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Abstract— The rational covariance extension problem is to
parametrize the family of rational spectra of bounded degree
that matches a given set of covariances. This article treats a
circulant version of this problem, where the underlying process
is periodic and we seek a spectrum that also matches a set of
given cepstral coefficients. The interest in the circulant problem
stems partly from the fact that this problem is a natural
approximation of the non-periodic problem, but is also a tool in
itself for analysing periodic processes. We develop a fast Newton
algorithm for computing the solution utilizing the structure of
the Hessian. This is done by extending a current algorithm for
Toeplitz-plus-Hankel systems to the block-Toeplitz-plus-block-
Hankel case. We use this algorithm to reduce the computational
complexity of the Newton search from O(n3) to O(n2), where
n corresponds to the number of covariances and cepstral
coefficients.

I. INTRODUCTION

The spectrum of a stochastic process describes the energy
content of the signal across frequencies. Spectral estimation
is to estimate a spectrum based on samples of the underlying
process, and is an important tool in many areas such as
medicine, economy, astronomy and seismology (see, e.g.,
[30], [34]). For a zero-mean, second-order stationary process
y(t), t ∈ Z, the spectrum is given by the discrete-time
Fourier transform of the covariance lags of the process:

Φ(eiθ) =

∞∑
−∞

cke
−ikθ

where ck = E{y(t)ȳ(t + k)} and c−k = c̄k. These co-
variances can be estimated from samples of the process,
y(0), . . . , y(M), via the biased estimate (see, e.g., [34, p.
24]):

cl =
1

M

M−l∑
k=0

y(k)ȳ(k + l), for l�M.

In 1981, Kalman posted the so called Rational Covari-
ance Extension Problem (RCEP) [23], which is to find a
parametrization of all rational spectra of degree at most n
that matches the first n + 1 covariances. That is, given a
sequence of covariances {ck}nk=0 parametrize all rational
spectra Φ(eiθ) = P (eiθ)/Q(eiθ) of degree at most n, where
P and Q are positive trigonometric polynomials of the form

P (eiθ) =

n∑
k=−n

pke
−ikθ, Q(eiθ) =

n∑
k=−n

qke
−ikθ (1)
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where p−k = p̄k and q−k = q̄k, that matches the given
covariance sequence:∫ π

−π
eikθΦ(eiθ)

dθ

2π
= ck, for k = 0, . . . , n. (2)

This is a moment problem, and the problem without the
degree constraint is a classical problem referred to as the
truncated trigonometric moment problem, and which is
closely related to the Carathédory extension problem [25].

In the past decades the scalar valued version of the RCEP
has been solved [4]–[8], [10], [12]–[14], [27], [29], [33],
as well as several versions of the multivariate counterpart,
where y(t) is vector-valued [1], [15], [26], [31]. It turns
out that there is a unique solution to the RCEP, where
Q is completely determined by the covariance sequence c
and the spectral zeros P . Moreover Q can be computed
as the solution to a finite-dimensional, convex optimization
problem. In order to apply this to obtain a spectrum Φ,
the spectral zeros need to be selected. The most common
choice is to take P ≡ 1, which gives the Burg Maximum
Entropy solution [3]. However by utilizing the choice of P
one can obtain spectral estimates with larger dynamic range
and which approximates the true spectrum better. Several
such approaches have been proposed, for example based
on an inverse problem approach (see, e.g., [11], [24]), or
based on simultaneous matching of covariances and cepstral
coefficients [5], [10], [28].

In this work we consider a discrete approximation of the
RCEP with cepstral matching derived in [27], for real signals.
We develop a fast Newton solver for the corresponding
optimization problem, and by utilizing the structure of the
Hessian matrix the search direction in each iteration is
computed with complexity O(n2) instead of O(n3). In order
to do this we generalize theory regarding Toeplitz-plus-
Hankel matrices [17]–[19] to matrices with the same block
structure. The outline of the article is as follows: Section
II provides background on the problem of covariance and
cepstral matching. Here we also introduce the notation used.
In Section III we derive the general Newton solver for the
problem, and in Section IV we investigate the structure
of the Hessian. Section V presents the theory for solving
systems with block-Toeplitz-plus-block-Hankel matrices, and
in Section VI we present numerical results.

