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Abstract— Rational functions play a fundamental role in
systems engineering for modelling, identification, and control
applications. In this paper we extend the framework by
Lindquist and Picci for obtaining such models from the circu-
lant trigonometric moment problems, from the one-dimensional
to the multidimensional setting in the sense that the spectrum
domain is multidimensional. We consider solutions to weighted
entropy functionals, and show that all rational solutions of
certain bounded degree can be characterized by these. We
also consider identification of spectra based on simultaneous
covariance and cepstral matching, and apply this theory for
image compression. This provides an approximation procedure
for moment problems where the moment integral is over
a multidimensional domain, and is also a step towards a
realization theory for random fields.

I. INTRODUCTION

In 1981 R.E. Kalman posed the so called rational co-
variance extension problem (RCEP) [25]: Given a finite
covariance sequence co,...,Cp,, determine all extensions

Cn+1,Cn+2, - - - to an infinite sequence such that

o) = Z cre 0 9T = [~ 7]

k=—o00

is a non-negative rational function of degree bounded by n,
i.e., of the form ®(6) = P(0)/Q(0) where P(6) and Q(0)
are non-negative trigonometric polynomials of degree less
than or equal to n. Finite-dimensional systems are naturally
represented as rational functions and this inverse problem is
important in systems theory for estimation and realization of
low degree systems [36].

The problem was partially solved in 1983, when T.T. Geor-
giou [19] proved that to each positive covariance sequence
and non-negative numerator polynomial P(), there exists
a rational covariance extension of the sought form ®(#) =
P(0)/Q(H). He also conjectured that this extension is unique
and that it gives a complete parameterization of all rational
extensions. This became a long standing conjecture, and was
proved first in [11]. This led to an approach based on convex
optimization [9], where the extension ®(6) is obtained as the
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maximizer of a generalized entropy functional:

max / P(6) log B(0)d0
T

subject to ¢ = S / e*d(0)d, for k= —n,...,n.
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This approach have been extensively studied in the one-
dimensional setting, where the domain (in this case T) is
a one dimensional set [4]-[6], [12], [16], [20], [35], [40],
[44], [45]. The approach has also been generalized to a quite
complete theory for scalar moment problems [7], [8], [10],
[23] and a number of matrix valued counterparts have been
solved [1], [18], [22], [34], [41], [42], [49].

In this paper the multidimensional, circulant covariance
extension problem is considered, and we extend the theory
developed in [35] to the case where the domain of the process
as well as the spectrum is naturally embedded in d dimen-
sions (in this case Z% and T%). As in the one-dimensional
case this can also be seen as a natural approximation of the
continuous trigonometric moment problem, but it is also of
interest for modelling multidimensional reciprocal processes,
random Markov fields, and imaging (c.f., [14], [33]). Many
spectral estimation problems, such as problems in radar,
sonar, and medical imaging, are essentially multidimensional
covariance extension problems, where a considerable amount
of research has been done. For example Woods [48], Ekstrom
and Woods [15], Dickinson [13], Lang and McClellan [28]-
[31], [37], [38], and Lev-Ari et al. [32], to mention a few.
In many of these areas it seems natural to consider rational
models. Nevertheless, the multidimensional version of the
RCEP has only been considered at a few instances [21], [22].

The outline of this work is as follows: in Section II we
review some background material and set up notation. In Sec-
tion III we derive the main result for covariance matching and
characterize the optimal solutions to the weighted entropy
functional. In Section IV we consider simultaneous matching
of covariance and cepstral coefficients, and in Section V we
give examples of how the theory can be applied in image
compression.

II. BACKGROUND AND NOTATION

Consider the multidimensional, discrete-time, N-periodic,
zero-mean, and homogeneous stochastic process y(t) € C,
defined for ¢t € Z? and where N := (Ny,...,Ny) € Z4
represent the period in each direction. Homogeneity of the
process implies that covariances ¢, := E(y(t + k)y(t) ) are
invariant with “time” ¢ € Z<. The power spectrum, du(6),

represents the energy distribution across frequency of the



signal, and is the non-negative measure on T¢ whose Fourier
coefficients are the covariances

o= [ 0duo),
Td

where k = (k1,...,kq)T € Z9, 0 = (61,...,0.)7 €
T<. Since the process is N-periodic, the covariances are
periodic as well (i.e., the covariance matrix is circulant-
block-circulant), and hence the support of du is in fact the
rectangular grid

