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Abstract

This thesis, which mainly consists of six appended papers, primarily considers
a number of inverse problems in imaging and system identification.

In particular, the first two papers generalize results for the rational covari-
ance extension problem from one to higher dimensions. The rational covariance
extension problem stems from system identification and can be formulated
as a trigonometric moment problem, but with a complexity constraint on the
sought measure. The papers investigate a solution method based on varia-
tional regularization and convex optimization. We prove the existence and
uniqueness of a solution to the variational problem, both when enforcing exact
moment matching and when considering two different versions of approximate
moment matching. A number of related questions are also considered, such as
well-posedness, and the theory is illustrated with a number of examples.

The third paper considers the maximum delay margin problem in robust
control: To find the largest time delay in a feedback loop for a linear dynamical
system so that there still exists a single controller that stabilizes the system
for all delays smaller than or equal to this time delay. A sufficient condition
for robust stabilization is recast as an analytic interpolation problem, which
leads to an algorithm for computing a lower bound on the maximum delay
margin. The algorithm is based on bisection, where positive semi-definiteness
of a Pick matrix is used as selection criteria.

Paper four investigate the use of optimal transport as a regularizing
functional to incorporate prior information in variational formulations for
image reconstruction. This is done by observing that the so-called Sinkhorn
iterations, which are used to solve large scale optimal transport problems, can
be seen as coordinate ascent in a dual optimization problem. Using this, we
extend the idea of Sinkhorn iterations and derive a iterative algorithm for
computing the proximal operator. This allows us to solve large-scale convex
optimization problems that include an optimal transport term.

In paper five, optimal transport is used as a loss function in machine
learning for inverse problems in imaging. This is motivated by noise in the
training data which has a geometrical characteristic. We derive theoretical
results that indicate that optimal transport is better at compensating for this
type of noise, compared to the standard 2-norm, and the effect is demonstrated
in a numerical experiment.

The sixth paper considers using machine learning techniques for solving
large-scale convex optimization problems. We first parametrizes a family
of algorithms, from which a new optimization algorithm is derived. Then
we apply machine learning techniques to learn optimal parameters for given
families of optimization problems, while imposing a fixed number of iterations
in the scheme. By constraining the parameters appropriately, this gives learned
optimization algorithms with provable convergence.

Keywords: inverse problems, convex optimization, variational regular-
ization, trigonometric moment problems, optimal mass transport, computed
tomography, machine learning, analytic interpolation, delay systems
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Sammanfattning

Denna avhandling, som huvudsakligen best̊ar av de sex bifogade artiklarna,
berör ett antal olika inversa problem med tillämpning inom bildrekonstruktion
och systemidentifiering.

The tv̊a första artiklarna generaliserar resultat fr̊an litteraturen gällande
det rationella kovariansutvidgningsproblemet, fr̊an det en-dimensionella fallet
till det fler-dimensionella fallet. Det rationella kovariansutvidgningsprob-
lemet har sitt ursprung inom systemidentifiering och kan formuleras som ett
trigonometriska momentproblem. Momentproblemet är dock av icke-klassisk
karaktär, eftersom det sökta m̊attet har ett bivillkor som begränsar dess kom-
plexitet. Papperna undersöker olika metoder för att lösa problemet, metoder
som alla bygger p̊a variationell regularisering och konvex optimering. Vi
undersöker b̊ade exakt och approximativ kovariansmatchning, och huvudresul-
taten är bevis av existens och unikhet vad gäller lösning till dessa olika problem.
Artiklarna undersöker även ett antal relaterade fr̊agor, s̊a som välställdhet av
problemen, och teorin är ocks̊a illustrerad med ett antal olika exempel och
tillämpningar.

Det tredje pappret behandlar ett problem inom robust reglering för linjära
system: ett systems tidsfördröjningsmarginal. Tidsfördröjningsmarginalen är
den längsta tidsfördröjning ett återkopplat linjärt dynamiskt system kan ha s̊a
att det fortfarande finns en enda regulator som stabiliserar systemet för alla
tidsfördröjningar som är kortare. Artikeln undersöker ett tillräckligt villkor,
och formulerar om detta som ett analytiskt interpolationsproblem. Detta leder
till en algoritm för att beräkna en undre gräns för tidsfördröjningsmarginalen.
Algoritmen bygger p̊a intervallhalveringsmetoden, och använder Pick-matrisens
teckenkaraktär som urvalskriterium.

