Multidimensional rational covariance extension with applications to Wiener system identification

Axel Ringh*, Johan Karlsson*, and Anders Lindquist †*

* Department of Mathematics KTH Royal Institute of Technology Stockholm, Sweden [†]Department of Automation Shanghai Jiao Tong University, China Shanghai, China

14th of December 2017, CDC2017

- Introduction
 - Motivation texture generation
 - Wiener system identification
- Multidimensional rational covariance extension problem
 - Problem derivation
 - Solution via convex optimization
- Examples in texture generation

• Motivated by the use of thresholded Gaussian random fields to model porous materials [1], we are interested in generating binary textures.

Figure: Example of a texture

[1] S. Eriksson Barman. Gaussian random field based models for the porous structure of pharmaceutical film coatings. In Acta Stereologica [En ligne], Proceedings ICSIA, 14th ICSIA abstracts, 2015.

Introduction Motivation

- Motivated by the use of thresholded Gaussian random fields to model porous materials [1], we are interested in generating binary textures.
- We want to estimate a system that can generate similar textures
 - → multidimensional Wiener systems identification.

Figure: Example of a texture

 S. Eriksson Barman. Gaussian random field based models for the porous structure of pharmaceutical film coatings. In Acta Stereologica [En ligne], Proceedings ICSIA, 14th ICSIA abstracts, 2015.

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x) \xrightarrow{y_{t}}$$

Figure: A Wiener system with thresholding as static nonlinearity.

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x) \xrightarrow{y_{t}}$$

Figure: A Wiener system with thresholding as static nonlinearity.

• $\{u_{\mathbf{t}}; \, \mathbf{t} \in \mathbb{Z}^d\}$ be a zero-mean Gaussian white noise input.

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{\chi_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- $\{u_{\mathbf{t}};\,\mathbf{t}\in\mathbb{Z}^d\}$ be a zero-mean Gaussian white noise input.
- The linear dynamical system is a strictly causal autoregressive-moving-average (ARMA) filter

$$x_{\mathbf{t}} + \sum_{\mathbf{k} \in \Lambda_{+} \setminus \{\mathbf{0}\}} a_{\mathbf{k}} x_{\mathbf{t}-\mathbf{k}} = \sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} u_{\mathbf{t}-\mathbf{k}} \Leftrightarrow W(\mathbf{z}) = \frac{\sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}}{\sum_{\mathbf{k} \in \Lambda_{+}} a_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}} = \frac{b(\mathbf{z})}{a(\mathbf{z})}$$

where $\Lambda_+ \subset \mathbb{Z}^2$ is the support of the filter.

Figure: Example of Λ_+ .

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{\chi_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- $\{u_{\mathbf{t}};\,\mathbf{t}\in\mathbb{Z}^d\}$ be a zero-mean Gaussian white noise input.
- The linear dynamical system is a strictly causal autoregressive-moving-average (ARMA) filter

$$x_{\mathbf{t}} + \sum_{\mathbf{k} \in \Lambda_{+} \setminus \{\mathbf{0}\}} a_{\mathbf{k}} x_{\mathbf{t}-\mathbf{k}} = \sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} u_{\mathbf{t}-\mathbf{k}} \iff W(\mathbf{z}) = \frac{\sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}}{\sum_{\mathbf{k} \in \Lambda_{+}} a_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}} = \frac{b(\mathbf{z})}{a(\mathbf{z})}$$

where $\Lambda_+ \subset \mathbb{Z}^2$ is the support of the filter.

• Thresholding function

$$f(x) = egin{cases} 1 & x > \tau \ 0 & ext{otherwise} \end{cases}$$

 $\xrightarrow{\bullet} \overset{\bullet}{\bullet} \overset{\bullet}{\bullet}$

k2

Figure: Example of Λ_+ .