II. BACKGROUND

Let P be the set of all trigonometric polynomials P (eiθ)
of the form (1) with real coefficients, and define the positive
convex cone

P+ := {P ∈ P | P (eiθ) > 0 for θ ∈ [−π, π]}.



By P̄+ we will denote its closure, i.e., all polynomials P
where P (eiθ) ≥ 0. The notation P will be reserved for the
polynomial, while p ∈ R2n+1 will be used to denote the
vector of polynomial coefficients. To ease notation we will
therefore sometimes write “p ∈ P+”, instead of “for p such
that P ∈ P+”.

Next consider the real sequences x := {xk}nk=−n, with
x−k = xk, and y := {yk}nk=−n, with y−k = yk, and define
the inner product as

〈x, y〉 =

n∑
k=−n

xky−k.

Now note that both the coefficient vector p ∈ P̄+, and a
real covariance sequence c have the same symmetry property.
Hence using this inner product we can define the interior of
the dual cone of P̄+ as the convex cone

C+ = {c | 〈c, p〉 > 0, ∀ p ∈ P̄+ \ {0}}.

The existence of a unique solution to the RCEP can then be
expressed as follows.

Theorem 1 ([8]): Given c ∈ C+, for every P ∈ P+ there
exist a unique Q ∈ P+ such that Φ = P/Q satisfies (2).

In the recent paper [27], Lindquist and Picci studies
the Circulant RCEP (CRCEP), that is, the case where the
stochastic process y(t), t ∈ Z, is periodic of period 2N .
In this case the spectrum is the discrete Fourier transform
(DFT) of the covariances

Φ(ζk) =

2N−1∑
j=0

cjζ
−j
k , ck =

1

2N

2N−1∑
j=0

ζkj Φ(ζj), (3)

where ζk = eikπ/N . Introducing the discrete measure

dν(θ) =

2N−1∑
j=0

δ(eiθ − ζj)
dθ

2N

we can write (3) as

ck =

∫ π

−π
eikθΦ(eiθ)dν. (4)

We thus see that this is also a moment problem, but where
the mass-distribution is discrete instead of continuous, and
the problem formulation is similar to that of the RCEP.

We introduce the corresponding convex cone P+(N),
namely

P+(N) := {P ∈ P | P (ζk) > 0 for k = 0, . . . 2N−1} (5)

and by C+(N) we denote the inner of the corresponding
dual cone. In [27] it was shown that given a c ∈ C+(N), for
each P ∈ P+(N) there exist a unique Q ∈ P+(N) such
that Φ = P/Q satisfies (4) for k = 0, . . . , n. This result is
analogues to that of Theorem 1, and highlights some of the
similarities of the problems. The CRCEP is interesting in its
own right, however it is also a natural way to approximate
the solution of the RCEP.

Theorem 2 ([27]): Fix a P ∈ P+ ⊂ P+(N). For every
c ∈ C+ there exists Ñ big enough so that c ∈ C+(N) for

all N ≥ Ñ . Let Q̂N and Q̂ the optimal solutions to the
corresponding CRCEP and RCEP respectively. Then

lim
N→∞

Q̂N = Q̂.

Since the computations involved in the CRCEP are based
on DFT, they are computable by the Fast Fourier Transform
(FFT). The above result ensures that such solution is a good
approximation of the original problem.

A. Covariance and cepstral matching

The (real) cepstrum is defined as the (real) logarithm of
the spectrum, log(Φ), and the cepstral coefficients, mk, are
the Fourier coefficients of the cepstrum:

mk =

∫ π

−π
eikθ log

(
Φ(eiθ)

) dθ
2π
.