TR ={(L3F . la%E) : L€ 7Y}
where Z4, = {(l1,...,0q) : 0<4; < N;j—1,5=1,...,d}

We therefore represent the spectrum by ®(6) := u(6)/|N|,
which correspond to the energy in & € T¢, and where
|N| = H;‘i:1 N; is a normalizing constant. By definition the
covariances are now the inverse discrete Fourier transform
of the spectrum ®:

szO
o(0 1
ck = |N| E (1

0eTe,

A central problem in signal analysis is the inverse problem
of recovering the power spectrum ¢ based on a finite
set of known covariances. This inverse problem is a key
component in many signal processing techniques and plays
a fundamental role in prediction, analysis, and modelling of
signals [47]. In this setting we consider finite covariance
sequences {ci}rea where A C Z<. In many applications,
the indices of the covariance sequence is the rectangular set
A = {(/{17...,kd) € VAR |k]| < le,j = 1,...,d}, but
the theory holds for any index set such that 0 € A and
—A = A.' In accordance with the one-dimensional case
we denote the number of elements |A| = 2n + 1, and let
ng = max{|k¢| : kK € A} denote the highest index in
dimension Z.

Let B be the set of all multidimensional trigonometric
polynomials associated with the index set A:

= Zpkeﬂk”, P—k = Dk-
keA
Note that the only index sets of interest are the index sets A
such that the monomials are linearly independent on T4,. A
sufficient condition for this is given in the following lemma,
which is proved in the Appendix, and we assume that this
condition holds throughout the rest of this paper.

Lemma 1: Let 2n; < N; for j = 1,...,d. Then a
polynomial in 93 cannot vanish in all the points on T4, unless
it is the zero-polynomial.

Next, we define the convex cone of positive polynomials

PL(N)={PecP:P0) >0 for § € TS},

and the closure, B, (), consists of all polynomials in 3
that are non-negative on T%. We also define the interior of
the dual cone as

€4 (N) = {c: {e;p) >0, VP € Po(N)\ {0}},

IThe relation —A = A comes from the fact that ¢_j, = &, and because
of this A will have an odd number of elements.

where the inner product is (¢, p) = >, . ckPr- Let €4 (N)
be the closure of €, (N), and let 9P (N) and 0C, (N) be
the boundaries of B (V) and € (IV), respectively.

The dual cone characterizes the existence of a spectrum
® that satisfies (1) for a given covariance c. In fact, Farkas
Lemma implies® that exactly one of the following holds:

i) 3p € P such that P(A) > 0 for all € T
and (c,p) <0
i) 3P > 0 such that (1) holds for all k& € A.

Now note that i) holds if and only if ¢ ¢ € (). Therefore,
there exists a spectrum @ that matches the covariance se-
quence c if and only if ¢ € €, (N). Furthermore, if ¢ belong
to the interior dual cone € (N) then there exist a strictly
positive matching spectrum ®. To see this, let ¢® be the
covariance sequence corresponding to the constant spectrum
® =1 via (1). Then since c belong to the interior dual cone
@, (N) there exists ¢ > 0 such that ¢ = ¢ — e’ € € (N).
The spectrum ¢ + ®, where @ is a spectrum that matches
c — ec?, is now a strictly positive spectrum that satisfy (1)

for k € A.

III. THE MULTIDIMENSIONAL RATIONAL COVARIANCE
EXTENSION PROBLEM

In this paper we study the structure of solutions to gen-
eralized maximum entropy problems and how such convex
optimization problems can be used for obtaining rational
solutions to the multidimensional trigonometric moment
problem. Given such a covariance sequence we seek spectra
®(0) that satisfy the covariance constraints (1) for k € A,
and that are non-negative rational trigonometric functions:

P(0) .
o(0) = 00) where P(6),Q(6) € B (N)\{0}.
The generalized maximum entropy problem we consider is
an entropy functional of the following form:

520 \N| Z

0eTe,
subject to (1) for k € A.

0)log ®(6 2)

Note that in the multidimensional case, limits such as
Plog(Q) and P/Q) may not be well defined. In the prob-
lems and derivations we therefore define the expressions
Plog(Q), P/Q, and P/Q? to be zero whenever P = 0.

