Optimal mass transport as a distance measure between images

$$
\text { Axel Ringh }{ }^{1}
$$

${ }^{1}$ Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden.
$21^{\text {st }}$ of June 2018
INRIA, Sophia-Antipolis, France

Acknowledgements

This is based on joint work with Johan Karlsson ${ }^{1}$.
[1] J. Karlsson, and A. Ringh. Generalized Sinkhorn iterations for regularizing inverse problems using optimal mass transport. SIAM Journal on Imaging Sciences, 10(4), 1935-1962, 2017.

I acknowledge financial support from

- Swedish Research Council (VR)
- Swedish Foundation for Strategic Research (SSF)

Code: https://github.com/aringh/Generalized-Sinkhorn-and-tomography
The code is based on ODL: https://github.com/odlgroup/odl

[^0]
Outline

- Background
- Inverse problems
- Optimal mass transport
- Sinkhorn iterations - solving discretized optimal transport problems
- Sinkhorn iterations as dual coordinate ascent
- Inverse problems with optimal mass transport priors
- Example in computerized tomography

Background

Consider the problem of recovering $f \in X$ from data $g \in Y$, given by

$$
g=A(f)+\text { 'noise' }
$$

Notation:

- X is called the reconstruction space.
- Y is called the data space.
- $A: X \rightarrow Y$ is the forward operator.
- $A^{*}: Y \rightarrow X$ denotes the adjoint operator

Consider the problem of recovering $f \in X$ from data $g \in Y$, given by

$$
g=A(f)+\text { 'noise' }
$$

Notation:

- X is called the reconstruction space.
- Y is called the data space.
- $A: X \rightarrow Y$ is the forward operator.
- $A^{*}: Y \rightarrow X$ denotes the adjoint operator

Problems of interest are ill-posed inverse problems:

- a solution might not exist,
- the solution might not be unique,
- the solution does not depend continuously on data.

Simply put: A^{-1} does not exist as a continuous bijection!

Comes down to: find approximate inverse A^{\dagger} so that

$$
g=A(f)+\text { 'noise' } \Longrightarrow A^{\dagger}(g) \approx f
$$

Background

A common technique to solve ill-posed inverse problems is to use variational regularization:

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)
$$

- $\mathcal{G}: Y \times Y \rightarrow \mathbb{R}$, data discrepancy functional.
- $\mathcal{F}: X \rightarrow \mathbb{R}$, regularization functional.
- λ is the regularization parameter. Controls trade-off between data matching and regularization.

Common example in imaging is total variation regularization:

- $\mathcal{G}(h, g)=\|h-g\|_{2}^{2}$,
- $\mathcal{F}(f)=\|\nabla f\|_{1}$.

If A is linear this is a convex problem!

Background

Incorporating prior information in variational schemes

How can one incorporate prior information in such a scheme?

Background

Incorporating prior information in variational schemes

How can one incorporate prior information in such a scheme?
One way: consider

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)+\gamma \mathcal{H}(\tilde{f}, f)
$$

- \tilde{f} is prior/template
- \mathcal{H} defines "closeness" to \tilde{f}.

What is a good choice for \mathcal{H} ?

Background

How can one incorporate prior information in such a scheme?
One way: consider

$$
\underset{f \in X}{\arg \min } \mathcal{G}(A(f), g)+\lambda \mathcal{F}(f)+\gamma \mathcal{H}(\tilde{f}, f)
$$

- \tilde{f} is prior/template
- \mathcal{H} defines "closeness" to \tilde{f}.

What is a good choice for \mathcal{H} ?
Scenarios where potentially of interest.

- incomplete measurements, e.g. limited angle tomography.
- spatiotemporal imaging:
- data is a time-series of data sets: $\left\{g_{t}\right\}_{t=0}^{T}$.

For each set, the underlying image has undergone a deformation.

- each data set g_{t} normally "contains less information": $A^{\dagger}\left(g_{t}\right)$ is a poor reconstruction.

Approach: solve coupled inverse problems

$$
\underset{f_{0}, \ldots, f_{T} \in X}{\arg \min } \sum_{j=0}^{T}\left[\mathcal{G}\left(A\left(f_{j}\right), g_{j}\right)+\lambda \mathcal{F}\left(f_{j}\right)\right]+\sum_{j=1}^{T} \gamma \mathcal{H}\left(f_{j-1}, f_{j}\right)
$$

Background

Measuring distances between functions: the L_{p} metrics

Given two functions $f_{0}(x)$ and $f_{1}(x)$, what is a suitable way to measure the distance between the two ?