Artikel fyra undersöker användandet av optimal masstransport som reg-
ulariseringsfunktion vid bildrekonstruktion. Idén är att använda optimal
masstransport som ett avst̊and mellan bilder, och p̊a s̊a vis kunna inko-
rporera förhandsinformation i rekonstruktionen. Mer specifikt görs detta
genom att utvidga de s̊a kallade Sinkhorn-iterationerna, som används för att
beräkna lösningen till optimal masstransportsproblemet. Vi åstadkommer
denna utvidgning genom att observera att Sinkhorn-iterationerna är ekvivalent
med koordinatvis optimering i ett dualt problem. Med hjälp av detta tar vi
fram en algoritm för att beräkna proximal-operatorn till optimal masstrans-
portproblemet, vilket gör att vi kan lösa storskaliga optimeringsproblem som
inneh̊aller en s̊adan term.

I femte artikeln använder vi istället optimal masstransport som kostnads-
funktion vid träning av neurala nätverk för att lösa inversa problem inom
bildrekonstruktion. Detta motiveras genom tillämpningar där bruset i data
är av geometrisk karaktär. Vi presenterar teoretiska resultat som indikerar
att optimal masstransport är bättre p̊a att kompensera för denna typ av brus
än till exempel 2-normen. Denna effekt demonstreras ocks̊a i ett numerisk
experiment.

Det sjätte pappret undersöker användandet av maskininlärning för att lösa
storskaliga optimeringsproblem. Detta görs genom att först parametrisera en
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familj av algoritmer, ur vilken vi ocks̊a härleder en ny optimeringsmetod. Vi
använder sedan maskininlärning för att ta fram optimala parametrar i denna
familj av algoritmer, givet en viss familj av optimeringsproblem samt givet
att bara ett fixt antal iterationer f̊ar göras i lösningsmetoden. Genom att
begränsa sökrymden för algoritmparametrarna kan vi ocks̊a garantera att den
inlärda metoden är en konvergent optimeringsalgoritm.

Nyckelord: inversa problem, konvex optimering, variationell regulariser-
ing, trigonometriska momentproblem, optimal masstransport, datortomografi,
maskininlärning, analytisk interpolation, system med tidsfördröjning
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“We live on an island surrounded by a sea of ignorance. As our island
of knowledge grows, so does the shore of our ignorance.”

— John Horgan, attributed to John Archibald Wheeler

“We are just an advanced breed of monkeys on a minor planet of a
very average star. But we can understand the Universe. That makes

us something very special.”

— Stephen Hawking





Part I: Introduction





1. Introductory overview

The human desire to understand the unknown has undoubtedly been an enabler
for her development, and is also key to the creation and progression of science.
An increased understanding of our surrounding has lead to descriptions of our
environment, and these descriptions have been used to make predictions of the future.
In order to make these descriptions and predictions more precise, mathematics have
been used more and more extensively. This thesis deals with subjects related to
mathematical modeling, model selection, and computational methods for these tasks.
In particular, it deals with a number of questions and issues related to control theory,
system identification, and inverse problems.

System identification and inverse problems are two categories of problems that
deals with the extraction of information from an object which is not directly
observable. Both of them can be described using the schematic representation in
Figure 1.1. Here, F is simply a mapping that maps the input x to the output y.
In the setting of system identification we can measure both x and y, however we
do not know the mapping F . The goal is thus to recover a mathematical model of
the system F , or an appropriate approximation thereof, from observations of the
input x and the output y. System identification problems occur in many different
areas, in particular in the field of control theory [73, 104, 72]. Expressed loosely,
control theory deals with analysis and design of systems (feedback) that work in an
autonomous fashion [32, 28, 60]. It is also in this context that this thesis deals with
system identification.

F
x y

Figure 1.1: Schematic figure of a system F , mapping from input x to output y.

In the setting of inverse problems, on the other hand, we have a mathematical
model for F and we also have access to measurements of the output y. However,
in this setting we cannot directly measure the input x. The goal is thus to recover
information about or completely reconstruct this unknown quantity from the in-
formation contained in the indirect observations y = F (x) [37, 61]. Such problems
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1. Introductory overview

arise in several areas of science and engineering, and in particular in imaging such
as computed tomography (CT) [81] and magnetic resonance imaging (MRI) [16].
These are noninvasive imaging modalities, and in the former the interior structure
of an object under investigation is reconstructed from measurements of the average
decay in intensity of X-ray beams sent through the object.

