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Background

Consider a time series {xt ∈ C}t∈Z. The interest is to:

understand the information content of {xt}t∈Z  spectral estimation.

construct a model for how {xt}t∈Z was generated  linear stochastic systems.

Assumptions on the stochastic process {xt}t∈Z:

zero-mean: E(xt) = 0 for t ∈ Z
second-order stationery:

mean E(xt) independent of t
covariances ck = E(xtx

∗
t−k) only depend on the time lag k.

Note that c−k = c∗k .

ergodic: time-average is the same as average over probability space.
“One (sufficiently long) realization is enough to do estimation of statistical properties”.
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Background
Spectral Estimation

The power spectrum of a stochastic process is the energy distribution across frequencies of the process.

⇒
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For our process {xt}t∈Z it is defined as the positive function Φ(e iθ) on (−π, π] ∼ T,

ck :=
1

2π

∫
T
e ikθΦ(e iθ)dθ, k ∈ Z ⇐⇒ Φ(e iθ) ∼

∞∑
k=−∞

cke
−ikθ

i.e., with the covariances as Fourier coefficients [1].

Estimation Methods:

Periodogram

Burg’s method/maximum entropy

Sparse methods

Applications:

Radar/Sonar

Speech analysis

Communications

[1] P. Stoica, and R.L. Moses. Spectral analysis of signals. Prentice Hall, 2005. 5 / 29
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Background
Linear stochastic systems

Want a model for how {xt} is generated. One of the simplest, a linear dynamical system.

Linear system W (z)
ut xt

{ut} is a Gaussian white noise process

Gaussian: ut is Gaussian for all t.
White: flat power spectrum Φu(e iθ) ≡ 1.

W (z) is an autoregressive-moving-average (ARMA) filter

xt +
n∑

k=1

ak xt−k =
m∑

k=0

bk ut−k ⇔ W (z) =
∑
k∈Z

wkz
−k =

∑m
k=0 bk z

−k∑n
k=0 ak z

−k
=

b(z)

a(z)

We want to identify W (z) from the data {xt}.
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Background
Rational covariance extension problem

Linear system W (z)
ut xt

The knowledge of that {xt} is generated by a linear systems puts constraints on the spectrum.
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Linear system W (z)
ut xt

The knowledge of that {xt} is generated by a linear systems puts constraints on the spectrum.

Let c̃k be the covariances of ut . Since W (z) is a linear filter we have xt =
∑
k∈Z

wkut−k and thus

ck = E[xtx
∗
t−k ] = E

∑
k1∈Z

wk1ut−k1

∑
k2∈Z

wk2ut−k−k2

∗
=
∑
k1∈Z

∑
k2∈Z

wk1w
∗
k2
E[ut−k1u

∗
t−k−k2

] =
∑
k1∈Z

∑
k2∈Z

wk1w
∗
k2
c̃k+k2−k1
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∑
k2∈Z

w∗k2
e ik2θ

∑
k3∈Z

c̃k3e
−ik3θ = |W (e iθ)|2Φu(e iθ).

But ut is white noise, so Φu(e iθ) ≡ 1. Moreover, W (z) = b(z)/a(z)

Φ(e iθ) = |W (e iθ)|2Φu(e iθ) = |W (e iθ)|2 =
|b(e iθ)|2

|a(e iθ)|2 =

∑m
k=−m pke

−ikθ∑n
k=−n qke

−ikθ
=

P(e iθ)

Q(e iθ)

where P and Q are real-valued trigonometric polynomials (p−k = p∗k , q−k = q∗k ).
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Background
Rational covariance extension problem

Linear system W (z)
ut xt

Summarizing, this gives us the following problem posed by Kalman [1]:

Problem formulation – Rational covariance extension problem

Given a sequence of covariances c = {ck}nk=−n find a positive function Φ(e iθ) so that
ck =

1

2π

∫
T
e ikθΦ(e iθ)dθ, k = −n, . . . , 0, 1, . . . , n

Φ(e iθ) =
P(e iθ)

Q(e iθ)
, P and Q ∈ P̄1

+.