Background

Measuring distances between functions: the L_{p} metrics

Given two functions $f_{0}(x)$ and $f_{1}(x)$, what is a suitable way to measure the distance between the two?
One suggestion: measure it pointwise, e.g., using an L_{p} metric

$$
\left\|f_{0}-f_{1}\right\|_{p}=\left(\int_{D}\left|f_{0}(x)-f_{1}(x)\right|^{p} d x\right)^{1 / p}
$$

Background

Measuring distances between functions: the L_{p} metrics

Given two functions $f_{0}(x)$ and $f_{1}(x)$, what is a suitable way to measure the distance between the two?
One suggestion: measure it pointwise, e.g., using an L_{p} metric

$$
\left\|f_{0}-f_{1}\right\|_{p}=\left(\int_{D}\left|f_{0}(x)-f_{1}(x)\right|^{p} d x\right)^{1 / p}
$$

Draw-backs: for example unsensitive to shifts.

Example:

It gives the same distance from f_{0} to f_{1} and f_{2} : $\left\|f_{0}-f_{1}\right\|_{1}=\left\|f_{0}-f_{2}\right\|_{1}=8$.

Background

Optimal mass transport - Monge formulation

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Background

Optimal mass transport - Monge formulation

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Background

Optimal mass transport - Monge formulation

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Background

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Let $c\left(x_{0}, x_{1}\right): X \times X \rightarrow \mathbb{R}_{+}$describes the cost for transporting a unit mass from location x_{0} to x_{1}.

Given two functions $f_{0}, f_{1}: X \rightarrow \mathbb{R}_{+}$, find the function $\phi: X \rightarrow X$ minimizing the transport cost

$$
\int_{X} c(x, \phi(x)) f_{0}(x) d x
$$

Background

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Let $c\left(x_{0}, x_{1}\right): X \times X \rightarrow \mathbb{R}_{+}$describes the cost for transporting a unit mass from location x_{0} to x_{1}.

Given two functions $f_{0}, f_{1}: X \rightarrow \mathbb{R}_{+}$, find the function $\phi: X \rightarrow X$ minimizing the transport cost

$$
\int_{X} c(x, \phi(x)) f_{0}(x) d x
$$

where ϕ is mass preserving map from f_{0} to f_{1} :

$$
\int_{x \in A} f_{1}(x) d x=\int_{\phi(x) \in A} f_{0}(x) d x \quad \text { for all } A \subset X
$$

Background

Gaspard Monge: formulated optimal mass transport 1781. Optimal transport of soil for construction of forts and roads.

Let $c\left(x_{0}, x_{1}\right): X \times X \rightarrow \mathbb{R}_{+}$describes the cost for transporting a unit mass from location x_{0} to x_{1}.

Given two functions $f_{0}, f_{1}: X \longrightarrow X$ minimizing the transport cost

$$
\int_{x} c(x
$$

Nonconvex problem!
where ϕ is mass preserving map from f_{0} to f_{1} :

$$
\int_{x \in A} f_{1}(x) d x=\int_{\phi(x) \in A} f_{0}(x) d x \quad \text { for all } A \subset X
$$

\square

Background

Optimal mass transport - Kantorovich formulation

Leonid Kantorovich: convex formulation and duality theory 1942.
Nobel Memorial Prize 1975 in Economics for "contributions to the theory of optimum allocation of resources."

Leonid Kantorovich

Background

Leonid Kantorovich: convex formulation and duality theory 1942. Nobel Memorial Prize 1975 in Economics for "contributions to the theory of optimum allocation of resources."

Again, let $c\left(x_{0}, x_{1}\right)$ denote the cost of transporting a unit mass from the point x_{0} to the point x_{1}.

Leonid Kantorovich

Given two functions $f_{0}, f_{1}: X \rightarrow \mathbb{R}_{+}$, find a transport plan M : $X \times X \rightarrow \mathbb{R}_{+}$, where $M\left(x_{0}, x_{1}\right)$ is the amount of mass moved between x_{0} to x_{1}.

Background

Leonid Kantorovich: convex formulation and duality theory 1942. Nobel Memorial Prize 1975 in Economics for "contributions to the theory of optimum allocation of resources."

Again, let $c\left(x_{0}, x_{1}\right)$ denote the cost of transporting a unit mass from the point x_{0} to the point x_{1}.

