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Background
Inverse problems

Consider the problem of recovering f ∈ X from data g ∈ Y , given by

g = A(f ) + ’noise’

Notation:

X is called the reconstruction space.
Y is called the data space.
A : X → Y is the forward operator.
A∗ : Y → X denotes the adjoint operator

Problems of interest are ill-posed inverse problems:

a solution might not exist,
the solution might not be unique,
the solution does not depend continuously on data.

Simply put: A−1 does not exist as a continuous bijection!

Comes down to: find approximate inverse A† so that

g = A(f ) + ’noise’ =⇒ A†(g) ≈ f .
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Background
Variational regularization

A common technique to solve ill-posed inverse problems is to use variational regularization:

arg min
f∈X

G(A(f ), g) + λF(f )

G : Y × Y → R, data discrepancy functional.

F : X → R, regularization functional.

λ is the regularization parameter. Controls trade-off between data matching and regularization.

Common example in imaging is total variation regularization:

G(h, g) = ‖h − g‖2
2,

F(f ) = ‖∇f ‖1.

If A is linear this is a convex problem!
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Background
Incorporating prior information in variational schemes

How can one incorporate prior information in such a scheme?

One way: consider
arg min

f∈X
G(A(f ), g) + λF(f ) + γH(f̃ , f )

f̃ is prior/template
H defines “closeness” to f̃ .

What is a good choice for H?

Scenarios where potentially of interest.

incomplete measurements, e.g. limited angle tomography.
spatiotemporal imaging:

data is a time-series of data sets: {gt}Tt=0.
For each set, the underlying image has undergone a deformation.
each data set gt normally “contains less information”: A†(gt) is a poor reconstruction.

Approach: solve coupled inverse problems

arg min
f0,...,fT∈X

T∑
j=0

[
G(A(fj), gj) + λF(fj)

]
+

T∑
j=1

γH(fj−1, fj)
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Background
Measuring distances between functions: the Lp metrics

Given two functions f0(x) and f1(x), what is a suitable way to measure the distance between the two?

One suggestion: measure it pointwise, e.g., using an Lp metric

‖f0 − f1‖p =

(∫
D

|f0(x)− f1(x)|pdx
)1/p

.

Draw-backs: for example unsensitive to shifts.

Example:
It gives the same distance from f0 to f1 and f2:
‖f0 − f1‖1 = ‖f0 − f2‖1 = 8.
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Background
Optimal mass transport - Monge formulation

Gaspard Monge: formulated optimal mass transport 1781.
Optimal transport of soil for construction of forts and roads.

Gaspard Monge

Let c(x0, x1) : X × X → R+ describes the cost for transporting a
unit mass from location x0 to x1.

Given two functions f0, f1 : X → R+, find the function φ : X → X
minimizing the transport cost∫

X

c(x , φ(x))f0(x)dx

where φ is mass preserving map from f0 to f1:∫
x∈A

f1(x)dx =

∫
φ(x)∈A

f0(x)dx for all A ⊂ X .
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Nonconvex problem!
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Background
Optimal mass transport - Kantorovich formulation

Leonid Kantorovich: convex formulation and duality theory 1942.
Nobel Memorial Prize 1975 in Economics for “contributions to the theory of
optimum allocation of resources.”

Leonid Kantorovich

Again, let c(x0, x1) denote the cost of transporting a unit mass from
the point x0 to the point x1.

Given two functions f0, f1 : X → R+, find a transport plan M :
X×X → R+, where M(x0, x1) is the amount of mass moved between
x0 to x1. Look for M that minimizes transportation cost:

min
M≥0

∫
X×X

c(x0, x1)M(x0, x1)dx0dx1

s.t. f0(x0) =

∫
X

M(x0, x1)dx1, x0 ∈ X

f1(x1) =

∫
X

M(x0, x1)dx0, x1 ∈ X .
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Background
Measuring distances between functions: optimal mass transport

Define a distance between two functions f0(x) and f1(x) using optimal transport

T (f0, f1) :=


min
M≥0

∫
X×X

c(x0, x1)M(x0, x1)dx0dx1

s.t. f0(x0) =

∫
X
M(x0, x1)dx1, x0 ∈ X

f1(x1) =

∫
X
M(x0, x1)dx0, x1 ∈ X .

If d(x , y) metric on X and c(x , y) = d(x , y)p, then T (f0, f1)1/p is a metric on the space of measures.
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If d(x , y) metric on X and c(x , y) = d(x , y)p, then T (f0, f1)1/p is a metric on the space of measures.

