
High-level algorithm prototyping:
an example extending the TVR-DART algorithm

Axel Ringh1 Xiaodong Zhuge2 Willem Jan Palenstijn2

Kees Joost Batenburg2,3 Ozan Öktem1

1Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden.

2Computational Imaging, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.

3Mathematical Institute, Leiden University, The Netherlands

September 19, 2017
DGCI2017 - Vienna, Austria
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Inverse problems

A new software framework for inverse problems: ODL

The TVR-DART algorithm for discrete tomography

Some example code reconstructions
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Inverse problems

Reconstruct a signal f ∈ X from data g ∈ Y , where

g = A(ftrue) ”+ noise”.

Example: variational reconstruction methods, i.e., formulating the problem as

min
f ∈X

[
L
(
A(f ), g

)
+ λR(f )

]
.

L : Y × Y → R+ is the data discrepancy term.
R : X → R+ is the regularization term.

For fixed A,L, and R we can use different optimization methods.
We can apply the same optimization methods for different A,L, and R.

Idea: a software framework to facilitate this.
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Why a new software framework?

Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT,
electron tomography, . . .

Mathematical structures/notions: Functional, operator, Fréchet derivative,
proximal, diffeomorphism, discretization, sparsifying transforms, . . .

Flexibility: Mathematical structures/notions re-usable across modalities
 Make it easy to “play around” with new ideas and combine concepts.

Collaborative research: Need to share implementations of common concepts

Reproducible research: Not enough to share theory and pseudocode, also need to
share data and concrete implementations
 Software components need to be usable by others.

(Code for this paper is on github).

4 / 15



Why a new software framework?

Requirements on a software framework:

Allow formulation and solution of inverse problems in a common language.

Make implementations re-usable and extendable.

Enable fast prototyping on clinically relevant data.

Leverage the power of existing libraries.
 For example, use ASTRA [Aar16] for computing the Ray transform.

Initial situation: No existing framework fit our purpose.

[Aar16] W. van Aarle, et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Optics express, 24(22), 25129-25147 (2016).
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Operator Discretization Library - ODL
An object-oriented Python framework for inverse problems

Design principles:

Modularity:
 (almost) freely exchangeable “modules” in the mathematical formulation
 Mathematics as strong guideline for software design

Abstraction and compartmentalization:
 Separates the “what” (abstract interface) of an object class from the “how”
(concrete implementation)
 Makes functions and classes individually testable
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Discrete tomography and TVR-DART

An example to illustrate the flexibility.

Discrete tomography: base on assumption that ftrue consists of few distinct
materials, each producing a constant gray value.

TVR-DART: variational regularization scheme for discrete tomography [Zhu16].
Key components:

The spacial gradient operator ∇ : X → X d .
The Huber norm Hε : X → R+,

Hε(f ) =

∫
Ω

fε(x)dx where fε(x) =

|f (x)| − ε

2
if |f (x)| ≥ ε

f (x)2

2ε
if |f (x)| < ε.

[Zhu16] X. Zhuge, W.J. Palenstijn, K.J. Batenburg. TVR-DART: a more robust algorithm for discrete tomography from limited projection data
with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468 (2016). 7 / 15
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Discrete tomography: base on assumption that ftrue consists of few distinct
materials, each producing a constant gray value.

TVR-DART: variational regularization scheme for discrete tomography [Zhu16].
Key components:

a (parametrized) soft segmentation operator T : X ×Θ→ X where
Θ = (R× R× R)n, θ = (θ1, . . . , θn), and θi = (ρi , τi , ki ).

T (f , θ)(x) =
n−1∑
i=1

(ρi − ρi−1)uki
(
f (x)− τi

)
uk(s) :=

1

1 + e−2ks
for s ∈ R.
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The TVR-DART algorithm

Idea is to estimate both parameters θ and reconstruction f .

min
f ∈X , θ∈Θ

[
L
(
[A ◦ T ](f , θ), g

)
+ λ[Hε ◦∇ ◦ T ](f , θ)

]
.

In the original paper [Zhu16], the L2-norm was used as data discrepancy term:
L(·, g) = ‖ · −g‖2

2. Optimization problem solved by alternatingly optimize over f
and θ using a gradient-based solver. Notation: T θ : X → X and T f : Θ→ X .

We demonstrate the flexibilty of ODL by showing that this can easily be changed
to the Kullback-Leibler functional, which is more suitable if noise is Poisson.

DKL(g | h) =


∫

Ω

(
g(x) log

(
g(x)

h(x)

)
+ h(x)− g(x)

)
dx g(x) ≥ 0, h(x) > 0

+∞ else.