Leonid Kantorovich

Given two functions $f_{0}, f_{1}: X \rightarrow \mathbb{R}_{+}$, find a transport plan M : $X \times X \rightarrow \mathbb{R}_{+}$, where $M\left(x_{0}, x_{1}\right)$ is the amount of mass moved between x_{0} to x_{1}.

Background

Leonid Kantorovich: convex formulation and duality theory 1942. Nobel Memorial Prize 1975 in Economics for "contributions to the theory of optimum allocation of resources."

Again, let $c\left(x_{0}, x_{1}\right)$ denote the cost of transporting a unit mass from the point x_{0} to the point x_{1}.

Leonid Kantorovich

Given two functions $f_{0}, f_{1}: X \rightarrow \mathbb{R}_{+}$, find a transport plan M : $X \times X \rightarrow \mathbb{R}_{+}$, where $M\left(x_{0}, x_{1}\right)$ is the amount of mass moved between x_{0} to x_{1}. Look for M that minimizes transportation cost:

$$
\min _{M \geq 0} \int_{X \times X} c\left(x_{0}, x_{1}\right) M\left(x_{0}, x_{1}\right) d x_{0} d x_{1}
$$

Background

Leonid Kantorovich: convex formulation and duality theory 1942. Nobel Memorial Prize 1975 in Economics for "contributions to the theory of optimum allocation of resources."

Again, let $c\left(x_{0}, x_{1}\right)$ denote the cost of transporting a unit mass from the point x_{0} to the point x_{1}.

Leonid Kantorovich

Background

Measuring distances between functions: optimal mass transport

Define a distance between two functions $f_{0}(x)$ and $f_{1}(x)$ using optimal transport

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{M \geq 0} & \int_{X \times X} c\left(x_{0}, x_{1}\right) M\left(x_{0}, x_{1}\right) d x_{0} d x_{1} \\ \text { s.t. } & f_{0}\left(x_{0}\right)=\int_{X} M\left(x_{0}, x_{1}\right) d x_{1}, x_{0} \in X \\ & f_{1}\left(x_{1}\right)=\int_{X} M\left(x_{0}, x_{1}\right) d x_{0}, x_{1} \in X\end{cases}
$$

If $d(x, y)$ metric on X and $c(x, y)=d(x, y)^{p}$, then $T\left(f_{0}, f_{1}\right)^{1 / p}$ is a metric on the space of measures.

Background

Measuring distances between functions: optimal mass transport

Define a distance between two functions $f_{0}(x)$ and $f_{1}(x)$ using optimal transport

$$
T\left(f_{0}, f_{1}\right):= \begin{cases}\min _{M \geq 0} & \int_{X \times X} c\left(x_{0}, x_{1}\right) M\left(x_{0}, x_{1}\right) d x_{0} d x_{1} \\ \text { s.t. } & f_{0}\left(x_{0}\right)=\int_{X} M\left(x_{0}, x_{1}\right) d x_{1}, x_{0} \in X \\ & f_{1}\left(x_{1}\right)=\int_{X} M\left(x_{0}, x_{1}\right) d x_{0}, x_{1} \in X\end{cases}
$$

If $d(x, y)$ metric on X and $c(x, y)=d(x, y)^{p}$, then $T\left(f_{0}, f_{1}\right)^{1 / p}$ is a metric on the space of measures.
Example revisited: let $c(x, y)=\|x-y\|_{2}^{2}$
$T\left(f_{0}, f_{1}\right)=4 \cdot(\sqrt{2})^{2}=8$,
$T\left(f_{0}, f_{2}\right)=4 \cdot 5^{2}=100$

This indicates that optimal transport is a more natural distance between two images than L_{p}, at least if one is a deformation of the other.

Background

Optimal mass transport - discrete formulation

How to solve the optimal transport problem? Here: "discretize then optimize"

Background

Optimal mass transport - discrete formulation

How to solve the optimal transport problem? Here: "discretize then optimize"

A linear programming problem: for vectors $f_{0} \in \mathbb{R}^{n}$ and $f_{1} \in \mathbb{R}^{m}$ and a cost matrix $C=\left[c_{i j}\right] \in \mathbb{R}^{n \times m}$, where $c_{i j}$ defines the transportation cost between pixels x_{i} and x_{j}, find the transportation plan $M=\left[m_{i j}\right] \in \mathbb{R}^{n \times m}, m_{i j}$ is the mass transported between pixels x_{i} and x_{j}, such that

$$
\begin{aligned}
\min _{m_{i j} \geq 0} & \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} m_{i j} \\
\text { subject to } & \sum_{j=1}^{m} m_{i j}=f_{0}(i), i=1, \ldots, n \\
& \sum_{i=1}^{n} m_{i j}=f_{1}(j), j=1, \ldots, m
\end{aligned}
$$