The cepstral coefficients can be estimated from the sampled
process {y(k)}Mk=0 [21], and by combining covariance and
cepstral matching we can estimate both spectral zeros P and
spectral poles Q [5], [10], [28].

The cepstrum can also be considered for periodic signals
[27], and the cepstral coefficients correspond to the inverse
discrete Fourier transform of the cepstrum

mk =
1

2N

2N−1∑
j=0

ζkj log (Φ(ζj)) =

∫ π

−π
eikθ log

(
Φ(eiθ)

)
dν.

It is then possible to formulate a corresponding Enqvist-
regularized problem [10] for both covariance and cepstral
matching, as follows.

Theorem 3 ([27]): For any λ > 0, given c ∈ C+(N) and
sequence {mk}nk=0 there exists a unique pair P (z) and Q(z),
with p0 = 1, such that Φ(z) = P (z)/Q(z) and∫ π

−π
eikθΦ(eiθ)dν = ck, for k = 0, . . . , n∫ π

−π
eikθ log

(
Φ(eiθ)

)
dν = mk + λ

∫ π

−π
eikθ

1

P (eiθ)
dν,

for k = 1, . . . , n.

Moreover, P (z) and Q(z) can be obtained as the unique
solution to the convex optimization problem

min
p, q

J(P,Q)

subject to P (eiθ), Q(eiθ) ∈ P+(N)

p0 = 1,

(6)

where

J(P,Q) = 〈c, q〉 − 〈m, p〉+

∫ π

−π
P log

(
P

Q

)
dν

−λ
∫ π

−π
log(P )dν.

(7)



III. UNCONSTRAINED NEWTON-SOLVER

We will now consider the optimization problem (6) in
detail.1 The problem can be reformulated into an explicitly
unconstrained form, by formulating the problem in the poly-
nomial coefficients of P and Q. Now since p0 = 1 this gives
that p1, . . . , pn, q0, . . . , qn are the variables, giving a total of
2n + 1 variables. Moreover, the only remaining constraint
that needs to be handled is the positivity constraint. This can
be handled implicitly in the algorithm, as explained further
below, and the problem can thus be solved numerically by a
unconstrained Newton-solver (c.f., [32]).

The functional to be minimized in the Enqvist-regularized
problem is J(P,Q), given in (7). The unconstrained Newton-
method search for a minimum in an iterative way, and in each
iteration the search direction δ is computed as the solution
to ∇2Jδ = −∇J, where ∇J and ∇2J are the gradient
and Hessian of J. The Newton algorithm is described in
Algorithm 1, and we will now derive analytical expressions
for the gradient and the Hessian.

Noting that p and q are real we have that P (eiθ) =
P (e−iθ) and Q(eiθ) = Q(e−iθ), and using this when taking
partial derivatives of (7) we get

∂J
∂qk

= ck −
∫ π

−π

P

Q
eikθdν, for k = 0, . . . , n (8a)

∂J
∂pk

= −mk +

∫ π

−π
log

(
P

Q

)
eikθdν − λ

∫ π

−π

1

P
eikθdν,

for k = 1, . . . , n. (8b)

Note that the derivatives with respect to q are given by the
mismatch between the desired covariances and the covari-
ances of the current estimate Φ = P/Q. The derivatives with
respect to p̃ :=

[
p1 . . . pn

]T
are given by the mismatch

plus the regularization term in the cepstral coefficients (c.f.,
[4], [27]).