Example revisited: let c(x , y) = ‖x − y‖2
2

T (f0, f1) = 4 · (
√

2)2 = 8,
T (f0, f2) = 4 · 52 = 100

This indicates that optimal transport is a more natural distance between two images than Lp,
at least if one is a deformation of the other.
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Background
Optimal mass transport - discrete formulation

How to solve the optimal transport problem? Here: “discretize then optimize”

A linear programming problem: for vectors f0 ∈ Rn and f1 ∈ Rm and a cost matrix C = [cij ] ∈ Rn×m,
where cij defines the transportation cost between pixels xi and xj , find the transportation plan
M = [mij ] ∈ Rn×m, mij is the mass transported between pixels xi and xj , such that

min
mij≥0

n∑
i=1

m∑
j=1

cijmij

subject to
m∑
j=1

mij = f0(i), i = 1, . . . , n

n∑
i=1

mij = f1(j), j = 1, . . . ,m

⇐⇒

min
M≥0

trace(CTM)

subject to M1m = f0

MT1n = f1

Number of variables is n ·m. To compare the distance between to images of size n = m = 256× 256:

M ∈ R2562×2562

=⇒ approximately 4 · 109variables. Prohibitively large!
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Background
Optimal mass transport - Sinkhorn iterations

Original problem too computationally demanding.

Solution: introduce an entropy barrier/regularization term D(M) =
∑

i,j(mij log(mij)−mij + 1) [1],

Tε(f0, f1) := min
M≥0

trace(CTM) + εD(M)

subject to f0 = M1

f1 = MT1.

Using Lagrangian relaxation gives

L(M, λ0, λ1) = trace(CTM) + εD(M) + λT
0 (f0 −M1) + λT

1 (f1 −MT1).

Given dual variables λ0, λ1, the minimum mij is

0 =
∂L(M, λ0, λ1)

∂mij
= cij + ε log(mij)− λ0(i)− λ1(j)

Expressed as mij = eλ0(i)/εe−cij/εeλ1(j)/ε

M = diag(eλ
T
0 /ε)Kdiag(eλ1/ε)

where K = exp(−C/ε). Here and in what follows exp(·), log(·), ./, � denotes the elementwise function.

[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages
2292–2300, 2013. 12 / 24

The solution M = diag(eλ
T
0 /ε)Kdiag(eλ1/ε) is specified by n + m unknowns!
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Background
Optimal mass transport - Sinkhorn iterations

How to find the values of λ0 and λ1?

Let u0 = exp(λ0/ε), u1 = exp(λ1/ε). The optimal solution M = diag(u0)Kdiag(u1) needs to satisfy

diag(u0)Kdiag(u1)1 = f0 and diag(u1)KTdiag(u0)1 = f1.

Theorem (Sinkhorn iterations [2])

For any matrix K with positive elements there are diagonal matrices diag(u0), diag(u1) such that
M = diag(u0)Kdiag(u1) has prescribed row- and column-sums f0 and f1. The vectors u0 and u1 can be
obtained by alternating marginalization:

u0 = f0./(Ku1)

u1 = f1./(KTu0).

Each iteration only requires the multiplications Ku1 and KTu0. This is the bottle neck.
Linear convergence rate.

Thus highly computationally efficient, allowing for solving large problems.

[1] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in Neural Information Processing Systems, pages
2292–2300, 2013.

[2] R. Sinkhorn. Diagonal equivalence to matrices with prescribed row and column sums. The American Mathematical Monthly, 74(4), 402–405,
1967.
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Sinkhorn iterations as dual coordinate ascent

Several ways to motivate Sinkhorn iterations [1]

Diagonal matrix scaling

Bregman projections

Dykstra’s algorithm

Here we will introduce yet another interpretation:

Use a dual formulation

The Sinkhorn iteration corresponds to dual coordinate ascent

This allows us to generalize Sinkhorn iterations

Approach for addressing inverse problem with optimal transport term

[1] J.D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative Bregman projections for regularized transportation problems. SIAM
Journal on Scientific Computing, 37(2), A1111-A1138, 2015.
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Sinkhorn iterations as dual coordinate ascent

Lagrangian relaxation gave optimal form of the primal variable

M∗ = diag(u0)Kdiag(u1)

The Lagrangian dual function:

ϕ(u0, u1) := min
M≥0

L(M, u0, u1) = L(M∗, u0, u1) = . . .

= ε log(u0)T f0 + ε log(u1)T f1 − εuT
0 Ku1 + εnm.

The dual problem is thus
max
u0,u1

ϕ(u0, u1)

Taking the gradient w.r.t u0 and putting it equal to zero gives

0 = f0./u0 − Ku1,

and w.r.t u1 gives

0 = f1./u1 −
(
uT

0 K
)T
.

These are the Sinkhorn iterations!
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Sinkhorn iterations as dual coordinate ascent

For g proper, convex and lower semicontinuous, we can now consider problems of the form

min
f1

Tε(f0, f1) + g(f1)

= min
M≥0, f1

trace(CTM) + εD(M) + g(f1)

subject to f0 = M1

f1 = MT1.

Can be solve by dual coordinate ascent

u0 = f0./(Ku1)

0 ∈ ∂g∗(−ε log(u1))
1

u1
− KTu0,

if the second inclusion can be solved efficiently.