Although one could approach the primal problem (2)
directly, it is often more convenient to work with the dual.
This objective function takes the form

Jp(Q) = ™ Z Plog(Q 3)
6€TY,
and the optimization problem is given by

Jp(Q). “4)

min
QEP+(N)

2To see this, consider the real and imaginary parts separately and use for
example [2, Page 263].



Theorem 2: For every P € B, (N)\ {0} and c € €, (N)
the dual optimization problem (4) is convex and has a solu-
tion Q € B (N)\ {0}. Moreover, there also exist a positive
function /i, with support supp(j1) C {6 € T4 | Q(6) = 0},
such that & = p/ Q + fu is optimal to (2). ThlS [ might not
be unique, but uniquely defines a covariance sequence

e = > e O(0), forall k € A
0T

Furthermore, ¢ belongs to € (N), and [i can always be
chosen so that it has support in at most 2n points.

If we restrict the choice of P to P € B3, (N) we can say
more about the solution.

Corollary 3: Forevery c € €;(N)and P € B (NV) there
exists a unique Q € P (N) such that = P/(Q satisfies (1).
Moreover, both (2) and (4) are strictly convex optimization
problems and their respective solutions are ® and Q

Note that this corollary is only valid for P € B, while
Theorem 2 holds for all P € B, (N)\ {0}. The reason for
the difference between P in B, (N) or in B, () is that
if P € PL(N) then Jp(Q) = oo whenever @ is on the
boundary 934 (N) and the optimal solution ) will not be
attained on 0P (V). However, if P € 094 (V) the optimal
@ may belong to 9 () in which case @) only have zeros
in a subset of the zeros of P and the sum is finite. This subtle
difference will become more clear by the proof of Theorem
2 and Corollary 3, to which the remaining of this section
will be devoted.

A. The primal problem

For a given P € P (N) \ {0} and ¢ € €, (N), consider
the primal problem (2) where ® is a non-negative function
defined on Tj‘lv. Denoting the objective function by Ip, the
second directional derivative, given by

|N| Z (I) (5)

0€TY,

I p(®;6P)

is non-positive and thus the optimization problem is convex.
For P € B (N) we see that (5) vanish if and only if §® = 0,
and thus the problem is strictly convex in this case.

Since ¢ € € (N) there exists a strictly positive ® that is
feasible for (2) (see section II), hence Slater’s condition is
satisfied [2, Page 226], ensuring strong duality and that the
dual problem achieves a minimum.

B. Lagrangian relaxation of the problem

The Lagrangian of the primal problem (2) is given by

Z Plog (® (6)

Her
ST R
keA | |aeT”’
Pl [
|N| Z og (@ |N\ Z Q

0€TY, 6eTY,

where gy, k € A, are the Lagrangian multipliers.

We seek a saddle point to this problem, maximizing over ®
and minimizing over (). Examining (6) we see that the dual
function supg, £p(®, Q) is finite only if Q € P (N)\ {0},
since otherwise we can let ®(6y) — oo in some point where
Q(6p) <0 and get supg Lp(P,Q) = o0

Two other things can also be noticed from the Lagrangian,
when maximizing over ®. First: the expression is only finite
for ® which is zero in some point, if we have P = 0 in
this point as well. Therefore, we can not have ® = 0 unless
P = 0. Second: the expression is only finite for ) = 0 in
some point, if we have P = 0 in the same point.

Now we consider the directional derivative

Lp(P+e6P,Q) —
3

EP(‘I)vQ)

OLp(P,Q;0P) = lirn

INIZ

0€TY,

for any direction 6@ such that ® 4+ ej® > 0 for some € > 0.
For an optimal point this should be less than or equal to zero
for all feasible directions 0®. We now need to analyse this
in different situations.