Next we consider the second partial derivatives, which
gives that the elements in the Hessian, ∇2J, are given by

∂2J
∂qk∂q`

=

∫ π

−π

P

2Q2
(ei(k+`)θ + ei(k−`)θ)dν, (9a)

for k, ` = 0, . . . , n,

∂2J
∂pk∂p`

=

∫ π

−π

1

2P
(ei(k+l)θ + ei(k−`)θ)dν

+ λ

∫ π

−π

1

2P 2
(ei(k+`)θ + ei(k−`)θ)dν, (9b)

for k, ` = 1, . . . , n, and

∂2J
∂qk∂p`

= −
∫ π

−π

1

2Q
(ei(k+`)θ + ei(k−`)θ)dν, (9c)

for k = 0, . . . , n, and ` = 1, . . . , n.
Remark 1: Note that the sums in (8) and (9) are all com-

putable using FFT. To see this, note that the trigonometric
polynomials P and Q can be evaluated in all points {ζk}2N−1k=0

1Since the sequences c and m are real, the optimal solution will have
real coefficients.

Algorithm 1 Newton-solver for the problem (6)
Input: c, m, λ

1: j = 0
2: q0 = [1, 0 . . . , 0], p̃0 = [0, 0 . . . , 0]
3: Compute P 0 and Q0

4: Compute ∇J and ∇2J
5: while ||∇J|| > ε do
6: Solve ∇2J δ = ∇J
7: Find maximum step length ρmax ≤ 1 such that P,Q ∈

P+(N) for all ρ ≤ ρmax

8: Perform line-search to find step length ρ ≤ ρmax

9: p̃j+1 ← p̃j + ρδp̃
10: qj+1 ← qj + ρδq
11: Compute P j+1 and Qj+1

12: Compute ∇J and ∇2J
13: end while
Output: p, q

simultaneously by FFT, namely P (ζk) is given by the k:th
coefficient in the vector

FFT{
[
p0,

1
2p1, . . . ,

1
2pn, 0, . . . , 0,

1
2pn, . . . ,

1
2p1
]
}.

Next note that an integral of the form
∫ π
−π ♦e

ikθdν is the
k:th coefficient of the inverse FFT of ♦. Hence instead of
computing each sum independently, which would require
O(Nn) operations, we can use the inverse FFT to compute
the 2N sums in O(N log(N)).

Remark 2: A second remark is regarding the computa-
tions of the maximum step length, ρmax, and the line search
used to compute the actual step length. Let δp̃ and δq be the
parts of the search direction δ that corresponds to p̃ and q
respectively. Then a step of length ρ in this direction will
affect the values of the polynomials P and Q as

δP =ρ ·FFT{
[
0, 12δp̃1 , . . . ,

1
2δp̃n0, . . . , 0, 12δp̃n , . . . ,

1
2δp̃1

]
},

δQ=ρ ·FFT{
[
δq0 ,

1
2δq1 , . . . ,

1
2δqn0, . . . , 0, 12δqn , . . . ,

1
2δq1

]
}.

Only components k where δP (k) or δQ(k) are negative
can make the respective polynomial negative. Therefore the
maximum step lengths allowed in order to keep the respective
polynomial positive are given by

p̃ρmax = min
k s.t δP (k)<0

{∣∣∣∣δP (k)

P (k)

∣∣∣∣} ,
qρmax = min

k s.t δQ(k)<0

{∣∣∣∣δQ(k)

Q(k)

∣∣∣∣} .
From this, the maximum step length is computed as

ρmax = min{1, γ · p̃ρmax, γ · qρmax}

where 0 < γ < 1 is a parameter that will ensure strict posi-
tivity. Then an ordinary back-tracking line-search, initialized
at ρmax, is used (see, e.g., [2, p. 464]).



IV. STRUCTURE OF THE HESSIAN

In this section we will consider the structure of the Hessian
matrix. By ordering the variables as[

q0 q1 p1 . . . qn pn
]

(10)

the Hessian contains a sub-matrix with block-Toeplitz-plus-
block-Hankel structure. This allows us to solve step 6 of
Algorithm 1 in O(n2) instead of O(n3).

With the ordering of the variables according to (10), the
Hessian matrix, with elements given in (9), gets the structure

d0 [ 2d1 · · · 2dn ]2d1
...