In many areas, including control theory, system identification, and inverse
problem, the concept of something being optimal often occurs. This means that it
is as good as it can be, given a certain criteria to measure “goodness”. Optimization
can then be said to be the theory to ensure that something is optimal and to derive
algorithms for how to find the optimal points. The theory is well-established and
provides many useful tools for other disciplines, especially when the problems are
so-called convex optimization problems [75, 96, 8]. Many of the techniques and tools
used in this thesis come from convex optimization.

As an example of this we can consider both system identification and inverse
problems. The traditional way of tackling both of these problems have been using
a so-called model driven approach. For system identification this has often meant
using expert knowledge to specify a certain class of mappings F and then finding the
mapping in this class which is optimal, given some suitable definition of “goodness”,
cf. [104, Sec. 4.1]. For inverse problems, in the subfield of variational regularization
we look for a solution that minimizes data misfit, while also introducing a penalization
for undesirable reconstructions [37, Chp. 5]. In both cases this imposes a prior on the
unknown entity, a prior which is either explicitly or implicitly hand-crafted by the
expert user and which hopefully reflects the real distribution of the unknown entity.
However, the true priors are normally complex and not possible to state explicitly,
e.g., there is no explicit expression for the distribution of images of cross-sections of
human abdomen. Thus it is often hard to hand-craft model classes and regularizers.
Therefore, so-called data-drive approaches has been suggested, especially under the
name machine learning [10] and deep learning [48]. In this setting, the idea is to
not hand-craft the prior, but instead try to “learn” it directly from data.

I have had the fortune to work on many different problems related all of these
topics throughout my time as a PhD student, and this is what is presented in the
this thesis. The thesis consists of two parts. The main scientific contribution is
found in the second part, which contains a collection of appended papers. However,
before that, the first part of the thesis contains another two chapters. The first of
these chapters contains background material, in which the notions introduced above
are made more precise. The second of these chapters contains a summary of the
appended papers, and also clarifies the author’s contribution in each case.

4



2. Background

Here we introduce some preliminary material. This is done to facilitate for the reader
by introducing concepts needed in the appended papers in Part II. However, the
material presented here is also intended to put the appended papers in a somewhat
bigger context.

Notation The notation used is mostly standard, however to reduce the risk for
confusion we will briefly introduce some of it here. To this end, for a set A we
will denote the closure by Ā and the complement by AC . Moreover, we introduce
the two symbols −∞ and +∞ (the latter often just denoted ∞) which are such
that −∞ < x < +∞ for any x ∈ R and define the extended real numbers as
R := R ∪ {±∞}.1 Finally, for z ∈ C we let z∗ denote the complex conjugate,
C+ := {z ∈ C | z = a + ib, a, b ∈ R, a > 0} denote the open complex right half
plane, D := {z ∈ C | |z| < 1} denote the open unit disc, and T := {z ∈ C | |z| = 1}
denote the unit circle.

2.1 Linear dynamical systems, analytic functions, and
feedback control

Dynamical systems are used to model many phenomena in the world. Examples are
models for different mechanical and electrical systems [60, Sec. 1.2], but also models
for population dynamics and epidemics [76, Sec. 10.3 and 10.4]. The simplest type
of dynamical systems are linear dynamical systems, yet these are powerful enough to
mathematically model the behavior of many real-world systems. Examples of such
systems are basic electrical circuits [28, Sec. 2.5.1], simple mechanical systems [28,
Ex. 2.6 and 2.7], and mixing problems [28, Ex. 2.10]. Moreover, nonlinear dynamical
systems are often analyzed by linearizing them [93, Sec. 5.4] [60, Sec. 4.3]. This
section contains an overview of the theory for signals, systems, and feedback control,
for linear dynamical systems. The exposition takes an input-output viewpoint,
and the goal is also to highlight the connection to functional analysis and analytic

1For arithmetic rules including these two symbols, see, e.g., [42, p. 4] or [96, p. 24].
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2. Background

function theory, which provide powerful tools to analyze linear dynamical systems.
The material presented is mainly from [55, 31, 32, 41, 86, 28, 83, 93]. A nice overview
of the topic can also be found in [85].