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{\chi_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- $\{u_{\mathbf{t}};\,\mathbf{t}\in\mathbb{Z}^d\}$ be a zero-mean Gaussian white noise input.
- The linear dynamical system is a strictly causal autoregressive-moving-average (ARMA) filter

$$x_{\mathbf{t}} + \sum_{\mathbf{k} \in \Lambda_{+} \setminus \{\mathbf{0}\}} a_{\mathbf{k}} x_{\mathbf{t}-\mathbf{k}} = \sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} u_{\mathbf{t}-\mathbf{k}} \Leftrightarrow W(\mathbf{z}) = \frac{\sum_{\mathbf{k} \in \Lambda_{+}} b_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}}{\sum_{\mathbf{k} \in \Lambda_{+}} a_{\mathbf{k}} \mathbf{z}^{\mathbf{k}}} = \frac{b(\mathbf{z})}{a(\mathbf{z})}$$

where $\Lambda_+ \subset \mathbb{Z}^2$ is the support of the filter.

• Thresholding function

$$f(x) = \begin{cases} 1 & x > \tau \\ 0 & \text{otherwise} \end{cases}$$

Goal: From samples (y_t) we want to identify τ and W.

Figure: Example of Λ_+ .

$$\xrightarrow{u_t}$$
 Linear system $W(z)$ $\xrightarrow{x_t}$ Threholding function $f(x)$

Figure: A Wiener system with thresholding as static nonlinearity.

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- Identifying the threshold parameter:
 - Since u_t is zero-mean and Gaussian and W(z) is linear, x_t is zero-mean and Gaussian.
 - $\mathbb{E}[y_t] = P(y_t = 1) = P(x_t > \tau) = 1 P(x_t \le \tau) = 1 \phi(\tau)$, where ϕ is the Gaussian CDF \rightarrow we can estimate τ as $\tau_{est} = \phi^{-1}(1 \mathbb{E}[y_t])$.

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- Identifying the threshold parameter:
 - Since u_t is zero-mean and Gaussian and W(z) is linear, x_t is zero-mean and Gaussian.
 - $\mathbb{E}[y_t] = P(y_t = 1) = P(x_t > \tau) = 1 P(x_t \le \tau) = 1 \phi(\tau)$, where ϕ is the Gaussian CDF \rightarrow we can estimate τ as $\tau_{est} = \phi^{-1}(1 - \mathbb{E}[y_t])$.
- In steady-state x_t is second order stationary process, i.e., the covariances are independent of the absolute time t: c_k := E[x_tx_{t-k}]. Assume that c₀ = 1 (normalization). Estimate covariances c_k:

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- Identifying the threshold parameter:
 - Since u_t is zero-mean and Gaussian and W(z) is linear, x_t is zero-mean and Gaussian.
 - $\mathbb{E}[y_t] = P(y_t = 1) = P(x_t > \tau) = 1 P(x_t \le \tau) = 1 \phi(\tau)$, where ϕ is the Gaussian CDF \rightarrow we can estimate τ as $\tau_{est} = \phi^{-1}(1 \mathbb{E}[y_t])$.
- In steady-state x_t is second order stationary process, i.e., the covariances are independent of the absolute time t: c_k := E[x_tx_{t-k}]. Assume that c₀ = 1 (normalization). Estimate covariances c_k:
 - Let $r_k := \mathbb{E}[y_{t-k}y_t] \mathbb{E}[y_{t-k}]\mathbb{E}[y_t]$ be the covariances of the process y_t .
 - Since x_t is Gaussian a theorem by Price [1] gives the following relationship between the covariances

$$r_{\mathbf{k}} = \int_0^{c_{\mathbf{k}}} \frac{1}{2\pi\sqrt{1-s^2}} \exp\left(-\frac{\tau^2}{1+s}\right) ds.$$

Since the integrand is positive, the mapping can be inverted (numerically).

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}} \text{Threholding function } f(x)$$

Figure: A Wiener system with thresholding as static nonlinearity.