Notation for nonnegative trigonometric polynomials:

P̄1
+ = {p := {pk}nk=−n ∈ C2n+1 | p−k = p∗k , P(e iθ) :=

n∑
k=−n

pke
−ikθ, P(e iθ) ≥ 0 for all θ ∈ T}

[1] R.E. Kalman. Realization of covariance sequences. In the Proceedings of the Toeplitz Memorial Conference, 1981.

7 / 29



Background
Rational covariance extension - spectral factorization and positive real functions

Key property in the identification: spectral factorization

P(e iθ)

Q(e iθ)

Spectral factorization
→
=
←

Trivial

|b(e iθ)|2

|a(e iθ)|2

Intermission - Connection to analytic interpolation: equivalently characterized as finding a function
f (z) that is positive real and of specified degree, i.e.,

analytic in DC , i.e., f (z) =
∞∑
k=0

fkz
−k for |z | > 1,

f (z) + f ∗(1/z∗) > 0 on T (f (z) + f ∗(1/z∗) = Φ(z) on T) ,

f (z) takes the form

f (z) =
b̃(z)

ã(z)
,

for ã, b̃ monic and of degree n and m, with roots inside the unit disc (Schur polynomials),

fulfilling f0 = 1
2
c0 and fk = ck for k = 1, . . . , n. This gives interpolation conditions in infinity.
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Background
Rational covariance extension

Rational covariance extension problem - Trigonometric moment problem with rationality constraint

Given a sequence of covariances c = {ck}nk=−n find a positive function Φ(e iθ) so that
ck =

1

2π

∫
T
e ikθΦ(e iθ)dθ, k = −n, . . . , 0, 1, . . . , n

Φ(e iθ) =
P(e iθ)

Q(e iθ)
, P and Q ∈ P̄1

+.

Solvable using convex optimization (next slide)

Solution exists if and only if

T (c) =


c0 c−1 . . . c−n

c1 c0 . . . c−n+1

...
. . .

...
cn cn−1 . . . c0

 � 0.
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Background
Rational covariance extension

Theorem ([1])

The rational covariance extension problem has a solution if only if T (c) � 0. For such c and any
P ∈ P1

+, there is a unique Q̂ such that Φ = P/Q̂ is a solution to the rational covariance extension
problem.

Moreover, Φ = P/Q̂ is the optimal solution to the convex problem

(P) min
Φ≥0

∫
T
P log

P

Φ

dθ

2π

subject to ck =

∫
T
e ikθΦ(e iθ)

dθ

2π
k = −n, . . . , 0, 1, . . . , n.

Finally, this Q̂ is the unique solution to the dual problem

(D) min
q∈P̄+

〈c, q〉 −
∫
T
P log(Q)

dθ

2π
.

[1] C.I. Byrnes, S.V. Gusev, and A. Lindquist. A convex optimization approach to the rational covariance extension problem. SIAM Journal on Control and Optimization 37(1),
211-229, 1998.
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Multidimensional rational covariance extension
A multidimensional trigonometric moment problem

Trigonometric moment problem with rationality constraint

Given a sequence of covariances c = {ck}nk=−n find a positive function Φ(e iθ) so that
ck =

1

2π

∫
T
e ikθΦ(e iθ)dθ, k = −n, . . . , 0, 1, . . . , n

Φ(e iθ) =
P(e iθ)

Q(e iθ)
, P and Q ∈ P̄1

+.

12 / 29
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Trigonometric polynomials P̄+:

P̄+ = {p := {pk}k∈Λ ∈ C|Λ| | p−k = p∗k , P(e iθ) :=
∑
k∈Λ

pke
−i(k,θ), P(e iθ) ≥ 0 for all θ ∈ Td}

Compare to

P̄1
+ = {p := {pk}nk=−n ∈ C2n+1 | p−k = p∗k , P(e iθ) :=

n∑
k=−n

pke
−ikθ, P(e iθ) ≥ 0 for all θ ∈ T}
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Multidimensional rational covariance extension
A multidimensional trigonometric moment problem

Important notions for later:

∂P̄+ denotes the boundary of the set of nonnegative trigonometric polynomials, i.e., p ∈ P̄+ such
that P(e iθ) = 0 in at least one point θ ∈ Td .