Linear input-output mappings and the Laplace transform

A linear dynamical system can be described by a linear mapping A from some input
space U to some output space Y , as illustrated schematically in Figure 2.1. Here, u
and y are normally called the input and output signal, respectively. In the case that
the input and output spaces are function spaces on R or R+, we normally call the
system a continuous-time system. The choice of domain for the function space in
which the signals live normally depend on whether the system is assumed to be at
rest at time t = 0, in which case one takes the domain of the function space to be
R+. This is common in cases where the dynamics of the system can be described as
a deterministic initial-value problem. Similarly, if the input and output spaces are
sequence spaces on Z or N, we normally call the system a discrete-time system. In
this case, equivalent statements about the domain of the corresponding sequence
spaces hold.

A
u ∈ U y ∈ Y

Figure 2.1: A linear dynamical system.

In what follows we will consider the two case when the function space is defined
on R and the sequence space on Z. Moreover, we are particularly interested
in linear time-invariant (LTI) single-input-single-output (SISO) systems. Time-
invariance means that a time shift in the input results in the same time shift in the
output, i.e., that the operator A commutes with the family of time-shift operators
Tt : u(·)→ u(· − t) for all t ∈ R in the continuous-time case, and with Tt : u· → u·−t
for all t ∈ Z in the discrete-time case. That A is SISO means that U and Y are
real-valued function or sequence spaces. For LTI SISO systems, the operator A is a
convolution operator [32, p. 15] [83, Chp. 7] [85, p. 195] [86, Sec. 2.3], i.e., for the
continuous-time case we have that

y(t) = A(u)(t) = [G ∗ u](t) =

∫ ∞
−∞

G(t− τ)u(τ)dτ,

where G belongs to some suitable function/distribution space on R,2 and for discrete-
time systems we have that

yt = A(u)t = [g ∗ u]t =

∞∑
j=−∞

gt−juj ,

2Note that the convolution operator needs to be interpreted with some care. In fact, it is
defined indirectly using the Fourier transform, see, e.g., [83, Sec. 7.5.3]. See also Remark 2.1.1.
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2.1. Linear dynamical systems, analytic functions, and feedback control

where g belongs to some suitable sequence space on Z. In mathematics, the function
G and sequence g are often called the convolution kernels, however in control and
signal processing they are usually called the impulse response of the respective
system.3 Finally, such systems are called causal if the output at the current time
point do not depend on future input values. Formulated in terms of the impulse
response, and system is causal if G(t) = 0 for t < 0 in the continuous-time case,
and if gt = 0 for t < 0 in the discrete-time case. In this case the convolutions take
the form y(t) =

∫ t
−∞G(t− τ)u(τ)dτ and yt =

∑t
j=−∞ gt−juj , respectively. Since

the theory for continuous- and discrete-time systems are analogous in many case,
from now on we will focus on the continuous-time case. In the end of the section,
corresponding results and considerations will be summarize for the discrete-time
case.

To this end, for a function f : R→ R we define the (bilateral) Laplace transform
L as

L(f)(s) :=

∫ ∞
−∞

f(τ)e−τsdτ,

where s ∈ C. We say that the transform converges for an s ∈ C if
∫∞
−∞ |f(τ)e−τs|dτ

converges [85, p. 195] [86, Sec. 9.2], i.e., if the integral is absolutely convergent (cf.
[31, p. 11]). If f is such that the transform has a nonempty region of convergence
Ω, i.e., there exists an Ω ⊂ C, Ω 6= ∅, so that for all s ∈ Ω the transform converges,
we get that the Laplace transform of f is a function L(f) : Ω → C. We will

denote this function f̂(s) := L(f)(s). Using the Laplace transform we can now
define the transfer function corresponding to the LTI SISO system A. This is the
Laplace transform of the operator A, i.e., the Laplace transform of the convolution
kernel/impulse response G.4 However, for causal systems we have that G(t) = 0 for
t < 0, and for causal systems we thus have that the transfer function is given by

Ĝ(s) := L(G)(s) =

∫ ∞
0

G(τ)e−τsdτ.