- Identifying the threshold parameter:
 - Since u_t is zero-mean and Gaussian and W(z) is linear, x_t is zero-mean and Gaussian.
 - $\mathbb{E}[y_t] = P(y_t = 1) = P(x_t > \tau) = 1 P(x_t \le \tau) = 1 \phi(\tau)$, where ϕ is the Gaussian CDF \rightarrow we can estimate τ as $\tau_{est} = \phi^{-1}(1 \mathbb{E}[y_t])$.
- In steady-state x_t is second order stationary process, i.e., the covariances are independent of the absolute time t: c_k := E[x_tx_{t-k}]. Assume that c₀ = 1 (normalization). Estimate covariances c_k:
 - Let $r_k := \mathbb{E}[y_{t-k}y_t] \mathbb{E}[y_{t-k}]\mathbb{E}[y_t]$ be the covariances of the process y_t .
 - Since x_t is Gaussian a theorem by Price [1] gives the following relationship between the covariances

$$r_{\mathbf{k}} = \int_0^{c_{\mathbf{k}}} \frac{1}{2\pi\sqrt{1-s^2}} \exp\left(-\frac{\tau^2}{1+s}\right) ds.$$

Since the integrand is positive, the mapping can be inverted (numerically).

• From the covariances c_k , estimate the linear system W(z).

Figure: A linear system.

From covariance data $\{c_k\}_{k \in \Lambda}$ we want to estimate a linear system W(z).

The power spectral density Φ(e^{iθ}) of a stochastic process {x_t; t ∈ Z^d} is defined as the nonnegative function such that

$$c_{\mathsf{k}} := rac{1}{(2\pi)^2} \int_{\mathbb{T}^2} e^{i(\mathsf{k}, heta)} \Phi(e^{i heta}) d heta, \quad \mathsf{k} \in \mathbb{Z}^2 \qquad \Longleftrightarrow \qquad \Phi(e^{i heta}) = \sum_{\mathsf{k} \in \mathbb{Z}^2} c_{\mathsf{k}} e^{-i(\mathsf{k}, heta)}.$$

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}}$$

Figure: A linear system.

From covariance data $\{c_k\}_{k \in \Lambda}$ we want to estimate a linear system W(z).

The power spectral density Φ(e^{iθ}) of a stochastic process {x_t; t ∈ Z^d} is defined as the nonnegative function such that

$$c_{\mathbf{k}} := rac{1}{(2\pi)^2} \int_{\mathbb{T}^2} e^{i(\mathbf{k}, heta)} \Phi(e^{i heta}) d heta, \quad \mathbf{k} \in \mathbb{Z}^2 \qquad \Longleftrightarrow \qquad \Phi(e^{i heta}) = \sum_{\mathbf{k} \in \mathbb{Z}^2} c_{\mathbf{k}} e^{-i(\mathbf{k}, heta)}.$$

• Moreover,

$$\Phi(e^{i\theta}) = |W(e^{i\theta})|^2 \Phi_u(e^{i\theta}) = |W(e^{i\theta})|^2 = \frac{|b(e^{i\theta})|^2}{|a(e^{i\theta})|^2} = \frac{\sum_{\mathbf{k}\in\Lambda} p_{\mathbf{k}}e^{-i(\mathbf{k},\theta)}}{\sum_{\mathbf{k}\in\Lambda} q_{\mathbf{k}}e^{-i(\mathbf{k},\theta)}} = \frac{P(e^{i\theta})}{Q(e^{i\theta})}.$$

where P and Q are trigonometric polynomials, and $\Lambda = \Lambda_+ - \Lambda_+$ (Minkowski set difference).

$$\xrightarrow{u_{t}} \text{Linear system } W(z) \xrightarrow{x_{t}}$$

From covariance data $\{c_k\}_{k\in\Lambda}$ we want to estimate a linear system W(z).

