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Introduction - The maximum delay margin problem
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Figure: Block diagram representation of an LTI SISO system with time delay.

Notation:

P(s) is a (unstable) causal linear time-invariant (LTI) single-input-single-output (SISO) system,

K(s) is a causal LTI SISO controller,

e−τs is a time delay of length τ .

Maximum delay margin := largest delay τmax so that there exists a single controller K that
stabilizes P for all τ ∈ [0, τmax)?

For general systems, computing τmax is an unsolved problem.
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Introduction - Upper and lower bounds for the maximum delay margin

Upper bounds
If P has a real unstable pole p, then τmax ≤ 2/p [1]. First paper showing an upper bound.

Tight if p is the only unstable pole, and if there are no nonminimum phase zeros.
Also extended to tight bound for a few other cases.

The bounds are somewhat improved in [2, 3], however the analysis is still case-to-case based.

Lower bounds
Problem can be cast in a robust control framework [4, 5].
Analyzed using integral quadratic constraints [6].
Analyzed using analytic interpolation and rational approximation [7]. We build on this approach.
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Lower bound using analytic interpolation

Tools and notation:
H∞ is the space of bounded analytic functions on C+,
 “stable transfer functions”.
T (s) is the complementary sensitivity function of the system without delay

T (s) :=
P(s)K(s)

1 + P(s)K(s)
.

a system is called well-posed if 1 +P(s)K(s) 6= 0 for all s ∈ C̄+ := {s ∈ C | s = a+ ib, a ≥ 0} [1],
i.e., no poles in closed right half-plane.
Internally stable if, in addition, there is no pole-zero cancellation between K and P in C̄+ [1].

We are interested in internally stable systems. Henceforth, this is what is meant with stable.

The condition on stability can equivalently be reformulated as follows [2]:

let p1, . . . , pn be the unstable poles and z1, . . . , zm the nonminimum phase zeros of P.
then necessary and sufficient coinditions for stability is that T ∈ H∞ and

T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m.

This is a NevanlinnaPick interpolation problem.

[1] J.C. Doyle, B.A. Francis, and A.R. Tannenbaum. Feedback control theory. Macmillan, 1992.

[2] J.W. Helton, and O. Merino. Classical Control Using H∞ Methods: Theory, Optimization, and Design. SIAM, 1998.
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Lower bound using analytic interpolation

In [1], the authors note that the system is well-posed if

1 + P(s)K(s)e−τs 6= 0, for all s ∈ C̄+

⇐⇒ 1 + T (s)(e−τs − 1) 6= 0, for all s ∈ C̄+.

since K must stabilize P without delay.

Together with T ∈ H∞ and

T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m,

these are necessary and sufficient conditions for stability of the time-delay system.

Want these conditions to hold for all τ ∈ [0, τ̄ ], and then maximize τ̄ .

A sufficient condition for 1 + T (s)(e−τs − 1) 6= 0 for all s ∈ C̄+ and all τ ∈ [0, τ̄ ] is that there exists a
T ∈ H∞ such that

sup
τ∈[0,τ̄ ]

‖T (s)(e−τs − 1)‖H∞ < 1

⇐⇒ sup
τ∈[0,τ̄ ]

‖T (iω)(e−τ iω − 1)‖L∞ < 1.

This is equivalent to
sup
τ∈[0,τ̄ ]

inf
T∈H∞

‖T (iω)(e−τ iω − 1)‖L∞ < 1.

[1] T. Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314–1328, 2017. 6 / 15
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Lower bound using analytic interpolation

Sufficient condition for stability for all τ ∈ [0, τ̄ ]

sup
τ∈[0,τ̄ ]

inf
T∈H∞
T (pj )=1

T (zj )=0

‖T (iω)(e−τ iω − 1)‖L∞ < 1,

In this case one can show that sup inf = inf sup, so the condition holds whenever

inf
T∈H∞
T (pj )=1

T (zj )=0

sup
τ∈[0,τ̄ ]

‖T (iω)(e−τ iω − 1)‖L∞ = inf
T∈H∞
T (pj )=1

T (zj )=0

‖T (iω)φτ̄ (ω)‖L∞ < 1,

where

φτ̄ (ω) = sup
τ∈[0,τ̄ ]

|e−iτω − 1| = sup
τ∈[0,τ̄ ]

2

∣∣∣∣sin(
τ̄ω

2
)

∣∣∣∣ =

2

∣∣∣∣sin(
τ̄ω

2
)

∣∣∣∣ for |ωτ̄ | ≤ π

2 for |ωτ̄ | > π.