Moreover, it can be shown that for this kind of functions, sometimes called right-
sided functions, a nonempty region of convergence Ω is always a half-plane in C
[31, Chp. 3] [85, pp. 195-196] [86, Sec. 9.2]. To see this, assume that the transform
converges for some s0 ∈ C such that <(s0) = a. Then for any s with <(s) ≥ a we

3The name comes from the fact that they are obtained as output of the system when the input
signal is taken to be an impulse at time t = 0. In the continuous-time case, this means the Dirac
impulse δ(t) (the one-function in Fourier domain, cf. footnote 2), while in the discrete-time case
the impulse is the sequence δ0 = 1 and δt = 0 for t 6= 0.

4Formally, the Laplace transform of the operator is defined as the operator denoted by L(A),
so that L(Af) = L(A)

(
L(f)

)
for all f in the function space under consideration. It is well-known

that when it converges, the Laplace transform of a convolution becomes a multiplication with
the Laplace transform of the kernel [31, Chp. 10] [108, Thm. 3.6]. Strictly speaking, the Laplace
transform of the operator is thus the multiplication operator that multiplies with the Laplace
transform of the kernel, cf. Remark 2.1.1.
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2. Background

have that ∫ ∞
0

|G(τ)e−τs|dτ =

∫ ∞
0

|G(τ)|e−τ<(s)dτ ≤
∫ ∞

0

|G(τ)|e−τadτ,

and the last integral is convergent by assumption. Moreover, it can be shown
that the corresponding function Ĝ(s) is in fact an analytic function5 in the open
half-space where it converges [31, Chp. 6], and that it is also bounded [31, Thm. 3.2].

Analytic functions, Hardy spaces, and connection to stability

So far we have avoided exact details of the function spaces U and Y. However, to
develop the theory further we need to specify these. In what follows, U and Y will
in general be real function spaces. However, since the transfer function Ĝ(s) is
an analytic function we will also need complex function spaces. To this end, let
(X,A) and (Y,B) be two measure spaces. Often we will denote these spaces only
X and Y , dropping the explicit notation for the σ-algebras A and B. A function
f : X → Y is said to be a measurable function if for all B ∈ B, f−1(B) ∈ A.6 Now,
let Lp(X) be the function space of all (potentially complex valued) measurable
functions on X such that ‖f‖pLp :=

∫
X
|f(t)|pdt <∞, for p = 1, 2, . . ., and such that

‖f‖L∞ := ess supt∈X |f(t)| <∞ for p =∞, see, e.g. [42, Sec. 3.2], [55, Chp. 1], or
[98, Chp. 3]. Moreover, let Hp(C+) denote the Hardy space of functions f that are
analytic in C+ and such that

‖f‖pHp(C+) := sup
x>0

∫ ∞
−∞
|f(x+ iy)|pdy <∞

for p = 1, 2, . . ., and such that

‖f‖H∞(C+) := sup
x>0,y∈R

|f(x+ iy)| <∞

for p = ∞, see, e.g., [55, Chp. 8]. In fact, for f ∈ Hp(C+) we have that f(a+ ib)
belongs to Lp(R) for all a ≥ 0, when seen as a function of b. Moreover, for such
f , any sequence of the form ‖f(a+ i·)‖Lp(R) is a nonincreasing sequence in a, and

thus ‖f‖pHp(C+) =
∫∞
−∞ |f(iy)|pdy = ‖f(i·)‖pLp(R) =: ‖f‖pLp(iR), for p = 1, 2, . . ., and

similarly for f ∈ H∞(C+) [55, Chp. 8].
Now, input-output stability of a linear system can be defined in terms of that the

operator A : U → Y is a bounded linear operator between the two spaces. Therefore,

5Note that the term analytic normally refers to complex functions that locally have a power-
series representation, while the term holomorphic refers to infinitely differentiable complex functions.
However, the two notions are equivalent [98, Thm. 10.6 and 10.16], and thus we will make no
difference between the two (cf. [98, Def. 10.2]).