Background

How to solve the optimal transport problem? Here: "discretize then optimize"

A linear programming problem: for vectors $f_{0} \in \mathbb{R}^{n}$ and $f_{1} \in \mathbb{R}^{m}$ and a cost matrix $C=\left[c_{i j}\right] \in \mathbb{R}^{n \times m}$, where $c_{i j}$ defines the transportation cost between pixels x_{i} and x_{j}, find the transportation plan $M=\left[m_{i j}\right] \in \mathbb{R}^{n \times m}, m_{i j}$ is the mass transported between pixels x_{i} and x_{j}, such that

$$
\begin{aligned}
& \min _{m_{i j} \geq 0} \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} m_{i j} \\
& \text { subject to } \sum_{j=1}^{m} m_{i j}=f_{0}(i), i=1, \ldots, n \\
& \sum_{i=1}^{n} m_{i j}=f_{1}(j), j=1, \ldots, m \\
& \min _{M \geq 0} \operatorname{trace}\left(C^{\top} M\right) \\
& \text { subject to } \quad M 1_{m}=f_{0} \\
& M^{T} \mathbf{1}_{n}=f_{1}
\end{aligned}
$$

Background

How to solve the optimal transport problem? Here: "discretize then optimize"

A linear programming problem: for vectors $f_{0} \in \mathbb{R}^{n}$ and $f_{1} \in \mathbb{R}^{m}$ and a cost matrix $C=\left[c_{i j}\right] \in \mathbb{R}^{n \times m}$, where $c_{i j}$ defines the transportation cost between pixels x_{i} and x_{j}, find the transportation plan $M=\left[m_{i j}\right] \in \mathbb{R}^{n \times m}, m_{i j}$ is the mass transported between pixels x_{i} and x_{j}, such that

$$
\begin{array}{rlr}
\min _{m_{i j} \geq 0} \sum_{i=1}^{n} \sum_{j=1}^{m} c_{i j} m_{i j} \\
\text { subject to } & \sum_{j=1}^{m} m_{i j}=f_{0}(i), i=1, \ldots, n \\
& \sum_{i=1}^{n} m_{i j}=f_{1}(j), j=1, \ldots, m & \\
M \geq 0 & \operatorname{trace}\left(C^{T} M\right)
\end{array}
$$

Number of variables is $n \cdot m$. To compare the distance between to images of size $n=m=256 \times 256$:
$M \in \mathbb{R}^{256^{2} \times 256^{2}} \Longrightarrow$ approximately $4 \cdot 10^{9}$ variables. Prohibitively large!

Background

Optimal mass transport - Sinkhorn iterations

Original problem too computationally demanding.
Solution: introduce an entropy barrier/regularization term $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$ [1],

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to }
\end{array} f_{0}=M \mathbf{1} .
$$

Background

Optimal mass transport - Sinkhorn iterations

Original problem too computationally demanding.
Solution: introduce an entropy barrier/regularization term $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$ [1],

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
\text { subject to } & f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M \mathbf{1}\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

Background

Original problem too computationally demanding.
Solution: introduce an entropy barrier/regularization term $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$ [1],

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to }
\end{array} f_{0}=M \mathbf{1} 1 .
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M 1\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

- Given dual variables λ_{0}, λ_{1}, the minimum $m_{i j}$ is

$$
0=\frac{\partial L\left(M, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

Background

Original problem too computationally demanding.
Solution: introduce an entropy barrier/regularization term $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$ [1],

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to }
\end{array} f_{0}=M \mathbf{1} 1 .
$$

- Using Lagrangian relaxation gives

$$
L\left(M, \lambda_{0}, \lambda_{1}\right)=\operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\lambda_{0}^{T}\left(f_{0}-M 1\right)+\lambda_{1}^{T}\left(f_{1}-M^{T} \mathbf{1}\right)
$$

- Given dual variables λ_{0}, λ_{1}, the minimum $m_{i j}$ is

$$
0=\frac{\partial L\left(M, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

- Expressed as $m_{i j}=e^{\lambda_{0}(i) / \epsilon} e^{-c_{i j} / \epsilon} e^{\lambda_{1}(j) / \epsilon}$

$$
M=\operatorname{diag}\left(e^{\lambda_{0}^{T} / \epsilon}\right) K \operatorname{diag}\left(e^{\lambda_{1} / \epsilon}\right)
$$

where $K=\exp (-C / \epsilon)$. Here and in what follows $\exp (\cdot), \log (\cdot), . /, \odot$ denotes the elementwise function.
[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.