1) In the case P > 0 we must have, as noted before,
® > 0 in an optimal point. This means that all directions §&®
are feasible, and thus we need to have

1 P
P<I> Q=0 = &= 0
2) For the case when P = ( in some point, call it §y, we
first consider the expression for the Lagrangian (6). Since
the term P(fy)log(®(6p)) in the first sum is zero, from
the second sum we get that if Q(6p) > 0 the point can
only be a saddle point if ®(fp) = 0. This means that in
a stationary point we only have ®(6y) > 0 if Q(6y) = 0.
Moreover, if ®(6y) = 0 we need to have J®(6y) > 0. The
corresponding term in the directional derivative then reads
—Q(09)6® () < 0, which is true since Q € B4 (N)\ {0}.
Summarizing this ® must thus take the following form:
P .
5-10 if @ >0, )
arbitrary  if @ = 0.
C. The dual problem

Using (7) we get that the dual function takes the form

sup Lp(®,Q) = Z P(log(P) — 1)
©20 |9€Td
where
Jp(Q) = |Z Plog(Q
0eTY,
and where by definition P(6y)/Q(6p) = 0 if

P(6) 0, regardless of the value of Q(fy). Now
since W1|29€T7v P(log(P) — 1) is independent of @,
Jp(Q) and supg Lp(P,Q) obtains their minima at the
same point (). Therefore we can take Jp(Q) to be the dual
function, resulting in the dual optimization problem (4).



From duality theory the dual problem is convex [2, Page
216]. Forming the second directional derivative gives

1 P
0"Ip(Q58Q) = > o 0, (8)

0eTY,
and the dual is strictly convex if P € P, (N).

D. Complementarity

We now introduce [ as the part of & which, according to
(7), is not given by P/ Q What remains to prove is that this
[i defines a unique covariance ¢ € 9¢€;(N), and that it can
be chosen with mass in at most 2n points. In order to do
this we consider the components of ¢. These are given by

A 1 6T0 ~ 1 :To [ 2 P
= w0 — E (T
G = N o)

0eTY, 6eTY,

which belong to €, (N) since /i is non-negative. From the
last expression we can see that ¢ is in fact unique, although
[ might not be. To see this we first note that $ matches
the covariance sequence c. Secondly we note from (8) that
directions which are potentially not strictly convex all have
components only in points where P = 0. Hence the value
of P/ Q does not change in these directions.
Moreover, for ¢ we get that

i LS oo - LS afe-
@qu¥ﬂW@qMZQ@ %).

6eTY,

Since @ has the form given in (7), we get that this expression
is zero. Thus ¢ € OC€,(N). However the representation
theorem in [29] says that for all ¢ € OC(N) there exists
a discrete representation with support in at most 2n points,
which completes the proof of Theorem 2 and Corollary 3. B

IV. COVARIANCE AND CEPSTRAL MATCHING

Theorem 2 and Corollary 3 parametrize all multidimen-
sional rational solutions that matches a given set of covari-
ances. Comparing to the maximum entropy® (ME) solution,
a better dynamical range can be obtained by encompassing
a priori information of the problem through the choice of P.
However how to select P is a non-trivial problem. Example
of methods proposed for selecting P in one dimension are
for example based on inverse problems [17], [26], [27], or
based on simultanious matching of covariances and cepstral
coefficients [4], [5], [16], [35], [39]. In this section we extend
the later to the circulant, multidimensional setting.

Given a spectrum @, the (real) cepstrum is defined as the
(real) logarithm of of the spectrum, log(®). The cepstral
coefficients, my, are the Fourier coefficients of the cepstrum:

1 T
mp = —= Y _ e Clog(®(6)), ©)
|N‘9€TdN

for k € Z¢ [35, and references therein]. Given both covari-
ances and a set of cepstral coefficients, we can use this extra

3That is, the solution with P =1 [3].

information to simultaneously estimate the spectral poles and
zeros. This is done by maximizing the (unweighted) entropy
subject to constraints on matching the covariances and the
cepstral coefficients

1
mex o > log (2(¢)) (10)
6eTY,
subject to (1) for k € A, and (9) for k € A\{0}.

Using this, and introducing the set

PBioN) :={P e PL(N) | po =1},

we can state the results as follows.

Theorem 4: Given a ¢ € €4(N) and any sequence
{m}rea, such that mg € R and m_j = my, there exist a
solution (P, Q) € Py o(N)x P (N) to the convex problem

, 1 P
min <c,q>—<m,p>+|N|ZPlog(Q> (1D

0TS,
subject to P € Py o(N), Q € P4 (N).

If any solution (P, Q) belongs to Py o(N) x P4 (N) then
d=p / Q is also an optimal solution to the primal problem
(10), and thus fulfils covariance and cepstral matching.
Proof: Considering the covariance matching constraint

(1) of the primal problem (10), for & = 0, we see that for all
0 € T4, we must have ®(0) < |N|co. The problem is thus
bounded, and since the objective function is continuous and
strictly concave (c.f. proof of Theorem 2) the problem has
an optimal solution if there exists a feasible point.

