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Outline

@ Inverse problems
@ A new software framework for inverse problems: ODL
@ The TVR-DART algorithm for discrete tomography

@ Some example code reconstructions



Inverse problems

@ Reconstruct a signal f € X from data g € Y, where
g = A(firue) " + noise”.
@ Example: variational reconstruction methods, i.e., formulating the problem as

min [E(A(f),g) + AR(f)]

L:Y xY — Ry is the data discrepancy term.
R: X — Ry is the regularization term.

@ For fixed A, £, and R we can use different optimization methods.
We can apply the same optimization methods for different A, £, and R.



Inverse problems

@ Reconstruct a signal f € X from data g € Y, where
g = A(firue) " + noise”.

@ Example: variational reconstruction methods, i.e., formulating the problem as
min [ﬁ(A(f), g) + )\R(f)} .

L:Y xY — Ry is the data discrepancy term.
R: X — Ry is the regularization term.

@ For fixed A, £, and R we can use different optimization methods.
We can apply the same optimization methods for different A, £, and R.

Idea: a software framework to facilitate this.



new software framework?

Multiple modalities: CT, CBCT, PET, SPECT, spectral CT, phase contrast CT,
electron tomography, ...

Mathematical structures/notions: Functional, operator, Fréchet derivative,
proximal, diffeomorphism, discretization, sparsifying transforms, ...

Flexibility: Mathematical structures/notions re-usable across modalities

~> Make it easy to “play around” with new ideas and combine concepts.
Collaborative research: Need to share implementations of common concepts

Reproducible research: Not enough to share theory and pseudocode, also need to
share data and concrete implementations
~> Software components need to be usable by others.

(Code for this paper is on github).



Why a new software framework?

Requirements on a software framework:

@ Allow formulation and solution of inverse problems in a common language.
@ Make implementations re-usable and extendable.
@ Enable fast prototyping on clinically relevant data.
@ Leverage the power of existing libraries.
~~ For example, use ASTRA [Aarl6] for computing the Ray transform.

[Aar16] W. van Aarle, et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Optics express, 24(22), 25129-25147 (2016).



Why a new software framework?

Requirements on a software framework:

@ Allow formulation and solution of inverse problems in a common language.
@ Make implementations re-usable and extendable.

@ Enable fast prototyping on clinically relevant data.

@ Leverage the power of existing libraries.

~~ For example, use ASTRA [Aarl6] for computing the Ray transform.

Initial situation: No existing framework fit our purpose.

[Aar16] W. van Aarle, et al. Fast and flexible X-ray tomography using the ASTRA toolbox. Optics express, 24(22), 25129-25147 (2016).



Operator Discretization Library - ODL

An object-oriented Python framework for inverse problems

Design principles:
o Modularity:

~ (almost) freely exchangeable “modules” in the mathematical formulation
~» Mathematics as strong guideline for software design

@ Abstraction and compartmentalization:
~~ Separates the “what" (abstract interface) of an object class from the “how”
(concrete implementation)
~» Makes functions and classes individually testable



Discrete tomography and TVR-DART

An example to illustrate the flexibility.

@ Discrete tomography: base on assumption that £, consists of few distinct
materials, each producing a constant gray value.

e TVR-DART: variational regularization scheme for discrete tomography [Zhu16].
Key components:

o The spacial gradient operator V : X — X¢.
e The Huber norm H. : X — Ry,

F)l =5 FIF| 2 e
He(f) = / f-(x)dx where f(x)= f(x)2 2 _
Q > if |[f(x)] <e.

[Zhu16]  X. Zhuge, W.J. Palenstijn, K.J. Batenburg. TVR-DART: a more robust algorithm for discrete tomography from limited projection data
with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468 (2016). 7/15



Discrete tomography and TVR-DART

An example to illustrate the flexibility.