Background

Original problem too computationally demanding.
Solution: introduce an entropy barrier/regularization term $D(M)=\sum_{i, j}\left(m_{i j} \log \left(m_{i j}\right)-m_{i j}+1\right)$ [1],

$$
\begin{array}{ll}
T_{\epsilon}\left(f_{0}, f_{1}\right):=\min _{M \geq 0} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M) \\
& \text { subject to }
\end{array} f_{0}=M \mathbf{1} 1 .
$$

- Using Lagrangian relaxation gives

The solution $M=\operatorname{diag}\left(e^{\lambda_{0}^{T} / \epsilon}\right) K \operatorname{diag}\left(e^{\lambda_{1} / \epsilon}\right)$ is specified by $n+m$ unknowns!

- Gi

$$
0=\frac{\partial L\left(I V I, \lambda_{0}, \lambda_{1}\right)}{\partial m_{i j}}=c_{i j}+\epsilon \log \left(m_{i j}\right)-\lambda_{0}(i)-\lambda_{1}(j)
$$

- Expressed as $m_{i j}=e^{\lambda_{0}(i) / \epsilon} e^{-c_{i j} / \epsilon} e^{\lambda_{1}(j) / \epsilon}$

$$
M=\operatorname{diag}\left(e^{\lambda_{0}^{T} / \epsilon}\right) K \operatorname{diag}\left(e^{\lambda_{1} / \epsilon}\right)
$$

where $K=\exp (-C / \epsilon)$. Here and in what follows $\exp (\cdot), \log (\cdot), . /, \odot$ denotes the elementwise function.
[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.

Background

Optimal mass transport - Sinkhorn iterations

How to find the values of λ_{0} and λ_{1} ?

[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.

Background

Optimal mass transport - Sinkhorn iterations

How to find the values of λ_{0} and λ_{1} ?
Let $u_{0}=\exp \left(\lambda_{0} / \epsilon\right), u_{1}=\exp \left(\lambda_{1} / \epsilon\right)$. The optimal solution $M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)$ needs to satisfy $\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right) \mathbf{1}=f_{0}$ and $\operatorname{diag}\left(u_{1}\right) K^{T} \operatorname{diag}\left(u_{0}\right) \mathbf{1}=f_{1}$.
[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.

Background

How to find the values of λ_{0} and λ_{1} ?
Let $u_{0}=\exp \left(\lambda_{0} / \epsilon\right), u_{1}=\exp \left(\lambda_{1} / \epsilon\right)$. The optimal solution $M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)$ needs to satisfy

$$
\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right) \mathbf{1}=f_{0} \text { and } \operatorname{diag}\left(u_{1}\right) K^{T} \operatorname{diag}\left(u_{0}\right) \mathbf{1}=f_{1}
$$

Theorem (Sinkhorn iterations [2])

For any matrix K with positive elements there are diagonal matrices $\operatorname{diag}\left(u_{0}\right)$, $\operatorname{diag}\left(u_{1}\right)$ such that $M=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)$ has prescribed row- and column-sums f_{0} and f_{1}. The vectors u_{0} and u_{1} can be obtained by alternating marginalization:

$$
\begin{aligned}
& u_{0}=f_{0} \cdot /\left(K u_{1}\right) \\
& u_{1}=f_{1} \cdot /\left(K^{T} u_{0}\right) .
\end{aligned}
$$

- Each iteration only requires the multiplications $K u_{1}$ and $K^{T} u_{0}$. This is the bottle neck.
- Linear convergence rate.

Thus highly computationally efficient, allowing for solving large problems.
[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.
[2] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 74(4), 402-405, 1967.

Sinkhorn iterations as dual coordinate ascent

Several ways to motivate Sinkhorn iterations [1]

- Diagonal matrix scaling
- Bregman projections
- Dykstra's algorithm
[1] J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138, 2015.

Sinkhorn iterations as dual coordinate ascent

Several ways to motivate Sinkhorn iterations [1]

- Diagonal matrix scaling
- Bregman projections
- Dykstra's algorithm

Here we will introduce yet another interpretation:

- Use a dual formulation
- The Sinkhorn iteration corresponds to dual coordinate ascent
- This allows us to generalize Sinkhorn iterations
- Approach for addressing inverse problem with optimal transport term
[1] J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections for regularized transportation problems. SIAM Journal on Scientific Computing, 37(2), A1111-A1138, 2015.

