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Figure: Block diagram representation of an LTI SISO system with time delay.

Notation:
@ P(s) is a (unstable) causal linear time-invariant (LTI) single-input-single-output (SISO) system,
o K(s) is a causal LTI SISO controller,

@ e "°is a time delay of length 7.
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Notation:
@ P(s) is a (unstable) causal linear time-invariant (LTI) single-input-single-output (SISO) system,
o K(s) is a causal LTI SISO controller,

TS

@ e " is a time delay of length 7.

Maximum delay margin := largest delay Tmax So that there exists a single controller K that
stabilizes P for all 7 € [0, Tmax)?

For general systems, computing Tmax is an unsolved problem.



Introduction - Upper and lower bounds for the maximum delay margin

Upper bounds
o If P has a real unstable pole p, then Tmax < 2/p [1]. First paper showing an upper bound.
o Tight if p is the only unstable pole, and if there are no nonminimum phase zeros.
@ Also extended to tight bound for a few other cases.

[1]  R.H. Middleton & D.E. Miller. On the achievable delay margin using LTI control for unstable plants. IEEE Transactions on
Automatic Control, 52(7):1194-1207, 2007.
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Lower bound using analytic interpolation

Tools and notation:
@ Hoo is the space of bounded analytic functions on C;,
~ “stable transfer functions”.
@ T(s) is the complementary sensitivity function of the system without delay
P(s)K(s)
T(s) = ——F—"—.
()= T PEIKG)
o a system is called well-posed if 1+ P(s)K(s) #0foralls € C :={s€C|s=a+ib, a>0}[1],
i.e., no poles in closed right half-plane. _
o Internally stable if, in addition, there is no pole-zero cancellation between K and P in Cy [1].

[1]  J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. Macmillan, 1992.
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Tools and notation:
@ Hoo is the space of bounded analytic functions on C;,
~ “stable transfer functions”.
@ T(s) is the complementary sensitivity function of the system without delay
P(s)K(s)
T(s) = ——F—"—.
()= T PEIKG)
o a system is called well-posed if 1+ P(s)K(s) #0foralls € C :={s€C|s=a+ib, a>0}[1],
i.e., no poles in closed right half-plane. _
o Internally stable if, in addition, there is no pole-zero cancellation between K and P in Cy [1].

We are interested in internally stable systems. Henceforth, this is what is meant with stable.

The condition on stability can equivalently be reformulated as follows [2]:
o let p1,..., pn be the unstable poles and z, ..., z, the nonminimum phase zeros of P.
@ then necessary and sufficient coinditions for stability is that T € Ho and

T(p)=1 j=1,...,n,
T(z)=0, j=1,...,m.
This is a NevanlinnaPick interpolation problem.

[1]  J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. Macmillan, 1992.
[2]  J.W. Helton, and O. Merino. Classical Control Using H*> Methods: Theory, Optimization, and Design. SIAM, 1998. 5/15
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where _
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¢r(w)= sup e —1] = sup 2 sin(%)‘ = ( 2 )’ 7] <
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In [1] they now use a rational approximation of ¢z(w), and derive a method for finding the largest T so
that the above condition holds.

Instead, we tackle the above problem directly.

[1]  T.Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314-1328, 2017.
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Lower bound on Tmax is given by larges T that fulfills

pinf T (w)dr (@)llo <1

T(pj)=1
T(Zj):o
Method for checking solvability of the above problem:
o Introduce T = TW;, which gives
. T(p)=Ws(p), j=1,...,n,
HTHHOC < 1 and ~(pj) (pj) ./ n
T(ZJ):O3 J:13"'7m7

This is a Nevanlinna-Pick interpolation problem! W5 is outer, so we get T = 7~'W;1.
@ The Nevanlinna-Pick interpolation problem has a solution if and only if the Pick matrix

=0,

1 _ o n+m
Pick(v, w) := {w}

Vit Ve ]
where v := [p1,...,Pn, 21, ..., 2Zm] and w := [Wz(p1), ..., Wz(pn),0,...,0].

Method for computing maximum value of 7: bisection algorithm checking positive semi-definiteness
of the Pick matrix.
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An improved algorithm

Reconsider the sufficient condition

i T (iw)dr (@)lloe <1
T(pj)=1
T(zjv):O

This gives

IT(iw)pz (W), <1 <= |T(iw)ps(w)|<1,VweR <= |T(iw)| < , YweR.

1
|p7 (W)l
Equivalently expressed: T (iw) can take values in a circle centered at the origin with radius 1/|¢z(w)|.

Questions:
@ Can we center the circle in some other point?

@ How would that be done?
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For wp such that R(wp) < 1/2, the inverse is thus an H function, and we get the condition

N efTS_ 1 _
() 21 .
() o # L VseCs

We can repeat the previous arguments, but where ¢(w) is replaced by
effiw —1
¢#(w) := sup

re,7 |1 — wo + woe= 7w
10/15
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(o) (e 1) £ 14 wo— e, Vse o and 41
(s)(e ) # wo — woe seCy  an {T(Zj)__WO7 j=1,....m.

—14 wp — woe " € Hoo and it can be shown that it is # 0 in all of C. if and only if R(wp) < 1/2.
For wp such that R(wp) < 1/2, the inverse is thus an H function, and we get the condition

N efTS _ 1

T(s) #-1, VsecC,.