By relaxing both equality constraints we get the La-
grangian

N 1
o, P Q)= log (®
E@.P@)= 77 Y los(®)
0eT,
> |y D e
keA | |0er
N
L i
+Zpk WZ ™ log(®) —my,
keA 0€TY,
k#0

where ¢, and pj; are Lagrangian multipliers. Note that
this expression does not contain py or mg. Hence we can
introduce pg fixed to 1 and an arbitrary but fixed my € R,
without altering the problem. Rearranging terms we get the
equivalent Lagrangian

L@.PQ)= (eq) = (mp) = i Y Q0

6T,
1
+W Z Plog (®).
0€TY,

As before, supg L(®, P, Q) is only finite if we restrict Q to
the cone ‘P4 (N), and similarly we need to restrict P to the

set P o(NV).



Considering the directional derivative of £ with respect to
®, we again get the expression

IN\Z

6eTY,

SL(®, P,Q; 6) =

In order for this to be non-positive for all feasible directions
0P, similar analysis gives that we must have

P

— if P> 0,
o={0Q '

arbitrary  if P =0.

This gives the dual functional

bupﬁ(@ P,Q) = Z P (12
|9€Td
where
P
J(P,Q) = (¢,q) = (m,p) + == > Plog . (13)
‘Nleeﬂ‘f’ Q
A closer look at the last term of (12) shows that
WP S =
0€TY, eer keA
—Zpk* Z % = py =1,
keA N; 0;€Tn;

since all of these sums vanish, except for £ = 0. The last
term is thus a constant, and hence we can take (13) as the
dual objective function, which gives us the dual problem in
(11). Again, since it is the dual it is convex.

In order to ensure existence of a minimizer to the dual
problem, we need to show that (13) is lower semi-continuous
and that it has compact sublevel sets. This follows from the
following lemmas, which are proved in the Appendix

Lemma 5: Given ¢ € € (N) and any sequence {mg } ke,
where mg € R and m_; = my, J(P,Q) is a lower semi-
continuous function on P o(N) x P4 (N)\ {0}.

Lemma 6: The sublevel sets of J(P, Q) are compact.

Now we use the Wirtinger derivative (c.f. [35, Page 2853])
and form the partial derivative of J(P, ()) with respect to both
qr and py. This gives

a(PQ) SikT0
15
aJ(PQ 1k 0 < )
1 — my, 15b
o |9€ZW og|g)—me  (5H)

where (15a) is valid for £ € A and (15b) is valid for k €
A\{0}, and where we in (15b) used a similar result as in (14).
From this we see that if the optimal solution is in the interior,
ie., if (P,Q) € Py o(N) x P (N ), and thus a stationary
point to J(P, Q), then the spectrum & = P/Q fulfil both the
covariance matching (1) and the cepstral matching (9). ™

As can be seen in the above proof, the stationarity of
J(P,Q) in @ gives covariance matching and the stationarity

in P gives cepstral matching. Therefore we can only guaran-
tee matching for a solution in the interior P o (N) <P (N).
However for P € 9P, o(N) we cannot guarantee that a
solution () belongs to the interior P, (N) (c.f. Theorem 2
and Corollary 3), and thus it is not possible to guarantee
covariance matching. This subtle fact has been overlooked
in [34], [35], [43], where it is stated that also when P e
OP4 o(N) we would have Q € P (N), which would
guarantee covariance matching.

A. Regularizing the problem

The motivation for considering simultaneous covariance
and cepstral matching was to obtain a rational spectrum ¢ =
P/Q@ that matches the covariances, but without having to
provide the prior P. However, the solution to (11) cannot be
guaranteed to give a spectrum that satisfies the covariance
matching (1). In order to remedy this we consider the Enqvist
regularized problem [16], which has the objective function

(PQ)=< q) — (m,p)

() e

0'Jl‘d 0€TY,

and where A € (0,00) is the regularization parameter.
This will be infinite for all P € P4 o(N), and hence
the optimal solution is not obtained here. Moreover with
this regularization the optimization problem becomes strictly
convex, and hence we have a unique solution.