P̄+ is a cone: for all p1, p2 ∈ P̄+ we have that αp1 + βp2 ∈ P̄+ for any α, β ≥ 0. To see this

αp1 + βp2  
∑
k∈Λ

(αp1
k + βp2

k)e−i(k,θ) = αP1(e iθ) + βP2(e iθ) ≥ 0 ∀θ ∈ Td .
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Multidimensional rational covariance extension
A multidimensional trigonometric moment problem

What does the condition T (c) � 0 correspond to in the multidimensional setting?

Not necessarily straight forward to generalize. Moreover, a corresponding matrix condition is
necessary but not sufficient!
Equivalent formulation in one dimension: P̄1

+ is a cone. Consider the dual cone

C1
+ :=

{
c ∈ C2n+1 | c−k = c∗k , 〈c, p〉 :=

n∑
k=−n

ckp
∗
k > 0 for all p ∈ P̄1

+ \ {0}
}

One can show (using spectral factorization) that

T (c) � 0 ⇐⇒ c ∈ C1
+.

Dual cone in the multidimensional setting:

C+ :=
{
c ∈ C|Λ| | c−k = c∗k , 〈c, p〉 :=

∑
k∈Λ

ckp
∗
k > 0 for all p ∈ P̄+ \ {0}

}
.

Finally, the theory turns out to not be directly generalizable. Need to allow for solutions that are
measures of bounded variation of the form

dµ(θ) = Φ(e iθ)dm + dν(θ),

where Φ = P/Q and dν is singular with respect to dm (Lebesgue decomposition).
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Multidimensional rational covariance extension
Results for exact covariance matching

Theorem

The multidimensional rational covariance extension problem has a solution only if c ∈ C+.

Moreover,
for any c ∈ C+ and any P ∈ P̄+, any rational solution Φ = P/Q can be obtained by solving the convex
primal problem

(P) min
dµ≥0

∫
Td

(
P log

P

Φ
dm + dµ− Pdm

)
subject to ck =

∫
Td

e i(k,θ)
(

Φ(e iθ)dm + dν
)
, k ∈ Λ.

Finally, for any c ∈ C+ problem (P) has a solution and it is given by

d µ̂ =
P(e iθ)

Q̂(e iθ)
dm + d ν̂

where Q̂ is the unique solution to the dual problem

(D) min
q∈P̄+

〈c, q〉 −
∫
Td

P log(Q)dm.

and d ν̂ is such that supp(d ν̂) ⊂ {θ ∈ Td | Q̂(e iθ) = 0}.
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Multidimensional rational covariance extension
Results for exact covariance matching

Proof idea:

P is a constant so terms only involving P can be removed from the cost function.

By c0 =

∫
Td

(
Φ(e iθ)dm + dν

)
we have that

∫
Td

dµ is also a constant.

Change sign of objective and maximize instead.

Form the Lagrangian

L(Φ, dν, q) = −
∫
Td

P log
P

Φ
dm +

∑
k∈Λ

q∗k

(
ck −

∫
Td

e i(k,θ)
(

Φ(e iθ)dm + dν
))

= −
∫
Td

P log
P

Φ
dm + 〈c, q〉 −

∫
Td

QΦdm −
∫
Td

Qdν

Looking for saddle point:

variation in Φ gives Φ = P/Q (a.e. dm),
if q 6∈ P̄+ the last term goes to +∞ when we maximize w.r.t. dµ.

saddle point is a max w.r.t. dµ which means that

∫
Td

Qdν = 0.

Plugging this into the Lagrangian gives the dual problem (D).
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Multidimensional rational covariance extension
Results for exact covariance matching

Proof idea (cont.):

Show existence and uniqueness of solution to (D):
lower semi-continuity of the dual objective,
compact sublevel sets,
positive definite second variation.

Existence of a singular measure with supp(d ν̂) ⊂ {θ ∈ Td | Q̂(e iθ) = 0} so that

ck =

∫
Td

e i(k,θ) P

Q̂
dm + d ν̂.

Finally: sufficiency of the saddle point property for strong duality gives the result.

Why did we need the extension to dµ = Φdm + dν?

Derivative of the dual objective function J(q) = 〈c, q〉 −
∫
Td

P log(Q)dm:

∂J
∂qk

= ck −
∫
Td

e i(k,θ) P

Q
dm.

