axis at the value r_{f} of the risk-free rate, and the efficient frontier is a straight line starting from this point and touching the old efficient frontier tangentially at one point.

Remark

This conclusion needs that $r_{f}<\bar{r}_{\text {mvp }}$.

The one-fund theorem

When we have a risk-free asset, it is enough to have one non-risk-free asset to span the minimu-variance set and efficient frontier respectively.

Theorem

(The one-fund theorem)

Any portfolio on the minimum-variance set can be written as a linear combination of one non-risk-free fixed minimum-variance optimal portfolio and the risk-free asset.

The one-fund theorem

When we have a risk-free asset, it is enough to have one non-risk-free asset to span the minimu-variance set and efficient frontier respectively.

Theorem

(The one-fund theorem)
Any portfolio on the minimum-variance set can be written as a linear combination of one non-risk-free fixed minimum-variance optimal portfolio and the risk-free asset.

Any portfolio on the efficient frontier can be written as a linear combination of one fixed efficient non-risk-free portfolio and the risk-free asset.

The tangent portfolio

An important portfolio when we we have a risk-free asset is the tangent portfolio.

This is the portfolio that has 100% in risky assets, i.e. its weights fulfills

$$
\mathbf{w}_{\tan }^{T} \mathbf{1}=1
$$

The tangent portfolio

An important portfolio when we we have a risk-free asset is the tangent portfolio.

This is the portfolio that has 100% in risky assets, i.e. its weights fulfills

$$
\mathbf{w}_{\tan }^{T} \mathbf{1}=1
$$

By inserting this condition in the general expression for optimal weights we get

$$
\mathbf{w}_{\mathrm{tan}}=\frac{V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)}{\mathbf{1}^{\top} V^{-1}\left(\overline{\mathbf{r}}-r_{f} \mathbf{1}\right)}
$$