Sinkhorn iterations as dual coordinate ascent

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

Sinkhorn iterations as dual coordinate ascent

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\begin{aligned}
\varphi\left(u_{0}, u_{1}\right) & :=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots \\
& =\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n m .
\end{aligned}
$$

Sinkhorn iterations as dual coordinate ascent

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\begin{aligned}
\varphi\left(u_{0}, u_{1}\right) & :=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots \\
& =\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{T} K u_{1}+\epsilon n m .
\end{aligned}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1}} \varphi\left(u_{0}, u_{1}\right)
$$

Sinkhorn iterations as dual coordinate ascent

- Lagrangian relaxation gave optimal form of the primal variable

$$
M^{*}=\operatorname{diag}\left(u_{0}\right) K \operatorname{diag}\left(u_{1}\right)
$$

- The Lagrangian dual function:

$$
\begin{aligned}
\varphi\left(u_{0}, u_{1}\right) & :=\min _{M \geq 0} L\left(M, u_{0}, u_{1}\right)=L\left(M^{*}, u_{0}, u_{1}\right)=\ldots \\
& =\epsilon \log \left(u_{0}\right)^{T} f_{0}+\epsilon \log \left(u_{1}\right)^{T} f_{1}-\epsilon u_{0}^{\top} K u_{1}+\epsilon n m .
\end{aligned}
$$

- The dual problem is thus

$$
\max _{u_{0}, u_{1}} \varphi\left(u_{0}, u_{1}\right)
$$

- Taking the gradient w.r.t u_{0} and putting it equal to zero gives

$$
0=f_{0} . / u_{0}-K u_{1},
$$

and w.r.t u_{1} gives

$$
0=f_{1} \cdot / u_{1}-\left(u_{0}^{T} K\right)^{T} .
$$

These are the Sinkhorn iterations!

Sinkhorn iterations as dual coordinate ascent

For g proper, convex and lower semicontinuous, we can now consider problems of the form $\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+g\left(f_{1}\right)$

Sinkhorn iterations as dual coordinate ascent

For g proper, convex and lower semicontinuous, we can now consider problems of the form

$$
\begin{array}{ll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+g\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }}} \begin{array}{ll}
& \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+g\left(f_{1}\right) \\
& f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1}
\end{array} .
\end{array}
$$

Sinkhorn iterations as dual coordinate ascent

For g proper, convex and lower semicontinuous, we can now consider problems of the form

$$
\begin{array}{lll}
\min _{f_{1}} T_{\epsilon}\left(f_{0}, f_{1}\right)+g\left(f_{1}\right)=\min _{\substack{M \geq 0, f_{1} \\
\text { subject to }}} & \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+g\left(f_{1}\right) \\
& f_{0}=M \mathbf{1} \\
& f_{1}=M^{T} \mathbf{1}
\end{array}
$$

Can be solve by dual coordinate ascent

$$
\begin{aligned}
& u_{0}=f_{0} \cdot /\left(K u_{1}\right) \\
& 0 \in \partial g^{*}\left(-\epsilon \log \left(u_{1}\right)\right) \frac{1}{u_{1}}-K^{T} u_{0}
\end{aligned}
$$

if the second inclusion can be solved efficiently.
Can be solvable when $\partial g^{*}(\cdot)$ is component-wise. Example of such cases:

- $g(\cdot)=\mathcal{I}_{\tilde{f}}(\cdot)$ indicator function on $\{\tilde{f}\} \rightsquigarrow$ original optimal transport problem
- $g(\cdot)=\|\cdot\|_{2}^{2}$

Consider the inverse problems

$$
\begin{aligned}
\min _{f_{1} \geq 0} & \left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$

Inverse problems with optimal mass transport priors

Consider the inverse problems

$$
\begin{aligned}
& \min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1}+" f_{1} \text { close to } f_{0} " \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$
- Prior f_{0}

Consider the inverse problems

$$
\begin{aligned}
& \min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1}+\gamma T_{\epsilon}\left(f_{0}, f_{1}\right) \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$
- Prior f_{0}

Inverse problems with optimal mass transport priors

Consider the inverse problems

$$
\begin{aligned}
& \min _{f_{1} \geq 0}\left\|\nabla f_{1}\right\|_{1}+\gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right) \\
& \text { subject to }\left\|A f_{1}-g\right\|_{2} \leq \kappa .
\end{aligned}
$$

- TV-regularization term: $\left\|\nabla f_{1}\right\|_{1}$
- Forward model A, data g, and data mismatch term: $\left\|A f_{1}-g\right\|_{2}$
- Prior f_{0}

Large convex optimization problem with several terms, variable splitting common: ADMM, primal-dual hybrid gradient algorithm, primal-dual Douglas-Rachford algorithm.