[Zhu16] X. Zhuge, W.J. Palenstijn, K.J. Batenburg. TVR-DART: a more robust algorithm for discrete tomography from limited projection data
with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468 (2016).
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The TVR-DART algorithm

Components not already in ODL: i) the Huber norm, ii) the soft segmentation
operator. Example code implementing the Huber norm:

c l a s s HuberNorm ( F u n c t i o n a l ) :
[ . . . ]
def c a l l ( s e l f , f ) :

””” Eva l u a t i n g the f u n c t i o n a l . ”””
q p a r t = f . u f u n c s . a b s o l u t e ( ) . a s a r r a y ( ) < s e l f . e p s i l o n
f e p s = ( ( f ∗ q p a r t )∗∗2 / ( 2 . 0 ∗ s e l f . e p s i l o n ) +

( f . u f u n c s . a b s o l u t e ( ) − s e l f . e p s i l o n / 2 . 0 ) ∗
(1− q p a r t ) )

# This l i n e t a k e s the i n n e r p roduc t w i th the one−f u n c t i o n .
r e t u r n f e p s . i n n e r ( s e l f . domain . one ( ) )

[ . . . ]
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The TVR-DART algorithm

Setting up and solving the optimization problem:

Defining the tomography problem

X = o d l . u n i f o r m d i s c r ( min pt =[−200, −200] , max pt =[200 , 2 0 0 ] ,
shape =[320 , 3 2 0 ] )

Y a n g l e p a r t = o d l . u n i f o r m p a r t i t i o n ( 0 , np . p i , 18)
Y d e t e c t o r p a r t = o d l . u n i f o r m p a r t i t i o n (−200 , 200 , 500)
Y = o d l . tomo . P a r a l l e l 2 d G e o m e t r y ( Y a n g l e p a r t , Y d e t e c t o r p a r t )
A = o d l . tomo . RayTransform (X, Y, i m p l= ’ a s t r a c u d a ’ )
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The TVR-DART algorithm

Setting up and solving the optimization problem:

Defining the cost function

T t h e t a = S o f t S e g m e n t a t i o n O p e r a t o r (X, b a s e v a l u e , t h r e s h o l d s ,
v a l u e s , s h a r p n e s s )

# De f i n i n g the r e g u l a r i z a t i o n term
g r a d i e n t = o d l . G r a d i e n t (X)
p o i n t n o r m = o d l . PointwiseNorm ( g r a d i e n t . range )
H = HuberNorm (X, 0 . 0 0 0 1 )
R t h e t a = H ∗ p o i n t n o r m ∗ g r a d i e n t ∗ T t h e t a

# De f i n i n g the data d i s c r e p a n c y term
l 2 norm = o d l . s o l v e r s . L2NormSquared (A . range )
l2 norm = l2 norm . t r a n s l a t e d ( data )
d a t a f i t t h e t a = l 2 norm ∗ A ∗ T t h e t a

o b j t h e a t = d a t a f i t t h e t a + reg param ∗ R t h e t a

Alternating optimization done with BFGS-method.
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Simulation results
Additive white Gaussian noise and L2 data discrepancy

(a) Phantom (b) TVR-DART with L2. (c) TV with L2.

Figure: Reconstructions from data with white Gaussian noise.
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Using KL instead of L2 as data discrepancy term

Difference between using L2-norm and KL as data discrepancy functional?
In code we change

l 2 norm = o d l . s o l v e r s . L2NormSquared (A . range )
l2 norm = l2 norm . t r a n s l a t e d ( data )
d a t a f i t t h e t a = l 2 norm ∗ A ∗ T t h e t a

to

k l = o d l . s o l v e r s . K u l l b a c k L e i b l e r (A . range , p r i o r=data )
d a t a f i t t h e t a = k l ∗ A ∗ T t h e t a
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Simulation results
Poisson noise and KL data discrepancy

(a) Phantom (b) TVR-DART with KL. (c) TV with KL.

Figure: Reconstructions from data with Poisson noise.
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Conclusions

Introduced a new software framework for fast high-level prototyping of solution
methods for inverse problems - ODL (https://github.com/odlgroup/odl).

Demonstrated the capabilities for fast high-level prototyping, by implementing and
extending the TVR-DART algorithm for discrete tomography.
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Thank you!

Questions?
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(a) Singoram (b) Noisy sinogram. (c) FBP reconstruction.

Figure: Data (sinograms) and FBP reconstruction from data with Poisson noise.
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