• Summarizing, this gives us the following problem:

Problem formulation - Approximate multidimensional rational covariance extension problem

Given a sequence of covariances $c=(c_{\mathsf{k}})_{\mathsf{k}\in \Lambda}$ find a positive function $\Phi(e^{i heta})$ so that

$$\left\{ \begin{array}{ll} \mathsf{c}_{\mathsf{k}} \approx \frac{1}{(2\pi)^2} \int_{\mathbb{T}^2} e^{i(\mathsf{k},\theta)} \Phi(e^{i\theta}) d\theta, & \mathsf{k} \in \Lambda \\ \Phi(e^{i\theta}) = \frac{P(e^{i\theta})}{Q(e^{i\theta})}, & P \text{ and } Q \in \bar{\mathfrak{P}}_+. \end{array} \right.$$

• Notation for nonnegative trigonometric polynomials:

$$\bar{\mathfrak{P}}_{+} = \{ p := (p_{\mathsf{k}})_{\mathsf{k} \in \Lambda} \in \mathbb{C}^{|\Lambda|} \mid p_{-\mathsf{k}} = p_{\mathsf{k}}^{*}, \ P(e^{i\theta}) := \sum_{\mathsf{k} \in \Lambda} p_{\mathsf{k}} e^{-i(\mathsf{k},\theta)}, \ P(e^{i\theta}) \ge 0 \text{ for all } \theta \in \mathbb{T}^{2} \}$$

Multidimensional rational covariance extension Literature

• Rational covariance extension:

- R. Kalman, 1981.
- T.T. Georgiou, 1983.
- T.T. Georgiou, 1987.
- C.I. Byrnes, A. Lindquist, S.V. Gusev, and A.S. Matveev, 1995.
- C.I. Byrnes, S.V. Gusev, and A. Lindquist, 1998.
- C.I. Byrnes, T.T. Georgiou, and A. Lindquist, 2000.
- C.I. Byrnes, P. Enqvist, and A. Lindquist, 2001.
- P. Enqvist, 2004.
- H.I. Nurdin, and A. Bagchi, 2006.
- T.T. Georgiou, and A. Lindquist, 2008.
- A. Ferrante, M. Pavon, and M. Zorzi, 2012.
- M. Zorzi, 2014.

• Periodic/Circulant problem:

- A. Lindquist and G. Picci, 2013.
- A. Lindquist, C. Masiero, and G. Picci, 2013.
- A. Ringh, and A. Lindquist, 2014.
- G. Picci, and B. Zhu, 2017.

Matrix valued

- A. Blomqvist, A. Lindquist, R. Nagamune, 2003.
- F. Ramponi, A. Ferrante, and M. Pavon, 2009.
- M. Pavon, and A. Ferrante, 2013.
- M. Zorzi, 2014.
- B. Zhu, 2017.
- B. Zhu, and G. Baggio, 2017.

Multidimensional problem:

- T.T. Georgiou, 2005.
- T.T. Georgiou, 2006.
- A. Ringh, J. Karlsson, and A. Lindquist, 2015.
- A. Ringh, J. Karlsson, and A. Lindquist, 2016.
- J. Karlsson, A. Lindquist, and A. Ringh, 2016.
- A. Ringh, J. Karlsson, and A. Lindquist, 2017.

Multidimensional rational covariance extension Solution with exact matching

Notation: let \mathfrak{C}_+ be the interior of dual cone of $\overline{\mathfrak{P}}_+$: $\mathfrak{C}_+ := \{ c \in \mathbb{C}^{|\Lambda|} \mid c_{-\mathbf{k}} = c_{\mathbf{k}}^*, \ \langle c, p \rangle := \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} p_{\mathbf{k}}^* > 0 \text{ for all } p \in \overline{\mathfrak{P}}_+ \setminus \{0\} \}$