6This is the definition used by Kallenberg [57, p. 3]. However, Kallenberg also states that a
topological space is always equipped with the Borel σ-algebra, which is the σ-algebra generated
by the topology [57, p. 2]. In contrast, Rudin defines measurable functions directly between a
measure space and a topological space [98, p. 8], which is also what Friedman does [42, Sec. 2.1].
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2.1. Linear dynamical systems, analytic functions, and feedback control

depending on the function spaces U and Y we choose, we get different notions of
stability. One commonly considered notion of stability is when A is a bounded
linear operator from U = L2(R) to Y = L2(R). This is of interest since the L2-norm
is often used as a measure of the energy in the signal. The idea of this type of
stability is that an input signal with bounded energy should give an output signal
with bounded energy, meaning that the energy amplification in the system is limited.
We will thus refer to this kind of stability as L2-stability or “stability in the energy
sense”. In this case, it can be shown that the operator norm is finite, i.e.,

sup
u∈L2
u6=0

‖A(u)‖L2

‖u‖L2

<∞,

if and only if Ĝ(s) ∈ H∞(C+), see, e.g., [32, Sec. 2.3 and 2.5] [41, p. 54] [83,
Sec. 7.5.3] [85, p. 199].

Another type of stability of interest is so-called bounded-input-bounded-output
(BIBO) stability, which means that A is a bounded linear operator from U = L∞(R)
to Y = L∞(R). This type of stability is arguably as natural as the energy stability,
since the former can handle things like pure sinusoidal inputs which the latter cannot.
BIBO stability can be shown to be equivalent to G(t) ∈ L1(R), see, e.g., [32, Sec. 2.3
and 2.5] [28, Thm. 5.1] [83, p. 161] or [85, p. 199] and references therein.7

When the region of convergence for the Laplace transform includes the imaginary
axis we note that for s = iω we get that

Ĝ(iω) =

∫ ∞
0

G(τ)e−iωτdτ =

∫ ∞
−∞

G(τ)e−iωτdτ,

which is the Fourier transform of the function G. The function Ĝ(iω) is called
the frequency response of the system. The name comes from the fact that a
sinusoidal input signal u(t) = sin(ω0t) gives the sinusoidal output signal y(t) =
|Ĝ(jω0)| sin(ω0t+∠Ĝ(jω0)) [93, Sec. 8.4]. The frequency response has traditionally
been a useful tool in control, e.g., properties of a system can be observed in the
so-called Bode plot [93, Sec. 8.4]. Moreover, the frequency response function can
also be used to determine stability of a closed-loop system via the Nyquist criteria
[93, Sec. 9.2] [32, p. 37].

Remark 2.1.1. Although the presentation above serves as an introduction to the
subject, it is not mathematically stringent. More precisely, the operator A is not
defined via the convolution but via the Fourier transform. This means that the
convolution above should be interpreted as (G ∗ u) := [F−1ĜF ](u), where F is
the Fourier transform [83, Sec. 7.5.3]. From this perspective, the transfer function
(frequency response) is in fact more fundamental than the impulse response, since

7Note that the condition G ∈ L1(R) does not have a nice description in terms of the transfer

function Ĝ [36, p. 102] [83, p. 161], the latter in fact being the more “fundamental” of the two, cf.
Remark 2.1.1. This is most likely why L2-stability is more commonly used in the literature.
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2. Background

the former gives rise to a notion of the latter and not the reverse. More over, in
this case time invariance is defined as the commutativity of the Fourier transformed
operator FAF−1 with the exponential group eitω, for all t ∈ R [83, Sec. 7.5.3], and
causality is defined as that f(t) = 0 for t ≤ s implies that A(f)(t) = 0 for t ≤ s
[83, Sec. 7.1]. Finally, F−1([ĜF ](u)) many not converge for all input signals in the
intended input space U . To remedy this one instead considers input signals from the
signal space Uκ := {e−κtu | u ∈ U} [54, Chp. 1]. If there is a finite κ0 so that the
inverse transform converges for all u ∈ Uκ0 , then clearly it converges for all κ ≥ κ0.
The set of input signals can thus be taken as

⋃
κ≥κ0

Uκ. Note that in the above
discussion, this corresponds to the Laplace transform converging in the half-plane
<(s) ≥ κ0, and we call the system stable if κ0 ≤ 0.