In [1] they now use a rational approximation of φτ̄ (ω), and derive a method for finding the largest τ̄ so
that the above condition holds.

Instead, we tackle the above problem directly.

[1] T. Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314–1328, 2017.
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In this case one can show that sup inf = inf sup, so the condition holds whenever

inf
T∈H∞
T (pj )=1

T (zj )=0

sup
τ∈[0,τ̄ ]

‖T (iω)(e−τ iω − 1)‖L∞ = inf
T∈H∞
T (pj )=1

T (zj )=0

‖T (iω)φτ̄ (ω)‖L∞ < 1,

where

φτ̄ (ω) = sup
τ∈[0,τ̄ ]

|e−iτω − 1| = sup
τ∈[0,τ̄ ]

2

∣∣∣∣sin(
τ̄ω

2
)

∣∣∣∣ =

2

∣∣∣∣sin(
τ̄ω

2
)

∣∣∣∣ for |ωτ̄ | ≤ π

2 for |ωτ̄ | > π.

In [1] they now use a rational approximation of φτ̄ (ω), and derive a method for finding the largest τ̄ so
that the above condition holds.

Instead, we tackle the above problem directly.

[1] T. Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314–1328, 2017.
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Lower bound using analytic interpolation

Lower bound on τmax is given by larges τ̄ that fulfills

inf
T∈H∞
T (pj )=1

T (zj )=0

‖T (iω)φτ̄ (ω)‖L∞ < 1.

Method for checking solvability of the above problem:
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replace φτ̄ by the outer function Wτ̄ (s) ∈ H∞ given by
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π

∫ ∞
−∞

log
(
φτ̄ (ω)

)ωs + i

ω + is
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]
,

Outer function ≈ generalization of finite-dimensional stable minimum phase transfer function.
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{
T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m,
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The Nevanlinna-Pick interpolation problem has a solution if and only if the Pick matrix

Pick(v ,w) :=

[
1− wj w̄k

vj + v̄k

]n+m

j,k=1

� 0,

where v := [p1, . . . , pn, z1, . . . , zm] and w := [Wτ̄ (p1), . . . ,Wτ̄ (pn), 0, . . . , 0].
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where v := [p1, . . . , pn, z1, . . . , zm] and w := [Wτ̄ (p1), . . . ,Wτ̄ (pn), 0, . . . , 0].

Method for computing maximum value of τ̄ : bisection algorithm checking positive semi-definiteness
of the Pick matrix.
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An improved algorithm

Reconsider the sufficient condition

inf
T∈H∞
T (pj )=1

T (zj )=0

‖T (iω)φτ̄ (ω)‖L∞ < 1.

This gives

‖T (iω)φτ̄ (ω)‖L∞ < 1 ⇐⇒ |T (iω)φτ̄ (ω)| < 1, ∀ω ∈ R ⇐⇒ |T (iω)| < 1

|φτ̄ (ω)| , ∀ω ∈ R.

Equivalently expressed: T (iω) can take values in a circle centered at the origin with radius 1/|φτ̄ (ω)|.

Questions:

Can we center the circle in some other point?

How would that be done?
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An improved algorithm

Go back to the necessary and sufficient conditions for stability :

T (s)
(
e−τs − 1

)
6= −1, ∀ s ∈ C̄+ and

{
T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m,

Let T = T̂ + w0 where w0 ∈ C. This w0 should be seen as a parameter the we control and can vary.
Then the conditions for stability can be rewritten as

T̂ (s)
(
e−τs − 1

)
6= −1 + w0 − w0e

−τs , ∀ s ∈ C̄+ and

{
T̂ (pj) = 1−w0, j = 1, . . . , n,

T̂ (zj) = −w0, j = 1, . . . ,m.

−1 + w0 − w0e
−τs ∈ H∞ and it can be shown that it is 6= 0 in all of C̄+ if and only if <(w0) < 1/2.