Can be solvable when ∂g∗(·) is component-wise. Example of such cases:

g(·) = If̃ (·) indicator function on {f̃ }  original optimal transport problem

g(·) = ‖ · ‖2
2
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Inverse problems with optimal mass transport priors

Consider the inverse problems

min
f1≥0

‖∇f1‖1

+ γTε(f0, f1)

subject to ‖Af1 − g‖2 ≤ κ.
TV-regularization term: ‖∇f1‖1

Forward model A, data g , and data mismatch term: ‖Af1 − g‖2

Prior f0

Large convex optimization problem with several terms, variable splitting common: ADMM, primal-dual
hybrid gradient algorithm, primal-dual Douglas-Rachford algorithm.

Common tool in these algorithms: the proximal operator of the involved functions F .

ProxσF (h) = argmin
f
F(f ) +

1

2σ
‖f − h‖2

2.

[1] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5), 877-898, 1976.
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Inverse problems with optimal mass transport priors
Generalized Sinkhorn iterations

We want to compute the proximal of Tε(f0, ·), given by

ProxσTε(f0,·)(h) = argmin
f1

Tε(f0, f1) +
1

2σ
‖f1 − h‖2

2.

Thus we want to solve

min
M≥0,f1

trace(CTM) + εD(M) +
1

2σ
‖f1 − h‖2

2

subject to f0 = M1

f1 = MT1.

Using dual coordinate ascent, with g(·) = 1
2σ
‖ · −h‖2

2,
we get the algorithm:

1 u0 = f0./(Ku1)
2 u1 = exp

(
h
σε
− ω

(
h
σε

+ log
(
KTu0)

)
+ log(σε)

))
Here ω denotes the (elementwise) Wright omega function, i.e., x = log(ω(x)) + ω(x).
Solved elementwise. Bottleneck is still computation of Ku1, KTu0.

Theorem

The algorithm is globally convergent, and with linear convergence rate.

18 / 24

Compare to

1 u0 = f0./(Ku1)

2 u1 = f1./(KTu0)
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Example in computerized tomography

Computerized Tomography (CT): imaging modality used in many areas, e.g., medicine.

The object is probed with X-rays.

Different materials attenuates X-rays differently =⇒ incoming and outgoing intensities gives
information about the object.

Simplest model

∫
Lr,θ

f (x)dx = log

(
I0
I

)
,

f (x) is the attenuation in the point x , which is
what we want to reconstruct,

Lr,θ is the line along which the X-ray beam travels,

I0 and I are the the incoming and outgoing
intensities.

Illustration from Wikipedia
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Example in computerized tomography

Parallel beam 2D CT example:

Reconstruction space: 256× 256 pixels

Angles: 30 in [π/4, 3π/4] (limited angle)

Detector partition: uniform 350 bins

Noise level 5%

TV-regularization and `2
2 prior:

min
f1

γ‖f0 − f1‖2
2 + ‖∇f1‖1

subject to ‖Af1 − w‖2 ≤ κ.

TV-regularization and optimal transport prior:

min
f1

γTε(f0, f1) + ‖∇f1‖1

subject to ‖Af1 − w‖2 ≤ κ.

(a) Shepp-Logan phantom (b) Prior

(c) TV-regularization (d) TV-regularization and `2
2-prior

(γ = 10)
(e) TV-regularization and optimal
transport prior (γ = 4)
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Example in computerized tomography

Comparing different regularization parameters for the problem with `2
2 prior.

min
f1

γ‖f0 − f1‖2
2 + ‖∇f1‖1

subject to ‖Af1 − w‖2 ≤ κ.

(p) γ = 1 (q) γ = 10 (r) γ = 100 (s) γ = 1000 (t) γ = 10 000.

Figure: Reconstructions using `2 prior with different regularization parameters γ.
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Example in computerized tomography

Parallel beam 2D CT example:

Reconstruction space: 256× 256 pixels

Angles: 30 in [0, π]

Detector partition: uniform 350 bins

Noise level 3%

(a) Phantom (b) Prior

(c) TV-regularization (d) TV-regularization and `2
2-prior

(γ = 10)
(e) TV-regularization and optimal
transport prior (γ = 4)
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Conclusions and further work

Conclusions

Optimal mass transport - a viable framework for imaging applications

Generalized Sinkhorn iteration for computing the proximal operator of optimal transport cost

Use variable splitting for solving the inverse problem

Application to CT reconstruction using optimal transport priors

Potential future directions:

Application to spatiotemporal image reconstruction:

arg min
f0,...,fT∈X

T∑
j=0

[
G(A(fj), gj) + λF(fj)

]
+

T∑
j=1

γH(fj−1, fj)

More efficient ways of solving the dual problem?

Learning for inverse problems using optimal transport as a loss function
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Thank you for your attention!

Questions?
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