2dn


 D0 +D2 . . . D−n+1 +Dn+1

...
. . .

...
Dn−1 +Dn+1 · · · D0 +D2n


 (11)

where

d0 = r0,

dk =
[
rk sk

]
, for k = 1, . . . , n, and

Dk =

[
rk sk
sk tk

]
, for k = 0, . . . , 2n,

(12)

and where

rk =

∫ π

−π

P

2Q2
eikθdν

sk = −
∫ π

−π

1

2Q
eikθdν

tk =

∫ π

−π

1

2P
eikθdν + λ

∫ π

−π

1

2P 2
eikθdν.

We see that the lower right block of (11) has a block-
Toeplitz-plus-block-Hankel structure, where the individual
blocks are 2× 2-matrices. Therefore we split the matrix as

∇2J =

[
h11 hT12
h12 H22

]
, (13)

where h11 ∈ R1×1, h12 ∈ R2n×1 and H22 ∈ R2n×2n.
In each Newton step we thus want to solve a system of
equations of the form[

h11 hT12
h12 H22

] [
x1
x2

]
=

[
y1
y2

]
, (14)

where x1, y1 ∈ R and x2, y2 ∈ R2n. This can be solved
first for x1 and then for x2 by using the Schur complement,
leading to the system of equations

x1 = (h11 − hT12H−122 h12)−1(y1 − hT12H−122 y2) (15a)

x2 = H−122 y2 −H
−1
22 h12x1. (15b)

Now H−122 y2 and H−122 h12 can be computed with complexity
O(n2), which will be explained in the next section. Thus the
system (14) can be solved fast using (15a) and (15b).

V. FAST ALGORITHM FOR SOLVING
BLOCK-TOEPLITZ-PLUS-BLOCK-HANKEL-SYSTEM

The computational bottleneck in (15) is to compute H−122 y2
and H−122 h12. In this section we will compute this in O(n2),
using the fact that H22 is a block-Toeplitz-plus-block-Hankel
matrix, and hence has a structure with low displacement rank.
The displacement of a matrix A is defined as ∆(A) := AU−
UA for a suitable matrix U , where U is selected depending
on a given structure. If ∆(A) is of low rank, then the
displacement rank of A−1 is low as well, a fact that in many
cases be used for explicit formulas for A−1 as well as for
efficiently computing the solution to the corresponding linear
system [16]. For a more complete overview of displacement
structure, see, e.g., [22].

For the case of strongly non-singular,2 scalar-valued
Toeplitz-plus-Hankel matrices, the displacement structure
and the structure of the inverse were derived in [17]–[19].
The inverse of A may be represented as a sum of products of
triangular Toeplitz matrices, using the so called fundamental
solution, and allows for solving the system of equations using
FFT.3 The fundamental solution can be computed in O(n2),
using a recursive scheme similar to the Levinson-Durbin
algorithm for Toeplitz matrices. Note that this approach also
allows for solving matrix systems without explicitly forming
the matrices and hence uses considerably less memory. In
this section we will generalize the results from [17]–[19] to
the block-case.

A. Fundamental solution
We analyse the problem of solving Toeplitz-plus-Hankel

systems using the approach in [17], but for the case when
the elements are matrices of size `×`. For k`×m` matrices,
partitioned into blocks of size `×`, we also define the block-
transpose (·)TB as

A =

a11 · · · a1m
...

...
ak1 · · · akm

 ⇒ ATB =

a11 · · · ak1
...

...
a1m · · · akm


where the internal structures of the blocks a11, . . . , akm are
preserved. By I`×` and 0`×` we denote the identity and the
zero matrix of size ` × `, and by emk we denote the kth
block-unit vector

emk =
[
0`×` . . . I`×` . . . 0`×`

]TB ∈ Rm`×`.

We also define U = S + STB , where S is the block-shift-
down matrix, i.e., zero expect for the elements on sub-block-
diagonal which are I`×`.