Multidimensional rational covariance extension Solution with exact matching

Notation: let \mathfrak{C}_+ be the interior of dual cone of $\overline{\mathfrak{P}}_+$: $\mathfrak{C}_+ := \{ c \in \mathbb{C}^{|\Lambda|} \mid c_{-k} = c_k^*, \ \langle c, \rho \rangle := \sum_{\mathbf{k} \in \Lambda} c_{\mathbf{k}} p_{\mathbf{k}}^* > 0 \text{ for all } p \in \overline{\mathfrak{P}}_+ \setminus \{0\} \}$

Theorem

Given a sequence c, the primal problem
(P)

$$egin{aligned} \min_{\Phi>0} & \int_{\mathbb{T}^2} \left(P\lograc{P}{\Phi}+\Phi-P
ight)rac{d heta}{(2\pi)^2} \ & ext{subject to} & c_{f k}=\int_{\mathbb{T}^2}e^{i(f k,m heta)}\Phi(e^{im heta})rac{dm heta}{(2\pi)^2}, & f k\in\Lambda, \end{aligned}$$

has a solution if and only if $c \in \mathfrak{C}_+$. Moreover, for every $c \in \mathfrak{C}_+$ and trigonometric polynomial P > 0 the solution to (P) is given by

$$\Phi(e^{i heta}) = rac{P(e^{i heta})}{\hat{Q}(e^{i heta})}$$

where \hat{Q} is the unique solution to the dual problem

$$(D) \qquad \min_{q\in ilde{\mathfrak{P}}_+} \quad \langle c,q
angle - \int_{\mathbb{T}^2} P\log(Q) rac{d heta}{(2\pi)^2}.$$

A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with applications to spectral estimation and image compression. SIAM Journal on Control and Optimization, 54(4), 1950-1982, 2016.

Multidimensional rational covariance extension

Solution with approximate matching

Theorem

Given any sequence c, for ε large enough the primal problem

$$\begin{array}{ll} P) & \min_{\Phi>0,\,\,\tilde{c}} & \int_{\mathbb{T}^2} \left(P \log \frac{P}{\Phi} + \Phi - P \right) \frac{d\theta}{(2\pi)^2} \\ \text{subject to} & \tilde{c}_{\mathbf{k}} = \int_{\mathbb{T}^2} e^{i(\mathbf{k},\theta)} \Phi(e^{i\theta}) \frac{d\theta}{(2\pi)^2}, \quad \mathbf{k} \in \Lambda, \\ & \|\tilde{c} - c\|^2 \leq \varepsilon^2, \end{array}$$

has an optimal solution given by

$$\Phi(e^{i heta})=rac{P(e^{i heta})}{\hat{Q}(e^{i heta})},$$

where \hat{Q} is the unique solution to the dual problem

$$(D) \qquad \min_{q\in \mathfrak{P}_+} \quad \langle c,q
angle - \int_{\mathbb{T}^2} P\log(Q) rac{d heta}{(2\pi)^2} + arepsilon \|q-e\|,$$

where $e \in \mathbb{C}^{|\Lambda|}$, $e_0 = 1$ and $e_k = 0$ for $k \in \Lambda \setminus \{0\}$.

A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with approximate covariance matching. Submitted to SIAM Journal on Control and Optimization.

Multidimensional rational covariance extension Spectral factorization

- How do we obtain the system from the spectrum?
- In one dimension, spectral factorization as a sum-of-one-square is always possible:

$$\frac{P(e^{i\theta})}{Q(e^{i\theta})} \stackrel{\text{Spectral factorization}}{\underset{\leftarrow}{\overset{\cong}{\leftarrow}}} \frac{|b(e^{i\theta})|^2}{|a(e^{i\theta})|^2}$$

Multidimensional rational covariance extension Spectral factorization

- How do we obtain the system from the spectrum?
- In one dimension, spectral factorization as a sum-of-one-square is always possible:

$$\frac{P(e^{i\theta})}{Q(e^{i\theta})} \underset{\leftarrow}{\overset{\text{Spectral factorization}}{\underset{\leftarrow}{\overset{\text{Trivial}}{\overset{\text{Spectral factorization}}{\overset{\text{Spectral factorizati$$

• Not true in the two dimensions - only factorization as sum-of-several-squares can be guaranteed [1, 2]:

$$\frac{P(e^{i\theta})}{Q(e^{i\theta})} = \frac{\sum_{k=1}^{\ell} |b_k(e^{i\theta})|^2}{\sum_{k=1}^{m} |a_k(e^{i\theta})|^2}.$$

• Open questions:

- How to construct a realization from such a spectrum?
- Is it possible to characterize P for which Q is a sum-of-one-square?