For w0 such that <(w0) < 1/2, the inverse is thus an H∞ function, and we get the condition

T̂ (s)
e−τs − 1

1− w0 + w0e−τs
6= −1, ∀ s ∈ C̄+.

We can repeat the previous arguments, but where φτ̄ (ω) is replaced by

φτ̄ (ω) := sup
τ∈[0,τ̄ ]

∣∣∣∣ e−τ iω − 1

1− w0 + w0e−τ iω

∣∣∣∣

=


(0.5−<(w0))−1, ω ≥ ω̄+,

(|0.5− i0.5 cot(ωτ̄/2)− w0|)−1, ω̄+>ω>ω̄−,

(0.5−<(w0))−1, ω ≤ ω̄−,
form computable ω̄±.
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An improved algorithm

Summary of improved method:

Let

φτ̄ (ω) := sup
τ∈[0,τ̄ ]

∣∣∣∣ e−τ iω − 1

1− w0 + w0e−τ iω

∣∣∣∣

Let Wτ̄ be the outer function corresponding to φτ̄ , and let T̃ = T̂Wτ̄ . The corresponding
Nevanlinna-Pick interpolation problem becomes

‖T̃‖H∞ < 1 and

{
T̃ (pj) = (1− w0)Wτ̄ (pj), j = 1, . . . , n,

T̃ (zj) = −w0Wτ̄ (zj), j = 1, . . . ,m.

The Nevanlinna-Pick interpolation problem has a solution if and only if the Pick matrix

Pick(v ,w) :=

[
1− wj w̄k

vj + v̄k

]n+m

j,k=1

� 0,

where v := [p1, . . . , pn, z1, . . . , zm] and
w := [(1− w0)Wτ̄ (p1), . . . , (1− w0)Wτ̄ (pn),−w0Wτ̄ (z1), . . . ,−w0Wτ̄ (zm)].

Compute maximum value of τ̄ using the bisection algorithm, checking positive semi-definiteness of
the Pick matrix.
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Pick(v ,w) :=

[
1− wj w̄k

vj + v̄k

]n+m

j,k=1

� 0,

where v := [p1, . . . , pn, z1, . . . , zm] and
w := [(1− w0)Wτ̄ (p1), . . . , (1− w0)Wτ̄ (pn),−w0Wτ̄ (z1), . . . ,−w0Wτ̄ (zm)].

Compute maximum value of τ̄ using the bisection algorithm, checking positive semi-definiteness of
the Pick matrix.
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Numerical experiment

We investigate the performance of the method on a few examples from [1].

The first system is

P(s) =
s − z

s − p
,

where z = 2 and p > 0. We estimate the maximum
delay margin for different values of p in [0.3, 4].

Observations:

different w0 gives different performance in dif-
ferent regions of [0.3, 4],

for p < 2, with w0 = −10 we get close to
the upper bound from [2], which is tight in this
region.

[1] T. Qi, J. Zhu, & J. Chen. Fundamental limits on uncertain delays: When is a delay system stabilizable by LTI controllers?
IEEE Transactions on Automatic Control, 62(3):1314–1328, 2017.
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Numerical experiment

We also consider the system
P(s) =

s − z

(s − re iθ)(s − re−iθ)
.

we compute an estimate of the delay margin for the pairs (r , θ) = (1, π/4), (1, π/3), and (2, π/3).
For these values of (r , θ) we vary z in [0.01, 4] and for each value of z we investigate which
w0 ∈ [−1.5, 0.5) that maximizes the estimated maximum delay margin.
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Conclusion and future work

Conclusions:

Method for computing a lower bound on the maximum delay margin, based on Nevanlinna-Pick
interpolation and the bisection algorithm.

Improved method by introducing a constant shift w0 in the problem.

Ongoing work:

Interpretation of the method and of the w0-shift from a robust control perspective.
 Improved estimation procedure for lower bounds?

Understanding the maximum delay margin problem from a “Nyquist”-perspective.
 Better understanding of relation to gain and phase margin.

Control design for time delay robustness, also incorporating gain and phase margin considerations.
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Thank you for your attention!

Questions?

15 / 15