1— wo+ wpe™7s

We can repeat the previous arguments, but where ¢(w) is replaced by
—Tiw 1 (05 - §R(WO))717 w > Wy,
oz(w) == sup e—_. = ¢ (]0.5 — i0.5cot(w7/2) — wo|) ™!, @y >w>m_, form computable &y .
reo,7 | L — wo + woe™ 7 1 _
(05 — %(WO)) ) w< w_, 10/15



An improved algorithm

Summary of improved method:
o Let

e—‘rlw -1

pr(w) == sup

T€[0,7]

1— wo+ we 7w
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Summary of improved method:
o Let

e—‘rlw -1

pr(w) == sup

T€[0,7]

1— wo+ we 7w

o Let W5 be the outer function corresponding to ¢z, and let T=TW:. The corresponding
Nevanlinna-Pick interpolation problem becomes

T(p)=1-wo)Ws(p), j=1,...,n,

Tl#. <1 and . ,
I {T(zj):—wOw;(zJ-), =L
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An improved algorithm

Summary of improved method:
o Let

e—‘rlw -1

9r(w) = sup

T€[0,7]

1— wo+ we 7w

o Let W5 be the outer function corresponding to ¢z, and let T=TW:. The corresponding
Nevanlinna-Pick interpolation problem becomes

Fle <1 and LB =Q—w)Wa(p), j=1,..n,
- T(z) = —wWs(z),  j=1....m

@ The Nevanlinna-Pick interpolation problem has a solution if and only if the Pick matrix
1 _ VVJVT/k:| n+m

Vi + Vi -

Pick(v, w) := |: >0,

Jrk=1

where v :=[p1,..., Pn, 21,...,2Zm] and
w:=1[(1—wo)W:z(p1),...,(1 — wo)Wz(pn), —woWz(z1), ..., —woWs(zm)].

11/15



An improved algorithm

Summary of improved method:
o Let

e—‘riw -1
¢7(w) :== sup

T€[0,7]

1— wo+ we 7w
o Let W5 be the outer function corresponding to ¢z, and let T=TW:. The corresponding

Nevanlinna-Pick interpolation problem becomes

T(p)=1-wo)Ws(p), j=1,...,n,

Tl#. <1 and . i
Il {T(Zj):_WOW-T-(Zj), j=1...,m

@ The Nevanlinna-Pick interpolation problem has a solution if and only if the Pick matrix

1 _ . n+m
Pick(v, w) := {%} >0,
Vit Vi |
where v :=[p1,..., Pn, 21,...,2Zm] and
w:=1[(1—wo)W:z(p1),...,(1 — wo)Wz(pn), —woWz(z1), ..., —woWs(zm)].

o Compute maximum value of T using the bisection algorithm, checking positive semi-definiteness of
the Pick matrix.
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Numerical experiment

We investigate the performance of the method on a few examples from [1].

The first system is

s—Zz
P(s) =
(=12,

where z =2 and p > 0. We estimate the maximum
delay margin for different values of p in [0.3,4].

[1]  T.Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314-1328, 2017.
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We investigate the performance of the method on a few examples from [1].

6
The first system is ——Middleton et al.
——Qi et al.
—— proposed method, w, = -10
P(S) — s—z 5 proposed method, w, = 0.35
s—p’
. . a
where z = 2 and p > 0. We estimate the maximum £
. . . fd
delay margin for different values of p in [0.3,4]. E
3
>
&
]
a
2
1
0
0
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Numerical experiment

We investigate the performance of the method on a few examples from [1].

6
The first system is — Middieton et al.
——Qi et al.
—— proposed method, w, = -10
P(S) — s—<Z 5 proposed method, w: =0.35
s—p’
where z = 2 and p > 0. We estimate the maximum £ 4
. . . fd
delay margin for different values of p in [0.3,4]. E
3
Observations: %‘
o different wy gives different performance in dif- 9,
ferent regions of [0.3,4],
o for p < 2, with wy = —10 we get close to 1
the upper bound from [2], which is tight in this
region. %,

[1]  T.Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314-1328, 2017.

[2] R.H. Middleton & D.E. Miller. On the achievable delay margin using LTI control for unstable plants. IEEE Transactions on
Automatic Control, 52(7):1194-1207, 2007. 12/15



Numerical experiment

We also consider the system s—z
P(s) = . —.
(s — ref®)(s — re—i?)

@ we compute an estimate of the delay margin for the pairs (r,0) = (1,7/4), (1,7/3), and (2,7/3).
@ For these values of (r,0) we vary z in [0.01,4] and for each value of z we investigate which
wo € [—1.5,0.5) that maximizes the estimated maximum delay margin.
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@ we compute an estimate of the delay margin for the pairs (r,0) = (1,7/4), (1,7/3), and (2,7/3).
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Numerical experiment

We also consider the system s—z
P(s) = . —.
(s — ref®)(s — re—i?)

@ we compute an estimate of the delay margin for the pairs (r,0) = (1,7/4), (1,7/3), and (2,7/3).
@ For these values of (r,0) we vary z in [0.01,4] and for each value of z we investigate which
wo € [—1.5,0.5) that maximizes the estimated maximum delay margin.
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Conclusion and future work

Conclusions:

@ Method for computing a lower bound on the maximum delay margin, based on Nevanlinna-Pick
interpolation and the bisection algorithm.

@ Improved method by introducing a constant shift wy in the problem.

Ongoing work:
@ Interpretation of the method and of the wp-shift from a robust control perspective.
~~ Improved estimation procedure for lower bounds?

@ Understanding the maximum delay margin problem from a “Nyquist” -perspective.
~ Better understanding of relation to gain and phase margin.

@ Control design for time delay robustness, also incorporating gain and phase margin considerations.
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Thank you for your attention!

Questions?
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