For a block-Toeplitz-plus-block-Hankel matrix A,

A =


t0 + h0 t−1 + h1 · · · t−n + hn
t1 + h1 t0 + h2 · · · t−n+1 + hn+1

...
. . .

...
tn + hn tn−1 + hn+1 · · · t0 + h2n

 , (16)

2A strongly non-singular matrix is a matrix who’s principle minors all are
non-singular. Positive definite matrices are one example of such matrices.

3The number of FFTs needed can further be reduced using the results in
[20]. However this implementation is considerably more complex and does
not address the bottleneck.



we can due to its displacement structure write

AU − UA =

4∑
j=1

gjf
TB
j . (17)

Here gj , fj , for j = 1, . . . , 4, are the block-vectors

g1 = en+1
1

g2 = en+1
n+1

g3 = −
[
t1 + h−1 · · · tn+1 + hn−1

]TB

g4 = −
[
t−n−1 + hn+1 · · · t−1 + h2n+1

]TB

(18)

f1 =
[
t−1 + h−1 · · · t−n−1 + hn−1

]TB

f2 =
[
tn+1 + hn+1 · · · t1 + h2n+1

]TB

f3 = g1
f4 = g2,

(19)

where tn+1, t−n−1, h−1 and h2n+1 are arbitrary ` × ` ma-
trices.4 By multiplying (17) to the left and right with A−1

we obtain the representation for the inverse as

UA−1 −A−1U =

4∑
j=1

xjy
TB
j

where the vectors x1, . . . , y4 is the so called fundamental
solution, and solves the system of equations

Axj = gj , for j = 1, . . . , 4, (20a)

yTB
j A = fTB

j , for j = 1, . . . , 4. (20b)

The system of equations (20) can be solved recursively by
considering the consecutive systems

Amxmj = gmj , for j = 1, . . . , 4

(ymj )TBAm = (fmj )TB , for j = 1, . . . , 4

and studying how the solutions for m and m+1 are related.
This allows for solving (20) in O(n2) instead of O(n3).
Here Am, gm1 , . . . , f

m
4 are the matrix and vectors obtained

by taking n = m in (16), (18) and (19).
The update equations for x1, . . . , x4 are similar to the ones

in [17], and can be written as

xm+1
2 =

[
xm4
I`×`

]
α−1m

xm+1
j =

[
xmj
0`×`

]
− xm+1

2 γjm, for j = 1, 3

xm+1
4 = Um+1

[
xm4
I`×`

]
−

xm−14

I`×`
0`×`

α−1m−1αm
+

[
xm4
I`×`

]
α−1m

(
−λm+1 + λmα

−1
m−1αm

)
−
∑
j=1,3

xm+1
j βjm.

4Note that tn+1, t−n−1, h−1 and h2n+1 are not specified by the
problem, but introduced to ease the notation above. They will cancel in
the actual computations.

However one difference is that in this formulation the con-
stants αm, λm, γjm and βjm are matrices of size `×`. These
are updated as5

αm = (fm2 )TBxm4 + a0 + b2m,

γjm = (fm2 )TBxmj − (em+1
m )TBgm+1

j , for j = 1, 3,

λm = (fm2 )TB

[
xm−14

Il×l

]
,

βjm = (fm+1
i )TB

[
xm4
Il×l

]
, for j = 1, 3.

Note that in these recursions xm+1
4 depends on xm+1

1 and
xm+1
3 , which in turn depend on xm+1

2 .
To obtain y1, . . . , y4, we now want to solve (20b) recur-

sively. However transposing the equation gives the equivalent
system of equations

AT yTBT
j = fTBT

j , j = 1, . . . , 4.