[1] M.A. Dritschel. On factorization of trigonometric polynomials. Integral Equations and Operator Theory, 49(1), 11-42, 2004.

[2] J.S. Geronimo, and M.J. Lai. Factorization of multivariate positive Laurent polynomials. Journal of Approximation Theory, 139(1-2), 327-345, 2006.

Multidimensional rational covariance extension Spectral factorization

- How do we obtain the system from the spectrum?
- In one dimension, spectral factorization as a sum-of-one-square is always possible:

$$\frac{P(e^{i\theta})}{Q(e^{i\theta})} \xrightarrow[\leftarrow]{\text{Spectral factorization}}_{\text{Trivial}} \frac{|b(e^{i\theta})|^2}{|a(e^{i\theta})|^2}$$

• Not true in the two dimensions - only factorization as sum-of-several-squares can be guaranteed [1, 2]:

$$\frac{P(e^{i\theta})}{Q(e^{i\theta})} = \frac{\sum_{k=1}^{\ell} |b_k(e^{i\theta})|^2}{\sum_{k=1}^{m} |a_k(e^{i\theta})|^2}.$$

• Open questions:

- How to construct a realization from such a spectrum?
- Is it possible to characterize P for which Q is a sum-of-one-square?
- We resort to a heuristic, obtained by "abusing" results in [3].
- [1] M.A. Dritschel. On factorization of trigonometric polynomials. Integral Equations and Operator Theory, 49(1), 11-42, 2004.
- [2] J.S. Geronimo, and M.J. Lai. Factorization of multivariate positive Laurent polynomials. Journal of Approximation Theory, 139(1-2), 327-345, 2006.
- [3] J.S. Geronimo, and H.J. Woerdeman. Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. Annals of Mathematics, 839-906, 2004.

$$\xrightarrow{u_{\mathbf{t}}} \text{Linear system } W(z) \xrightarrow{x_{\mathbf{t}}} \text{Threholding function } f(x) \xrightarrow{y_{\mathbf{t}}}$$

Figure: A Wiener system with thresholding as static nonlinearity.

Algorithm for Wiener system identification with thresholding

Input: (y_t)

- 1: Estimate threshold parameter: $\tau_{\rm est} = \phi^{-1}(1 E[y_{\rm t}])$ from the data.
- 2: Estimate covariances: $r_k := E[y_{t-k}y_t] E[y_{t-k}]E[y_t]$ from the data.
- 3: Compute covariances $c_{\mathbf{k}}:=E[x_{\mathbf{t}-\mathbf{k}}x_{\mathbf{t}}]$ by using the relation $r_{\mathbf{k}}=\int$

$$\sum_{0}^{r_{c_k}} \frac{1}{2\pi\sqrt{1-s^2}} \exp\left(-\frac{\tau^2}{1+s}\right) ds$$

- 4: Estimate a rational spectrum using the theory developed here.
- 5: Apply a heuristic, approximate factorization procedure.

Output: au_{est} , coefficients for the linear dynamical system

Example in texture generation

(a) Texture.

(b) Reconstruction.

(c) Close-up of the texture.

Example in texture generation

(e) Texture.

(f) Reconstruction.

(g) Close-up of the texture.

Example in texture generation

(i) Texture.

(k) Close-up of the texture.

We can do estimation of rational multidimensional spectra. But we need to better understand what they mean in terms of dynamical systems.

Questions?