

Multidimensional Rational Covariance Extension with Approximate Covariance Matching

Axel Ringh*, Johan Karlsson*, Anders Lindquist^{‡*}

* Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden [‡] Department of Automation and Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China

Vetenskapsrådet

Introduction

Solution with exact matching

Inverse problems is a class of problems which informally can be described as seeking the cause of a given effect. For physical systems with a known 'action' this amounts to finding a 'state' that produces the given measurements. In this work we consider the following stochastic system identification problem: given a stochastic process find a linear stochastic system such that, when driven with white noise, the system has the stochastic process as output.

Linear stochastic systems

Stochastic processes

In this work we consider discrete time stochastic process $y_t \in \mathbb{C}, t \in \mathbb{Z}$, that are

The multidimensional rational covariance extension problem can be solved by considering the optimization problem

(P)
$$\min_{d\mu \ge 0} \quad \int_{\mathbb{T}^d} \left(P \log \frac{P}{\Phi} dm + d\mu - P dm \right)$$

subject to $c_{\mathbf{k}} = \int_{\mathbb{T}^d} e^{i(\mathbf{k}, \boldsymbol{\theta})} d\mu(\boldsymbol{\theta}), \quad \mathbf{k} \in \Lambda.$

Introducing the notation

$$\bar{\mathfrak{P}}_{+} := \{ p \in \mathbb{C}^{|\Lambda|} \mid P(e^{i\theta}) \ge 0, \ \forall \theta \in \mathbb{T}^{d} \} \\ \mathfrak{C}_{+} := \{ c \in \mathbb{C}^{|\Lambda|} \mid c_{-k} = \bar{c}_{k}, \sum_{k \in \Lambda} c_{k} \bar{p}_{k} > 0, \ \forall p \in \bar{\mathfrak{P}}_{+} \setminus \{0\} \},$$

• zero mean: $\mathbb{E}(y_t) = 0$,

ergodic

second-order stationary, with covariances

 $c_k = \mathbb{E}(y_t y_{t-k}^*), \quad k \in \mathbb{Z} \quad (\text{note that } c_{-k} = c_k^*).$

The *power spectrum* of $(y_t)_{t \in \mathbb{Z}}$, which desciribes the frequency content of the signal, is the positive function $\Phi(e^{i\theta})$ on $(-\pi, \pi] \sim \mathbb{T}$, such that the covariances of y_t are its Fourier coefficients:

$$c_k := \int_{\mathbb{T}} e^{ik\theta} \Phi(e^{i\theta}) \frac{d\theta}{2\pi}, \ k \in \mathbb{Z} \qquad \Longleftrightarrow \qquad \Phi(e^{i\theta}) \sim \sum_{k=-\infty}^{\infty} c_k e^{-ik\theta}.$$

Linear dynamical systems

Let y_t is produced by passing a white noise process u_t through a linear system W(z).

Figure 1 : A linear stochastic system.

Finite-dimensional linear system $\Rightarrow W$ is a rational transfer function:

$$W(z) = \frac{\sum_{k=0}^{n} b_k z^k}{\sum_{k=0}^{n} a_k z^k} = \frac{b(z)}{a(z)}.$$

In steady state, y_t is second-order stationary and with spectral density

the result can be stated as follows.

Theorem 1 ([3])

Problem (P) has a solution if and only if $c \in \mathfrak{C}_+$. Moreover, for every $c \in \mathfrak{C}_+$, given a trigonometric polynomial P the solution to (P) is given by

$$d\mu(\boldsymbol{\theta}) = \frac{P(e^{i\boldsymbol{\theta}})}{\hat{Q}(e^{i\boldsymbol{\theta}})} dm(\boldsymbol{\theta}) + d\hat{\mu}(\boldsymbol{\theta}),$$

where \hat{Q} is the unique solution to the dual problem

$$(D) \qquad \min_{q\in \bar{\mathfrak{P}}_+} \quad \langle c,q
angle - \int_{\mathbb{T}^d} P\log(Q) dm,$$

and $d\hat{\mu}$ is a singular measure (containing for example spectral lines) with $\operatorname{supp}(d\hat{\mu}) \subseteq \{\boldsymbol{\theta} \in \mathbb{T}^d \mid \hat{Q}(e^{i\boldsymbol{\theta}}) = 0\}$. Moreover, if $d \leq 2$ and if $P(e^{i\boldsymbol{\theta}}) > 0$, then $d\hat{\mu} \equiv 0$.