Note that the operation (·)TBT will result in only a transpose
of the individual block-elements. Now, let ĝj , f̂j for j =
1, . . . , 4 be the corresponding vectors associated with AT .
Considering these vectors we get the relations ĝ1 = fTBT

3 =
f3, ĝ2 = fTBT

4 = f4, ĝ3 = −fTBT
1 , ĝ4 = −fTBT

2 , and hence

y1 = −x̂TBT
3 , y2 = −x̂TBT

4 , y3 = x̂TBT
1 , y4 = x̂TBT

2

where x̂j is the solution to

AT x̂j = ĝj , j = 1, . . . , 4.

The case of interest here is H22 in (13), which has symmetric
block structure. Moreover, the block-elements in (12) are
also symmetric, making H22 a symmetric matrix. Therefore
AT = A and fTBT

j = fj also for j = 1 and 2, which
gives that the solutions y1, . . . , y4 are obtained directly as
y1 = −xTBT

3 , y2 = −xTBT
4 , y3 = xTBT

1 , and y4 = xTBT
2 .

Remark 3: Note that the computation time can be reduced
by treating f1, . . . , f4 as row block-vectors, since all of the
computations involve their block-transpose.

B. Triangular representation

In [19] a representation is derived for the inverse of a
Toeplitz-plus-Hankel matrix as sums of products of trian-
gular Toeplitz matrices. These triangular Toeplitz matrices
are completely determined by the fundamental solution,
described above. It can be verified that this also holds in
the block-Toeplitz-plus-block-Hankel case.

Following the notation in [19], let

z =
[
z0 z1 · · · zn+2

]TB ∈ R(n+3)`×`

5These equations contain a correction of a typo in [17]. The equation
for β2m, after equation (5.8) in [17], should be β2m =

λm+1

αm
− λm
αm−1

.
However the constant β2m is not used in the block-case, since some of the
simplifications yielding the constant are not possible to do when αm and
λm are matrix-valued.



be a block-vector and let T+(z) denote the block-lower-
triangular block-Toeplitz matrix of the first n + 1 block-
elements, i.e.,

T+(z) =


z0 0 · · · 0
z1 z0 · · · 0
...

. . .
...

zn zn−1 · · · z0

 .
Further, let T−(z) be its block-transpose, T−(z) =
(T+(z))TB , and let Jk denote the block-flip-matrix with
identity blocks I`×` on the anti-diagonal:

Jk =


0 · · · 0 I`×`
0 · · · I`×` 0
... . . .

...
I`×` · · · 0 0

 ∈ Rk`×k`.

Moreover, by ẑ ∈ R(n+3)`×` we denote the vector Jn+3z,
i.e., the block-vector z block-flipped upside down, and z′ ∈
R(n+1)`×` denotes the block-vector z′ := [zk]n+1

k=1 . Using this
notation we can state the result as follows.

Proposition 1: Let A be a block-Toeplitz-plus-block-
Hankel matrix of size `(n+ 1)× `(n+ 1), as given in (16),
and let xj , yj for j = 1, . . . , 4 be the fundamental solution
to this matrix. Moreover, let

a1 =
[
0l×l xTB

1 0l×l
]TB

, b1 =
[
−Il×l yTB

1 0l×l
]TB

a2 =
[
0l×l xTB

2 0l×l
]TB

, b2 =
[
0l×l yTB

2 −Il×l
]TB

a3 =
[
Il×l xTB

3 0l×l
]TB

, b3 =
[
0l×l yTB

3 0l×l
]TB

a4 =
[
0l×l xTB

4 Il×l
]TB

, b4 =
[
0l×l yTB

4 0l×l
]TB

and index the block-elements of these block-vectors from 0
to n+ 2, in accordance with z above. Then

A−1 =

4∑
j=1

T+(aj)(R(Jn+1 T+(b̂j) + T−(bj)) + u b′j
TB )

where u = [I`×`, 0`×`, I`×`, 0`×`, . . .]
TB ∈ R(n+1)`×` and

R = T+([0`×`, I`×`, 0`×`, I`×`, . . .]
TB ) ∈ R(n+1)`×(n+1)`.