For d = 1, and also d = 2, this is infinite for Q ∈ ∂P̄+. So the solution is strictly in the interior, i.e.,
Q̂(e iθ) > 0 for all θ ∈ Td
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Multidimensional rational covariance extension
Results for exact covariance matching

Proof idea (cont.):
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Multidimensional rational covariance extension
Results for exact covariance matching

Proof idea (cont.):
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Multidimensional rational covariance extension
Results for approximate covariance matching

If c 6∈ C+, what can we do?

Inverse problems view: the primal problem

(P) min
dµ≥0

∫
Td

(
P log

P

Φ
dm + dµ− Pdm

)
subject to ck =

∫
Td

e i(k,θ)
(

Φ(e iθ)dm + dν
)
, k ∈ Λ.

is on the form

min
dµ≥0

I(dµ)

subject to dµ matches c exactly,

where the regularizer I promotes rational solutions. Change data-matching term.
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Multidimensional rational covariance extension
Results for approximate covariance matching

Theorem

Given a sequence c = {ck}k∈Λ, for ε large enough the primal problem

(P ′) min
Φ>0, r

∫
Td

(
P log

P

Φ
dm + dµ− Pdm

)
subject to rk =

∫
Td

e i(k,θ)
(

Φ(e iθ)dm + dν
)
, k ∈ Λ,

‖r − c‖2 ≤ ε2,

has an optimal solution given by

d µ̂ =
P(e iθ)

Q̂(e iθ)
dm + d ν̂

where Q̂ is the unique solution to the dual problem

(D ′) min
q∈P̄+

〈c, q〉 −
∫
Td

P log(Q)dm + ε‖q − e‖,

and d ν̂ is such that supp(d ν̂) ⊂ {θ ∈ Td | Q̂(e iθ) = 0}. Here, e ∈ C|Λ|, e0 = 1 and ek = 0 for
k ∈ Λ \ {0}.

19 / 29



Outline

Background

Spectral estimation
Identification of stochastic linear systems
Rational covariance extension

Multidimensional rational covariance extension

A multidimensional trigonometric moment problem
Results for exact covariance matching
Results for approximate covariance matching

Example

Texture generation by Wiener system identification

20 / 29



Example
Texture generation by Wiener system identification

Motivated by the use of thresholded Gaussian random fields to model porous materials [1], we are
interested in generating binary textures.

We want to estimate a system that can generate similar textures
 multidimensional Wiener systems identification.

Figure: Example of a texture

[1] S. Eriksson Barman. Gaussian random field based models for the porous structure of pharmaceutical film coatings. In Acta Stereologica [En ligne], Proceedings ICSIA, 14th
ICSIA abstracts, 2015. 21 / 29
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Example
Texture generation by Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

{ut ; t ∈ Z2} be a zero-mean Gaussian white noise input.

The linear dynamical system is a strictly causal
autoregressive-moving-average (ARMA) filter

xt +
∑

k∈Λ+\{0}

ak xt−k =
∑
k∈Λ+

bk ut−k ⇔ W (z) =

∑
k∈Λ+

bk z
k∑

k∈Λ+
ak zk

=
b(z)

a(z)

where Λ+ ⊂ Z2 is the support of the filter.

Thresholding function

f (x) =

{
1 x > τ

0 otherwise

k1

k2

Figure: Example of Λ+.

Goal: From samples (yt) we want to identify τ and W .
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Example
Texture generation by Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

Identifying the threshold parameter:
Since ut is zero-mean and Gaussian and W (z) is linear, xt is zero-mean and Gaussian.
In steady-state xt is second order stationary process, i.e., the covariances are independent of
the absolute time t: ck := E[xtxt−k]. Assume that E[xtxt ] = c0 = 1 (normalization).
E[yt ] = P(yt = 1) = P(xt > τ) = 1− P(xt ≤ τ) = 1− φ(τ), where φ is the Gaussian CDF
 we can estimate τ as τest = φ−1(1− E[yt ]).

Estimate covariances ck:
Let rk := E[yt−kyt ]− E[yt−k]E[yt ] be the covariances of the process yt .
Since xt is Gaussian a theorem by Price [1] gives the following relationship between the
covariances

rk =

∫ ck

0

1

2π
√

1− s2
exp

(
− τ 2

1 + s

)
ds.