@ Discrete tomography: base on assumption that £, consists of few distinct
materials, each producing a constant gray value.
e TVR-DART: variational regularization scheme for discrete tomography [Zhu16].
Key components:
o a (parametrized) soft segmentation operator 7 : X x © — X where
©@=[RxRxR)" 0= (0y,....0,), and 6, = (p;, 7, k).
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n—1 ‘ ‘ T
T(F,0)(x) = (pi — pi-1)uk (F(x) = 7) )
i=1 )
. 1 Los
Uk(s) = m for s € R. ot —

[Zhu16]  X. Zhuge, W.J. Palenstijn, K.J. Batenburg. TVR-DART: a more robust algorithm for discrete tomography from limited projection data
with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468 (2016). 7/15



The TVR-DART algorithm

@ ldea is to estimate both parameters 6 and reconstruction f.

min [ﬁ ([AoTI(f,0), g) + A[HeoV o T](f, 9)] :

fex,0ec0

@ In the original paper [Zhul6], the Lp-norm was used as data discrepancy term:
L(-,g) = | - —gll3. Optimization problem solved by alternatingly optimize over f
and 6 using a gradient-based solver. Notation: 7y : X — X and T :0 — X.

@ We demonstrate the flexibilty of ODL by showing that this can easily be changed
to the Kullback-Leibler functional, which is more suitable if noise is Poisson.

Dk (g | h) = /Q(g(x) '°g(h8 ) + h(x) — g(x )) dx g(x) >0, h(x) >0

400 else.

[Zhul6]  X. Zhuge, W.J. Palenstijn, K.J. Batenburg. TVR-DART: a more robust algorithm for discrete tomography from limited projection data
with automated gray value estimation. IEEE Transactions on Image Processing, 25(1), 455-468 (2016).



The TVR-DART algorithm

Components not already in ODL: i) the Huber norm, ii) the soft segmentation
operator. Example code implementing the Huber norm:

class HuberNorm(Functional):

def _call(self, f):

""" Evaluating the functional.

q_part = f.ufuncs.absolute ().asarray() < self.epsilon

f_eps = ((f = q_part)**x2 / (2.0 % self.epsilon) +
(f.ufuncs.absolute() — self.epsilon / 2.0) =
(1-q-part))

# This line takes the inner product with the one—function.

return f_eps.inner(self.domain.one())

[...]

o



The TVR-DART algorithm

Setting up and solving the optimization problem:

@ Defining the tomography problem

X = odl.uniform_discr (min_pt=[—200, —200], max_pt=[200, 200],
shape=[320, 320])

Y_angle_part = odl.uniform_partition (0, np.pi, 18)

Y _detector_part = odl.uniform_partition(—200, 200, 500)

Y = odl.tomo. Parallel2dGeometry(Y_angle_part, Y_detector_part)

A = odl.tomo.RayTransform (X, Y, impl="astra_cuda’)

10/15



The TVR-DART algorithm

Setting up and solving the optimization problem:
@ Defining the cost function

T_theta = SoftSegmentationOperator(X, base_value, thresholds,
values, sharpness)

# Defining the regularization term

gradient = odl. Gradient (X)

point_norm = odl.PointwiseNorm(gradient.range)
H = HuberNorm (X, 0.0001)

R_theta = H % point_norm x gradient % T_theta

# Defining the data discrepancy term

I2_norm = odl.solvers.L2NormSquared(A.range)
I2_norm = |2_norm.translated (data)
data_fit_.theta = I2_norm % A x T_theta

obj_theat = data_fit_.theta + reg_param x R_theta

@ Alternating optimization done with BFGS-method.

10/15



Simulation results

Additive white Gaussian noise and L, data discrepancy
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(a) Phantom (b) TVR-DART with L.

(c) TV with L.
Figure: Reconstructions from data with white Gaussian noise.



Using KL instead of L, as data discrepancy term

Difference between using Ly-norm and KL as data discrepancy functional?
In code we change

I2_norm = odl.solvers.L2NormSquared(A.range)

I2_norm = I2_norm.translated (data)

data_fit_theta = I2_norm * A x T_theta

to

kl = odl.solvers.KullbackLeibler(A.range, prior=data)

data_fit_theta = kl * A x T_theta
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Simulation results

Poisson noise and KL data discrepancy
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(a) Phantom (b) TVR-DART with KL.

(c) TV with KL.
Figure: Reconstructions from data with Poisson noise.
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Conclusions

@ Introduced a new software framework for fast high-level prototyping of solution
methods for inverse problems - ODL (https://github.com/odlgroup/odl).

@ Demonstrated the capabilities for fast high-level prototyping, by implementing and
extending the TVR-DART algorithm for discrete tomography.
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https://github.com/odlgroup/odl

Thank you!

Questions?
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(a) Singoram (b) Noisy sinogram. (c) FBP reconstruction.

Figure: Data (sinograms) and FBP reconstruction from data with Poisson noise.
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