Hence by obtaining the fundamental solution to the system
matrix recursively, and then applying the above proposition,
we can solve step 6 in Algorithm 1 in O(n2) and without
explicitly forming the Hessian or its inverse.

VI. NUMERICAL EXAMPLES

The algorithm was implemented in Matlab, and in this
section we present numerical experiments performed. 6 In
Fig. 1 we show a numerical experiment to verify the scaling
of the algorithm for solving the system of equations. We

6All simulations were run on an ordinary desktop computer running
Ubuntu, with a 2.9GHz dual core processor and 3.8GiB RAM. However
please note that the times reported here are not a completely fair comparison.
The built-in functionality in Matlab is optimized to take advantage of
multi-core processors, where as the equation solver developed here and
implemented as a Matlab script is not always capable of using such
possibilities. A comparison between optimized implementations would
therefore likely give a lower threshold for where the proposed algorithm
is beneficial.

Fig. 1. Log-log plot of the average solution time for block-Toeplitz-plus-
block-Hankel matrices of block-size 2, for different values of n.

generate random positive definite block-Toeplitz-plus-block-
Hankel matrices of size 2n × 2n, with n symmetric block-
elements of size 2× 2, and random vectors of size 2n× 1,
and solve the corresponding systems. The mean and standard
deviation of the solution times over 100 random problems,
for n = 800, 1600, 3200 and 6400, for both the equation
solver developed in this paper and for Matlab’s built-in
solver, are shown in the log-log plot. The lines in the plot
are the linear least squares solutions fitted to the four data
points (log(tn), log(n)), for each of the two data sets, where
tn is the average solution time over the 100 test problems
for fixed n. Thus the slop of each line is an estimate of the
scaling of the corresponding algorithm. The numerical values
for these slopes are 1.99 and 3.05 for the equation solver
developed here and Matlab’s built-in solver respectively,
which agrees with the theoretical values 2 and 3.

In Table I solution times for the Newton-solver are pre-
sented for varying values of n. For each value of n, 100
test examples were generated and solved. In each run two
positive function P and Q were generated as the sum of low
degree polynomials and a function with χ2 distributed values,
from which the covariances and cepstral coefficients were
computed. The corresponding solution to the optimization
problem (6) were then computed. Times are reported both
for when the search direction is computed with the equation
solver developed above, and using Matlab’s solver.

The block-Toeplitz-plus-block-Hankel solver developed in
this paper is faster than the Matlab solver when n &
4000. Numerical tests indicate that when the Hessian matrix
gets a condition number around 106, the numerical errors
is of the order 10−3 smaller than the magnitude of the
search direction. This seems to be the limit for when the
Newton-solver still converges. Therefore only relatively well-
conditioned problems can be solved with this approach,
which exclude problem instances where the roots of Q are
close to the unit circle [9].



TABLE I
SOLUTION TIMES FOR THE NEWTON-SOLVER, COMPARING THE FAST

ALGORITHM AND MATLAB’S BUILT-IN SOLVER. AVERAGE SOLUTION

TIME AND STANDARD DEVIATION OVER 100 RANDOM TEST PROBLEMS,
FOR DIFFERENT VALUES OF n. λ = 10−2 AND N = 5000.

Fast solver Matlab’s \

n Avg. [s] Std. [s] Avg. [s] Std. [s]

100 0.3727 0.008187 0.06845 0.005767
400 1.872 0.07348 0.4448 0.01679
1000 8.319 1.465 4.380 1.277
4000 124.3 24.75 153.1 28.89

VII. CONCLUSIONS

In this article we have developed a fast Newton-solver
for the circulant rational covariance extension problem. This
has been done by extending results for solving Toeplitz-plus-
Hankel systems, to systems with the same block-structure.
In this way we can compute the search direction more
efficiently in each iteration, which allows the algorithm to
run in O(n2) instead of O(n3).
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