Since the integrand is positive, the mapping can be inverted (numerically).
From the covariances ck, estimate the linear system W (z).

[1] R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2), 69-72, 1958.
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Example
Texture generation by Wiener system identification

Linear system W (z)
ut xt

Figure: A linear system.

Estimating the linear system W (z) from from the covariances ck - looks promising for applying the
theory for multidimensional rational covariance extension!

The power spectral density Φ(e iθ) of a stochastic process {xt ; t ∈ Z2} is defined as the
nonnegative function such that

ck :=
1

(2π)2

∫
T2

e i(k,θ)Φ(e iθ)dθ, k ∈ Z2 ⇐⇒ Φ(e iθ) =
∑
k∈Z2

cke
−i(k,θ).

By similar calculations as in the one-dimensional case

Φ(e iθ) = |W (e iθ)|2Φu(e iθ) = |W (e iθ)|2 =
|b(e iθ)|2

|a(e iθ)|2 =

∑
k∈Λ pke

−i(k,θ)∑
k∈Λ qke

−i(k,θ)
=

P(e iθ)

Q(e iθ)
.

where P and Q are trigonometric polynomials, and Λ = Λ+ − Λ+ (Minkowski set difference).
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Example
Texture generation by Wiener system identification

Pointed out earlier: in one dimension, spectral factorization as a sum-of-one-square:

P(e iθ)

Q(e iθ)

Spectral factorization
→
=
←

Trivial

|b(e iθ)|2

|a(e iθ)|2

Not true in the higher dimensions - only factorization as sum-of-several-squares can be guaranteed
[1, 2]:

P(e iθ)

Q(e iθ)
=

∑`
k=1 |bk(e iθ)|2∑m
k=1 |ak(e iθ)|2 .

Open question: how to construct a realization from such a spectrum?

We resort to a heuristic, obtained by “abusing” results in [3].

[1] M.A. Dritschel. On factorization of trigonometric polynomials. Integral Equations and Operator Theory, 49(1), 11-42, 2004.

[2] J.S. Geronimo, and M.J. Lai. Factorization of multivariate positive Laurent polynomials. Journal of Approximation Theory, 139(1-2), 327-345, 2006.

[3] J.S. Geronimo, and H.J. Woerdeman. Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. Annals of Mathematics, 839-906, 2004.
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Example
Texture generation by Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

Algorithm for Wiener system identification with thresholding

Input: (yt)
1: Estimate threshold parameter: τest = φ−1(1− E [yt ]) from the data.
2: Estimate covariances: rk := E [yt−kyt ]− E [yt−k]E [yt ] from the data.

3: Compute covariances ck := E [xt−kxt ] by using the relation rk =

∫ ck

0

1

2π
√

1− s2
exp

(
− τ 2

1 + s

)
ds

4: Estimate a rational spectrum using the theory developed here.
5: Apply a heuristic, approximate factorization procedure.

Output: τest, coefficients for the linear dynamical system

26 / 29



Example
Texture generation by Wiener system identification

(a) Texture. (b) Reconstruction.

(c) Close-up of the texture. (d) Close-up of the reconstruction. 27 / 29
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(e) Texture. (f) Reconstruction.

(g) Close-up of the texture. (h) Close-up of the reconstruction. 27 / 29
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(i) Texture. (j) Reconstruction.

(k) Close-up of the texture. (l) Close-up of the reconstruction. 27 / 29



Conclusion and future work

Conclusions:

Rational covariance extension - motivated from identification of a linear stochastic system

Trigonometric moment problem view and convex optimization problem generalized to
multidimensional problems

We can do estimation of rational multidimensional spectra + impulses using convex
optimization
Relaxation of exact covariance matching criteria

Example in Wiener system identification for binary texture generation

Future work/open issues:

Why do we need a singular measure in dimensions d ≥ 3?

What does a spectrum

P(e iθ)

Q(e iθ)
=

∑`
k=1 |bk(e iθ)|2∑m
k=1 |ak(e iθ)|2

represent in terms of dynamical systems in dimensions d ≥ 2?

Good method for approximation as a sum-of-one square?
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Thank you for your attention!

Questions?
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