Corollary 1 ([3])

Any $d\mu = (P/Q)dm$ corresponds to a $c \in \mathfrak{C}_+$, and for $c \in \mathfrak{C}_+$ any $d\mu = (P/Q)dm$ that matches c can be obtained by solving (P) and (D).

Solution with approximate matching

But how to check in an efficient way if $c \in \mathfrak{C}_+$? And what if $c \notin \mathfrak{C}_+$? In this case one can consider a solution with approximate covariance matching. This can be done by

$$\Phi(e^{i\theta}) = |W(e^{i\theta})|^2 = \frac{|b(e^{i\theta})|^2}{|a(e^{i\theta})|^2} = \frac{P(e^{i\theta})}{Q(e^{i\theta})},$$

P, Q trigonometric polynomials $P(e^{i\theta}) = \sum_{n=1}^{n} p_k e^{-ik\theta}$.

Given nonnegative trigonometric polynomials P and Q, the factors b and a can be obtained by spectral factorization. Therefore, given a rational spectrum we can identify a corresponding system.

Rational covariance extension problem [1, 2]

Given covariances
$$c = (c_{-n}, \dots, c_0, c_1, \dots, c_n)$$
 find all positive functions $\Phi(e^{i\theta})$ so that
$$\begin{cases}
c_k := \int_{\mathbb{T}} e^{ik\theta} \Phi(e^{i\theta}) \frac{d\theta}{2\pi}, & k = -n, \dots, 0, 1, \dots, n, \\
\Phi(e^{i\theta}) = \frac{P(e^{i\theta})}{Q(e^{i\theta})}, & P \text{ and } Q \text{ nonnegative trigonometric} \\
polynomials of degree} \leq n.
\end{cases}$$

Multidimensional problem

The problem is now extended into d dimensions. This is done as follows:

- Indices k are changed to multi-indices $\mathbf{k} := (k_1, \ldots, k_d)$.
- They belong to a grid $\Lambda \subset \mathbb{Z}^d$ such that:

• Λ contains the origin: $\mathbf{0} \in \Lambda$,

• Λ is symmetric: $-\Lambda = \Lambda$.

considering the following optimization problem.

(P')

$$\min_{d\mu \ge 0, \tilde{c}} \quad \int_{\mathbb{T}^d} \left(P \log \frac{P}{\Phi} dm + d\mu - P dm \right)$$

subject to $\tilde{c}_{\mathbf{k}} = \int_{\mathbb{T}^d} e^{i(\mathbf{k}, \boldsymbol{\theta})} d\mu(\boldsymbol{\theta}), \quad \mathbf{k} \in \Lambda,$
 $\|\tilde{c} - c\|^2 \le \varepsilon^2.$

Theorem 1 ([4])

Given any complex sequence c, for ε large enough the primal problem (P') has an optimal solution given by

$$d\mu(\boldsymbol{\theta}) = \frac{P(e^{i\boldsymbol{\theta}})}{\hat{Q}(e^{i\boldsymbol{\theta}})} dm(\boldsymbol{\theta}) + d\hat{\mu}(\boldsymbol{\theta}),$$

where \hat{Q} is the unique solution to the dual problem

$$(D') \qquad \min_{q \in \bar{\mathfrak{P}}_+} \quad \langle c, q \rangle - \int_{\mathbb{T}^d} P \log(Q) dm + \varepsilon \|q - e\|,$$

where $e \in \mathbb{C}^{|\Lambda|}$, $e_0 = 1$ and $e_k = 0$ for $k \in \Lambda \setminus \{0\}$, and $d\hat{\mu}$ is a singular measure with $\operatorname{supp}(d\hat{\mu}) \subseteq \{\boldsymbol{\theta} \in \mathbb{T}^d \mid \hat{Q}(e^{i\boldsymbol{\theta}}) = 0\}.$