Theorem 7: Given ¢ € €, (N) and a sequence {my }rea.,
where mg € R and m_j = my, for all A > 0 there exist a
unique solution (P, Q) to the strictly convex problem

min  J\(P, Q)
subject to P € Py o

(16)
N)7 Q € q3+(N)

For & = P / @ we have that ® fulfils the covariance matching
(1), and approximately fulfils the cepstral matching (9) via

ikT0 kTG
PO DI
€T, 0€TY,

Proof: All of the results in the theorem follows from
Theorem 4, together with the discussion in the section
leading up to it, except the exact and approximate mathcing
of (1) and (9), and the strict convexity.

To get the covariance and approximate cepstral matching,
we note that the partial derivative with respect to @i is
identical to (15a). The directional derivative with respect to

my + € =

Pi given by
AIA(P,Q) 1 T P A
—_— = ‘ 1 — == —my.
O ] Z e og 0 Iz my

6eTY,

To show strict convexity we note that the second direc-
tional derivative is given by (c.f., [35, Proof of Theorem 8])

A

2
620\ (P, Q; 6P, 6Q) = ™ ZP((SP —6Q B3

1
) +6P%2 =
0eTe,

Q



Since both terms are non-negative, they both need to be zero
in order for the second derivative to vanish. However since
P > 0 in the optimal point this implies that § P = 0. From
this we get that the first term becomes 6Q? P/Q? and in the
same way we must thus have 6Q) = 0. [ ]

V. APPLICATION IN IMAGE COMPRESSION

In this section we consider an application of the two-
dimensional, periodic RCEP in compression of black-and-
white images. The main idea is to approximate the image
with a rational spectrum and thereby achieve a compression.
We compare the ME spectrum to the solution resulting from
regularized covariance and cepstral matching. By choosing
n1 < Ny, ng <€ Na, where N; and N> are the dimensions
of the image, we obtain a significant reduction in number of
parameters describing the image.

A seemingly straight forward way is to compute the
covariances and cepstral coefficients directly from the image,
and then use these to compute the spectrum. However if
the discrete spectrum is zero in one of the grid points, the
cepstrum is not well-defined. Hence simultaneous covariance
and cepstral matching cannot be applied. Therefore we
transform the image, denoted by W, using ® = e?. Since
U is real, ® is guaranteed to be real and positive for all
discrete frequencies, and ¥ is obtained as ¥ = log(®). We
then compute (1) and (9), and compute the approximant P
from Theorem 7.

Note that a ME solution of the same maximum degree as
a solution to (16) have about half the number of parameters.
To compensate for this, we let the degree of the ME solution
be a factor /2 higher (rounded up), in order to get a fair
comparison.

A. Compression of images

We now apply the methods to two images. In the first
example, shown in Fig. 1a, the original image is the Shepp-
Logan phantom often used in medical imaging [46], of size
256 x 256 pixels. In Fig. 1b a compression using covariance
and cepstral mathing is shown, where n; +1 = ny+1 = 30.
Hence this image is described by 2-30% = 1800 parameters,
compared to the original 256> = 65536 parameters. We have
also computed a ME-compression, with degree n; + 1 =
ns + 1 =45 ~ +/2 - 30, which is shown in Fig. lc.

The second example is a compression of the classical
Lenna image, often used in the image processing literature.
The original image is 512 x 512 pixels, and shown in Fig. 2a.
In the formulation with regularized cepstral matching we set
ny + 1 = nyg + 1 = 60, which means that the number of
parameters is reduced from 262144 to 2 - 60> = 7200. The
result is shown in Fig. 2b. The ME-compression was thus
computed with ny +1 = ny + 1 = 85 ~ /2 - 60, and is
shown in Fig. 2c.

It is interesting to note that the compression with cep-
stral matching is better for compressing the Shepp-Logan
phantom. However for compressing the Lenna image nei-
ther of the methods seems outperform the other. The ME-
compression has more ringing artefacts, however it is less

blurred than the cepstral compression. We believe that this
is related to the fact that if you have relatively few sharp
transitions in pixel values, which is the case in Fig. la,
placing both poles and zero close to each other can achieve
this transition efficiently and thus give better quality on the
compressed image. However when this is not the case, as
with the Lenna image, the trade-off between having spectral
zeros or matching higher frequencies is more complex.

