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Introduction
Motivation

Motivated by the use of thresholded Gaussian random fields to model porous materials [1], we are
interested in generating binary textures.

We want to estimate a system that can generate similar textures
 multidimensional Wiener systems identification.

Figure: Example of a texture

[1] S. Eriksson Barman. Gaussian random field based models for the porous structure of pharmaceutical film coatings. In Acta Stereologica [En ligne], Proceedings ICSIA, 14th
ICSIA abstracts, 2015. 3 / 14
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Introduction
Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

{ut; t ∈ Zd} be a zero-mean Gaussian white noise input.

The linear dynamical system is a strictly causal
autoregressive-moving-average (ARMA) filter

xt +
∑

k∈Λ+\{0}

ak xt−k =
∑
k∈Λ+

bk ut−k ⇔ W (z) =

∑
k∈Λ+

bk z
k∑

k∈Λ+
ak zk

=
b(z)

a(z)

where Λ+ ⊂ Z2 is the support of the filter.

Thresholding function

f (x) =

{
1 x > τ

0 otherwise

k1

k2

Figure: Example of Λ+.

Goal: From samples (yt) we want to identify τ and W .
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Introduction
Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

Identifying the threshold parameter:

Since ut is zero-mean and Gaussian and W (z) is linear, xt is zero-mean and Gaussian.
E[yt] = P(yt = 1) = P(xt > τ) = 1− P(xt ≤ τ) = 1− φ(τ), where φ is the Gaussian CDF
 we can estimate τ as τest = φ−1(1− E[yt]).

In steady-state xt is second order stationary process, i.e., the covariances are independent of the
absolute time t: ck := E[xtxt−k]. Assume that c0 = 1 (normalization). Estimate covariances ck:

Let rk := E[yt−kyt]− E[yt−k]E[yt] be the covariances of the process yt.
Since xt is Gaussian a theorem by Price [1] gives the following relationship between the
covariances

rk =

∫ ck

0

1

2π
√

1− s2
exp

(
− τ 2

1 + s

)
ds.

Since the integrand is positive, the mapping can be inverted (numerically).

From the covariances ck, estimate the linear system W (z).

[1] R. Price. A useful theorem for nonlinear devices having Gaussian inputs. IRE Transactions on Information Theory, 4(2), 69-72, 1958.
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Multidimensional rational covariance extension
Derivation of the problem

Linear system W (z)
ut xt

Figure: A linear system.

From covariance data {ck}k∈Λ we want to estimate a linear system W (z).

The power spectral density Φ(e iθ) of a stochastic process {xt; t ∈ Zd} is defined as the
nonnegative function such that

ck :=
1

(2π)2

∫
T2

e i(k,θ)Φ(e iθ)dθ, k ∈ Z2 ⇐⇒ Φ(e iθ) =
∑
k∈Z2

cke
−i(k,θ).
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1

(2π)2

∫
T2

e i(k,θ)Φ(e iθ)dθ, k ∈ Z2 ⇐⇒ Φ(e iθ) =
∑
k∈Z2

cke
−i(k,θ).

Moreover,

Φ(e iθ) = |W (e iθ)|2Φu(e iθ) = |W (e iθ)|2 =
|b(e iθ)|2

|a(e iθ)|2 =

∑
k∈Λ pke

−i(k,θ)∑
k∈Λ qke

−i(k,θ)
=

P(e iθ)

Q(e iθ)
.

where P and Q are trigonometric polynomials, and Λ = Λ+ − Λ+ (Minkowski set difference).
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Multidimensional rational covariance extension
Derivation of the problem

Linear system W (z)
ut xt

Figure: A linear system.

From covariance data {ck}k∈Λ we want to estimate a linear system W (z).

Summarizing, this gives us the following problem:

Problem formulation – Approximate multidimensional rational covariance extension problem

Given a sequence of covariances c = (ck)k∈Λ find a positive function Φ(e iθ) so that
ck ≈

1

(2π)2

∫
T2

e i(k,θ)Φ(e iθ)dθ, k ∈ Λ

Φ(e iθ) =
P(e iθ)

Q(e iθ)
, P and Q ∈ P̄+.

