ACCECCM

Multidimensional Rational Covariance Extension with Approximate Covariance Matching

Axel Ringh*, Johan Karlsson*, Anders Lindquist ${ }^{\ddagger *}$

\author{

* Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
 \ddagger Department of Automation and Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China
}

Introduction

Inverse problems is a class of problems which informally can be described as seeking the cause of a given effect. For physical systems with a known 'action' this amounts to finding a 'state' that produces the given measurements. In this work we consider the following stochastic system identification problem: given a stochastic process find a linear stochastic system such that, when driven with white noise, the system has the stochastic process as output.

Linear stochastic systems

Stochastic processes

In this work we consider discrete time stochastic process $y_{t} \in \mathbb{C}, t \in \mathbb{Z}$, that are " zero mean: $\mathbb{E}\left(y_{t}\right)=0$,

- ergodic
- second-order stationary, with covariances

$$
\left.c_{k}=\mathbb{E}\left(y_{t} y_{t-k}^{*}\right), \quad k \in \mathbb{Z} \quad \text { (note that } c_{-k}=c_{k}^{*}\right) .
$$

The power spectrum of $\left(y_{t}\right)_{t \in \mathbb{Z}}$, which desciribes the frequency content of the signal, is the positive function $\Phi\left(e^{i \theta}\right)$ on $(-\pi, \pi] \sim \mathbb{T}$, such that the covariances of y_{t} are its Fourier coefficients:

$$
c_{k}:=\int_{\mathbb{T}} e^{i k \theta} \Phi\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}, k \in \mathbb{Z} \quad \Longleftrightarrow \quad \Phi\left(e^{i \theta}\right) \sim \sum_{k=-\infty}^{\infty} c_{k} e^{-i k \theta} .
$$

Linear dynamical systems

Let y_{t} is produced by passing a white noise process u_{t} through a linear system $W(z)$.

Figure 1: A linear stochastic system.
Finite-dimensional linear system $\Rightarrow W$ is a rational transfer function:

$$
W(z)=\frac{\sum_{k=0}^{n} b_{k} z^{k}}{\sum_{k=0}^{n} a_{k} z^{k}}=\frac{b(z)}{a(z)} .
$$

In steady state, y_{t} is second-order stationary and with spectral density

$$
\Phi\left(e^{i \theta}\right)=\left|W\left(e^{i \theta}\right)\right|^{2}=\frac{\left|b\left(e^{i \theta}\right)\right|^{2}}{\left|a\left(e^{i \theta}\right)\right|^{2}}=\frac{P\left(e^{i \theta}\right)}{Q\left(e^{i \theta}\right)},
$$

P, Q trigonometric polynomials $P\left(e^{i \theta}\right)=\sum_{-n}^{n} p_{k} e^{-i k \theta}$.
Given nonnegative trigonometric polynomials P and Q, the factors b and a can be obtained by spectral factorization. Therefore, given a rational spectrum we can identify a corresponding system.

Rational covariance extension problem [1, 2]

Given covariances $c=\left(c_{-n}, \ldots, c_{0}, c_{1}, \ldots, c_{n}\right)$ find all positive functions $\Phi\left(e^{i \theta}\right)$ so that

$$
\left\{\begin{array}{l}
c_{k}:=\int_{\mathbb{T}} e^{i k \theta} \Phi\left(e^{i \theta}\right) \frac{d \theta}{2 \pi}, \\
\Phi\left(e^{i \theta}\right)=\frac{P\left(e^{i \theta}\right)}{Q\left(e^{i \theta}\right)},
\end{array}\right.
$$

$$
k=-n, \ldots, 0,1, \ldots, n,
$$

P and Q nonnegative trigonometric polynomials of degree $\leq n$.

Multidimensional problem

[^0]Figure 2 : Example of a two-dimensional gird Λ.

- The trigonometric polynomials are defined based on the grid Λ :

$$
P\left(e^{i \boldsymbol{\theta}}\right)=\sum_{\boldsymbol{k} \in \Lambda} p_{\boldsymbol{k}} e^{-i(\boldsymbol{k}, \boldsymbol{\theta})}=\sum_{\boldsymbol{k} \in \Lambda} p_{\boldsymbol{k}} e^{-i\left(k_{1} \theta_{1}+\ldots+k_{d} \theta_{d}\right)}, p_{-\boldsymbol{k}}=p_{\boldsymbol{k}}^{*} .
$$

To solve the problem, we enlarge the class of spectra from nonnegative functions to nonnegative measures. The problem can now be written: given a set of complex numbers $c=\left(c_{\boldsymbol{k}}\right)_{\boldsymbol{k} \in \Lambda}$, find all nonnegative $d \mu$ on \mathbb{T}^{d} such that

$$
\begin{cases}c_{\boldsymbol{k}}=\int_{\mathbb{T}^{d}} e^{i(\boldsymbol{k}, \boldsymbol{\theta})} d \mu(\boldsymbol{\theta}), & \text { for all } \boldsymbol{k} \in \Lambda \\ d \mu(\boldsymbol{\theta})=\Phi\left(e^{i \boldsymbol{\theta}}\right) d m(\boldsymbol{\theta}), \text { where } \Phi\left(e^{i \boldsymbol{\theta}}\right)=\frac{P\left(e^{i \boldsymbol{\theta}}\right)}{Q\left(e^{\boldsymbol{i} \boldsymbol{\theta}}\right)}, & \text { P and } Q \text { are nonnegative } \\ \text { trigonetric polynomials. }\end{cases}
$$

Here, $d m(\boldsymbol{\theta}):=(1 / 2 \pi)^{d} \prod_{j=1}^{d} d \theta_{j}$ is the (normalized) Lebesgue measure.
Contact: aringhekth.se.

[^0]: The problem is now extended into d dimensions. This is done as follows:

 - Indices k are changed to multi-indices $\boldsymbol{k}:=\left(k_{1}, \ldots, k_{d}\right)$.

 They belong to a grid $\Lambda \subset \mathbb{Z}^{d}$ such that:

 - Λ contains the origin: $\mathbf{0} \in \Lambda$,
 $-\Lambda$ is symmetric: $-\Lambda=\Lambda$.