VI. CONCLUSION AND FUTURE WORK

In this paper we have extended the work of Lindquist and
Picci on the circulant rational covariance extension problem
into the multidimensional case. We have also shown in an
example how this theory can be used in image compression.
In future work we intend to also extend the theory for
multidimensional continuous spectra.

APPENDIX

Proof of Lemma 1: To prove Lemma 1, we use the
following theorem that is a special case of Theorem 16.8 in
[24] which build on Hilbert’s Nullstellensatz for multivariate
polynomials.

Theorem 8 ([24] Theorem 16.8): Let a(z1,...,24) be a
non-zero complex polynomial in 21, . . ., z4 and let the degree
of a(z1,...,2q)in z; be n; for j =1,...,d. Let Sy,...,Sq
be finite subsets of C with |S;| > n; +1,fori=1,...,d,
then a(z) # 0 for at least one point z = (z1,...,24) in
S1 X ... xSy

Note that if 2n; < IN; for j = 1,...,d, then

d d
PO)=J]e ™% | peexp [i> (ki +n;)0; | (A7)
j=1

keA j=1

The first factor in (17) has unit magnitude, hence if P(¢) = 0
for all 6 € TdN then the second factor in (17) must vanish
as well. Now, by Theorem 8 this factor is zero if and only
if P =0, and the proof is complete. [ ]
Proof of Lemma 5: Lower semi-continuity of J(P, Q)
follows since z log(z/y) is lower semi-continuous for z, y >
0. The only point where zlog(x/y) is not continuous
is £ = y = 0 (in which the value is defined to
be 0). Since zlog(x/y) > —yexp(—1), we have that
liminf, , 0 xlog(z/y) > 0 and consequently lower semi-
continuity follows. [ ]
To prove Lemma 6 we need the two following results.
Lemma 9 ([10]): For a fixed ¢ € €, (N), there exists € >

0 such that for every (P, Q) € B (N)\ {0} x B (N)\ {0}

1
V] > Plog(|Qll) -

0TS,

Proof of Lemma 9: Follows verbatim the proof of
Proposition 2.1 in [10] if the integral ¢ € [a,b] is replaced
by the sum 6 € T4,. ]

Lemma 10: For all trigonometric polynomials P €
P (N) we have that |p| < po, k € A.

Jp(Q) = ellQlloo —



(a) Original.

Fig. 1.

(a) Original.

000

(b) Cepstral matching, n = 30 and A = 102,

(b) Cepstral matching, n = 60 and A = 10~2,

(c) ME-solution, n = 45.

Compression of the Shepp-Logan phantom, with a compression rate of about 97%.

(c) ME-solution, n = 85.

Fig. 2. Compression of the Lenna image, with a compression rate of about 97%.

Proof: This is proved by the fact that

1 kT 1 ikT
|Pk|:WZek9P §WZ|6k0||P|dV:po~
0€TY, 0T,

The last step follows from (14) and the fact that P > 0. H
Proof of Lemma 6: The sublevel sets, J ~1(—o0,r] for
any r € R, are the (P, Q) € P+ o(N) x P+ (V) such that

r>J(P,Q),

and to show that these are compact we start by splitting the
objective function into two parts:

W(P.Q) = (e - 7 X Ploz(@).

0eTe,
1
J2(P) = —(m,p) + ™ Z Plog (P).
6eTY,

From Lemma 9 we get that

1
I1(P,Q) 2 €| Qlls — v > Plog(|Qllw);

€T,

and from (14) we know that I—]{”ZQGW P=1.
N
Turing the attention to Jo(P), we will show that it is
bounded from below. To see this we first note that since
P € PB4 o(N) we have per definition that py = 1 and thus
clearly P is bounded away from the zero-polynomial. Now
since zlog(x) > —1/e we have

and this term is bounded from below. To bound the term
—(m, p) from below we note that

[(m,p)l = 1Y el < 20+ Dlimllclplloo.  (18)
keA
However from Lemma 10 we get that ||p|| = po = 1, and

thus (m,p) is bounded, hence we have Jo(P) > —(2n +
|lm|lec —1/e =: p > —o0. Using this we get that

r—p>J1(PQ) > ¢l|Qllo + log([| Q] o)

and comparing linear and logarithmic growth we see that the
set is bounded both from above and below. Since it is the



sublevel set of a lower semi-continuous function (Lemma 5)
it will be closed, and hence it is compact. [ |
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