Notation for nonnegative trigonometric polynomials:

P̄+ = {p := (pk)k∈Λ ∈ C|Λ| | p−k = p∗k , P(e iθ) :=
∑
k∈Λ

pke
−i(k,θ), P(e iθ) ≥ 0 for all θ ∈ T2}

6 / 14



Multidimensional rational covariance extension
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Multidimensional rational covariance extension
Solution with exact matching

Notation: let C+ be the interior of dual cone of P̄+:

C+ := {c ∈ C|Λ| | c−k = c∗k , 〈c, p〉 :=
∑
k∈Λ

ckp
∗
k > 0 for all p ∈ P̄+ \ {0}}

Theorem

Given a sequence c, the primal problem

(P) min
Φ>0

∫
T2

(
P log

P

Φ
+ Φ− P

)
dθ

(2π)2

subject to ck =

∫
T2

e i(k,θ)Φ(e iθ)
dθ

(2π)2
, k ∈ Λ,

has a solution if and only if c ∈ C+. Moreover, for every c ∈ C+ and trigonometric polynomial P > 0
the solution to (P) is given by

Φ(e iθ) =
P(e iθ)

Q̂(e iθ)

where Q̂ is the unique solution to the dual problem

(D) min
q∈P̄+

〈c, q〉 −
∫
T2

P log(Q)
dθ

(2π)2
.

[1] A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with applications to spectral estimation and image compression. SIAM Journal on
Control and Optimization, 54(4), 1950-1982, 2016.
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Multidimensional rational covariance extension
Solution with approximate matching

Theorem

Given any sequence c, for ε large enough the primal problem

(P) min
Φ>0, c̃

∫
T2

(
P log

P

Φ
+ Φ− P

)
dθ

(2π)2

subject to c̃k =

∫
T2

e i(k,θ)Φ(e iθ)
dθ

(2π)2
, k ∈ Λ,

‖c̃ − c‖2 ≤ ε2,

has an optimal solution given by

Φ(e iθ) =
P(e iθ)

Q̂(e iθ)
,

where Q̂ is the unique solution to the dual problem

(D) min
q∈P̄+

〈c, q〉 −
∫
T2

P log(Q)
dθ

(2π)2
+ ε‖q − e‖,

where e ∈ C|Λ|, e0 = 1 and ek = 0 for k ∈ Λ \ {0}.
[1] A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance extension with approximate covariance matching. Submitted to SIAM Journal on Control and

Optimization. 9 / 14



Multidimensional rational covariance extension
Spectral factorization

How do we obtain the system from the spectrum?

In one dimension, spectral factorization as a sum-of-one-square is always possible:

P(e iθ)

Q(e iθ)

Spectral factorization
→
=
←

Trivial

|b(e iθ)|2

|a(e iθ)|2

Not true in the two dimensions - only factorization as sum-of-several-squares can be guaranteed
[1, 2]:

P(e iθ)

Q(e iθ)
=

∑`
k=1 |bk(e iθ)|2∑m
k=1 |ak(e iθ)|2 .

Open questions:

How to construct a realization from such a spectrum?
Is it possible to characterize P for which Q is a sum-of-one-square?

We resort to a heuristic, obtained by “abusing” results in [3].

[1] M.A. Dritschel. On factorization of trigonometric polynomials. Integral Equations and Operator Theory, 49(1), 11-42, 2004.

[2] J.S. Geronimo, and M.J. Lai. Factorization of multivariate positive Laurent polynomials. Journal of Approximation Theory, 139(1-2), 327-345, 2006.

[3] J.S. Geronimo, and H.J. Woerdeman. Positive extensions, Fejér-Riesz factorization and autoregressive filters in two variables. Annals of Mathematics, 839-906, 2004.
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Algorithm for Wiener system identification

Linear system W (z) Threholding function f (x)
ut xt yt

Figure: A Wiener system with thresholding as static nonlinearity.

Algorithm for Wiener system identification with thresholding

Input: (yt)
1: Estimate threshold parameter: τest = φ−1(1− E [yt]) from the data.
2: Estimate covariances: rk := E [yt−kyt]− E [yt−k]E [yt] from the data.

3: Compute covariances ck := E [xt−kxt] by using the relation rk =

∫ ck

0

1

2π
√

1− s2
exp

(
− τ 2

1 + s

)
ds

4: Estimate a rational spectrum using the theory developed here.
5: Apply a heuristic, approximate factorization procedure.

Output: τest, coefficients for the linear dynamical system

11 / 14



Example in texture generation

(a) Texture. (b) Reconstruction.

(c) Close-up of the texture. (d) Close-up of the reconstruction. 12 / 14



Example in texture generation

(e) Texture. (f) Reconstruction.

(g) Close-up of the texture. (h) Close-up of the reconstruction. 12 / 14



Example in texture generation

(i) Texture. (j) Reconstruction.

(k) Close-up of the texture. (l) Close-up of the reconstruction. 12 / 14



Conclusion

We can do estimation of rational multidimensional spectra.
But we need to better understand what they mean in terms of dynamical systems.
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Thank you for your attention!

Questions?
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