Open questions

In one dimension, spectral factorization as a sum-of-one-square $P(e^{i\theta})/Q(e^{i\theta}) = |b(e^{i\theta})|^2/|a(e^{i\theta})|^2$ is always possible. However this is not true in the multidimensional

Figure 2 : Example of a two-dimensional gird Λ .

• The trigonometric polynomials are defined based on the grid Λ :

$$P(e^{i\boldsymbol{\theta}}) = \sum_{\boldsymbol{k}\in\Lambda} p_{\boldsymbol{k}} e^{-i(\boldsymbol{k},\boldsymbol{\theta})} = \sum_{\boldsymbol{k}\in\Lambda} p_{\boldsymbol{k}} e^{-i(k_1\theta_1 + \dots + k_d\theta_d)}, \ p_{-\boldsymbol{k}} = p_{\boldsymbol{k}}^*.$$

To solve the problem, we enlarge the class of spectra from nonnegative functions to nonnegative measures. The problem can now be written: given a set of complex numbers $c = (c_k)_{k \in \Lambda}$, find all nonnegative $d\mu$ on \mathbb{T}^d such that

 $\begin{cases} c_{\boldsymbol{k}} = \int_{\mathbb{T}^d} e^{i(\boldsymbol{k},\boldsymbol{\theta})} d\mu(\boldsymbol{\theta}), & \text{for all } \boldsymbol{k} \in \Lambda \\ d\mu(\boldsymbol{\theta}) = \Phi(e^{i\boldsymbol{\theta}}) dm(\boldsymbol{\theta}), & \text{where } \Phi(e^{i\boldsymbol{\theta}}) = \frac{P(e^{i\boldsymbol{\theta}})}{Q(e^{i\boldsymbol{\theta}})}, & P \text{ and } Q \text{ are nonnegative trigonometric polynomials.} \end{cases}$

Here, $dm(\boldsymbol{\theta}) := (1/2\pi)^d \prod_{j=1}^d d\theta_j$ is the (normalized) Lebesgue measure.

Contact: aringh@kth.se.

case. Only factorization as sum-of-several squares can be guaranteed: $\frac{P(e^{i\theta})}{Q(e^{i\theta})} = \frac{\sum_{k=1}^{\ell} |b_k(e^{i\theta})|^2}{\sum_{k=1}^{m} |a_k(e^{i\theta})|^2}.$

- How to construct a realization from such a spectrum?
- Is it possible to characterize P for which Q is a sum-of-one-square?

Acknowledgements and references

We acknowledge financial support from the Swedish Foundation for Strategic Research (SSF), via grant AM13-0049, the Swedish Research Council (VR), via grant 2014-5870, and the The Center for Industrial and Applied Mathematics (CIAM) at KTH Royal Institute of Technology.

- [1] C.I. Byrnes, A. Lindquist, S.V. Gusev, and A.S. Matveev. A complete parameterization of all positive rational extensions of a covariance sequence. *IEEE Transactions on Automatic Control*, 40(11):1841–1857, 1995.
- [2] A. Lindquist and G. Picci. Linear Stochastic Systems: A Geometric Approach to Modeling, Estimation and Identification, volume 1 of Series in Contemporary Mathematics. Springer-Verlag Berlin Heidelberg, 2015.
- [3] A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with applications to spectral estimation and image compression. Accepted to SIAM Journal on Control and Optimization. Preprint: arXiv:1507.01430, 2015.
- [4] A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with approximate covariance matching. In *Proceedings of the 22nd International Symposium on Mathematical Theory of Networks and Systems*, pages 457–460, 2016.