Common tool in these algorithms: the proximal operator of the involved functions \mathcal{F}.

$$
\operatorname{Prox}_{\mathcal{F}}^{\sigma}(h)=\underset{f}{\operatorname{argmin}} \mathcal{F}(f)+\frac{1}{2 \sigma}\|f-h\|_{2}^{2} .
$$

[^1]
Inverse problems with optimal mass transport priors

We want to compute the proximal of $T_{\epsilon}\left(f_{0}, \cdot\right)$, given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\operatorname{argmin}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2} .
$$

Thus we want to solve

$$
\min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

subject to $f_{0}=M 1$

$$
f_{1}=M^{T} \mathbf{1}
$$

We want to compute the proximal of $T_{\epsilon}\left(f_{0}, \cdot\right)$, given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\operatorname{argmin}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

Thus we want to solve

$$
\min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

subject to $f_{0}=M 1$

$$
f_{1}=M^{T} \mathbf{1}
$$

Using dual coordinate ascent, with $g(\cdot)=\frac{1}{2 \sigma}\|\cdot-h\|_{2}^{2}$, we get the algorithm:

> Compare to
> (1) $u_{0}=f_{0} \cdot /\left(K u_{1}\right)$
> (2) $u_{1}=f_{1} . /\left(K^{T} u_{0}\right)$
(1) $u_{0}=f_{0} \cdot /\left(K u_{1}\right)$
(2) $\left.u_{1}=\exp \left(\frac{h}{\sigma \epsilon}-\omega\left(\frac{h}{\sigma \epsilon}+\log \left(K^{T} u_{0}\right)\right)+\log (\sigma \epsilon)\right)\right)$

- Here ω denotes the (elementwise) Wright omega function, i.e., $x=\log (\omega(x))+\omega(x)$.
- Solved elementwise. Bottleneck is still computation of $K u_{1}, K^{T} u_{0}$.

We want to compute the proximal of $T_{\epsilon}\left(f_{0}, \cdot\right)$, given by

$$
\operatorname{Prox}_{T_{\epsilon}\left(f_{0}, \cdot\right)}^{\sigma}(h)=\underset{f_{1}}{\operatorname{argmin}} T_{\epsilon}\left(f_{0}, f_{1}\right)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

Thus we want to solve

$$
\min _{M \geq 0, f_{1}} \operatorname{trace}\left(C^{T} M\right)+\epsilon D(M)+\frac{1}{2 \sigma}\left\|f_{1}-h\right\|_{2}^{2}
$$

$$
\text { subject to } f_{0}=M 1
$$

$$
f_{1}=M^{T} \mathbf{1}
$$

Using dual coordinate ascent, with $g(\cdot)=\frac{1}{2 \sigma}\|\cdot-h\|_{2}^{2}$, we get the algorithm:

> Compare to
> (1) $u_{0}=f_{0} \cdot /\left(K u_{1}\right)$
> (2) $u_{1}=f_{1} . /\left(K^{T} u_{0}\right)$
(1) $u_{0}=f_{0} \cdot /\left(K u_{1}\right)$
(2) $\left.u_{1}=\exp \left(\frac{h}{\sigma \epsilon}-\omega\left(\frac{h}{\sigma \epsilon}+\log \left(K^{T} u_{0}\right)\right)+\log (\sigma \epsilon)\right)\right)$

- Here ω denotes the (elementwise) Wright omega function, i.e., $x=\log (\omega(x))+\omega(x)$.
- Solved elementwise. Bottleneck is still computation of $K u_{1}, K^{T} u_{0}$.

Theorem

The algorithm is globally convergent, and with linear convergence rate.

Example in computerized tomography

Computerized Tomography (CT): imaging modality used in many areas, e.g., medicine.

- The object is probed with X-rays.
- Different materials attenuates X-rays differently \Longrightarrow incoming and outgoing intensities gives information about the object.
- Simplest model

$$
\int_{L_{r, \theta}} f(x) d x=\log \left(\frac{I_{0}}{I}\right)
$$

- $f(x)$ is the attenuation in the point x, which is what we want to reconstruct,
- $L_{r, \theta}$ is the line along which the X -ray beam travels,
- I_{0} and I are the the incoming and outgoing intensities.

Illustration from Wikipedia

Example in computerized tomography

Parallel beam 2D CT example:

- Reconstruction space: 256×256 pixels
- Angles: 30 in $[\pi / 4,3 \pi / 4]$ (limited angle)
- Detector partition: uniform 350 bins
- Noise level 5%

(a) Shepp-Logan phantom

(b) Prior

Example in computerized tomography

TV-regularization and ℓ_{2}^{2} prior:

$$
\begin{array}{ll}
\min _{f_{1}} & \gamma\left\|f_{0}-f_{1}\right\|_{2}^{2}+\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|\boldsymbol{A} f_{1}-w\right\|_{2} \leq \kappa .
\end{array}
$$

TV-regularization and optimal transport prior:

$$
\begin{array}{ll}
\min _{f_{1}} & \gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right)+\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|\boldsymbol{A} f_{1}-w\right\|_{2} \leq \kappa .
\end{array}
$$

(f) Shepp-Logan phantom

(g) Prior

Example in computerized tomography

TV-regularization and ℓ_{2}^{2} prior:

$$
\begin{aligned}
\min _{f_{1}} & \gamma\left\|f_{0}-f_{1}\right\|_{2}^{2}+\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|\boldsymbol{A} f_{1}-w\right\|_{2} \leq \kappa
\end{aligned}
$$

TV-regularization and optimal transport prior:

$$
\begin{aligned}
\min _{f_{1}} & \gamma \boldsymbol{T}_{\epsilon}\left(f_{0}, f_{1}\right)+\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|A f_{1}-w\right\|_{2} \leq \kappa
\end{aligned}
$$

(k) Shepp-Logan phantom

(I) Prior

(m) TV-regularization

(n) TV-regularization and ℓ_{2}^{2}-prior $(\gamma=10)$

(o) TV-regularization and optimal transport prior $(\gamma=4)$

Example in computerized tomography

Comparing different regularization parameters for the problem with ℓ_{2}^{2} prior.

$$
\begin{array}{ll}
\min _{f_{1}} & \gamma\left\|f_{0}-f_{1}\right\|_{2}^{2}+\left\|\nabla f_{1}\right\|_{1} \\
\text { subject to } & \left\|\boldsymbol{A} f_{1}-w\right\|_{2} \leq \kappa
\end{array}
$$

(p) $\gamma=1$

(q) $\gamma=10$

(r) $\gamma=100$

(s) $\gamma=1000$

(t) $\gamma=10000$.

Figure: Reconstructions using ℓ_{2} prior with different regularization parameters γ.

Example in computerized tomography

Parallel beam 2D CT example:

- Reconstruction space: 256×256 pixels
- Angles: 30 in $[0, \pi]$
- Detector partition: uniform 350 bins
- Noise level 3%

(a) Phantom

(b) Prior

Example in computerized tomography

Parallel beam 2D CT example:

- Reconstruction space: 256×256 pixels
- Angles: 30 in $[0, \pi]$
- Detector partition: uniform 350 bins
- Noise level 3\%

(f) Phantom

(i) TV-regularization and ℓ_{2}^{2}-prior ($\gamma=10$)

(g) Prior

(j) TV-regularization and optimal transport prior $(\gamma=4)$

Conclusions

- Optimal mass transport - a viable framework for imaging applications
- Generalized Sinkhorn iteration for computing the proximal operator of optimal transport cost
- Use variable splitting for solving the inverse problem
- Application to CT reconstruction using optimal transport priors

Conclusions and further work

Conclusions

- Optimal mass transport - a viable framework for imaging applications
- Generalized Sinkhorn iteration for computing the proximal operator of optimal transport cost
- Use variable splitting for solving the inverse problem
- Application to CT reconstruction using optimal transport priors

Potential future directions:

- Application to spatiotemporal image reconstruction:

$$
\underset{\substack{f_{0}, \ldots, f_{T} \in X}}{\arg \min } \sum_{j=0}^{T}\left[\mathcal{G}\left(A\left(f_{j}\right), g_{j}\right)+\lambda \mathcal{F}\left(f_{j}\right)\right]+\sum_{j=1}^{T} \gamma \mathcal{H}\left(f_{j-1}, f_{j}\right)
$$

- More efficient ways of solving the dual problem?
- Learning for inverse problems using optimal transport as a loss function

Thank you for your attention!

Questions?

[^0]: ${ }^{1}$ Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

[^1]: [1] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5), 877-898, 1976.