Rational transfer functions, state-space representation, and
finite-dimensional linear systems

A transfer function is called rational if it is the quotient of two polynomials, i.e., if
Ĝ(s) = b(s)/a(s) where

a(s) = a0 + a1s+ . . .+ ans
k (2.1.1a)

b(s) = b0 + b1s+ . . .+ bms
m. (2.1.1b)

Here we will only consider the case of so-called proper systems, i.e., systems such
that k ≥ m. Moreover, we will always assume that a and b are coprime. Using the
Laplace transform, it is easily seen that such a transfer function is equivalent to the
operator A being the solution operator to a dynamical system that has a description
in terms of a constant-coefficient ordinary differential equation (ODE) of the form

aky
(k)(t) + . . .+ a1ẏ + a0y = bmv

(m)(t) + . . .+ b1v̇ + b0v. (2.1.2)

For a rational transfer function we define the poles and zeros of the transfer
function to be the zeros of a(s) and b(s), respectively. It is easily seen that it is
analytic in the half-plane to the right of the right-most pole [86, p. 669]. Since
the system is proper, if all poles are in the left half-plane C− the function Ĝ(s) is
in fact in H∞(C+) and thus stable. These arguments lead to the standard result
from a basic course in control theory that “a system is stable if and only if all
poles of the transfer function are in the left half-plan” [86, p. 697] [93, p. 240] (cf.
cite[Sec. 3.1]foias1996robust). Moreover, if we define u = v(m) as the input signal,
by the change of variable x1 = y, . . . , xk = y(k−1), xk+1 = v, . . . , xk+m = vm−1,
we can write (2.1.2) as a system of first-order ODEs.

In the input-output approach so far described, one needs to keep track of the
entire input signal u(t) in order to compute y(t). However, for many LTI SISO
systems this is not necessary. The concept needed to get around this is that of
a state of a dynamical system. A state x(t) is defined as a representation of the
system that contains enough information to describe how previous inputs affect
future outputs: Formally, a state is a function x(·) so that for all t0, the output

10



2.1. Linear dynamical systems, analytic functions, and feedback control

y(t) for t ≥ t0 is uniquely determined by x(t0) and u(t) for t ≥ t0 [28, Def. 2.1].
Moreover, an LTI SISO system is called finite-dimensional (or lumped) if it can be
described in a finite-dimensional state space form, i.e., as

ẋ(t) = Ax(t) +Bu(t), (2.1.3a)

y(t) = Cx(t) +Du(t), (2.1.3b)

where x(t) ∈ Rn is a vector-valued function, and A, B, C, and D are matrices of
appropriate dimensions [28, Sec. 2.1.1]. This means that by definition, all finite-
dimensional LTI SISO systems can be described by a system of first-order ODEs
as in (2.1.3). Now, note that the change of variables defined above in order to
write (2.1.2) as a system of first-order ODEs in fact defines a state space form
for this higher-order ODE. Vice versa, any system of equations of the form (2.1.3)
defines a proper rational transfer function via Ĝ(s) = D + C(sI − A)−1B [28,
pp. 15-16] [85, pp. 200-201] [93, Sec. 8.1].8 This means that any LTI SISO system is
finite-dimensional if and only if it has a rational transfer function [28, p. 14].

Remark 2.1.2. Note that for finite-dimensional LTI SISO systems, i.e., LTI SISO
systems with a proper rational transfer function, BIBO stability is in fact also
equivalent with all poles being in the left half-plane [28, Thm. 5.3].

If it is not possible to represent the system in the form (2.1.3) with a finite-
dimensional state vector, then the system is called infinite-dimensional (or dis-
tributed) [28, Sec. 2.1.1]. One common example of such a system is the delay system,
which can be described by the linear ODE

y(t) = u(t− t),

for some t > 0. In this case, to describe the evolution of y(t) for t ≥ 0 we need to
know u(t) for t ≥ 0 and u(t) for t ∈ [−t, 0]. The latter cannot be summarized in a
finite-dimensional vector. In fact, in this case the operator A is a convolution with a
shifted Dirac impulse, G(t) = δt(t), and the transfer function is Ĝ(s) = e−ts, cf. [28,
Ex. 2.4], which as expected is not a rational function.

Remark 2.1.3. The idea of state is in fact what is used to define dynamical systems
formally in mathematics. In this case, a dynamical system is a triplet {T,X, φt},
where T is a time set, X is a state space, and {φt}t∈T is a family of evolution operators
φt : X → X such that i) φ0 = the identity operator, and ii) φt1+t2 = φt1 ◦ φt2 . See,
e.g., [63, Sec. 1.1] for details.

8Given a proper rational transfer function Ĝ(s) = b(s)/a(s), where a and b are coprime, any

state space form (2.1.3), abbreviated (A,B,C,D), so that Ĝ(s) = D + C(sI −A)−1B is called a
realization. However, note that when forming D+C(sI−A)−1B we might get pole-zero cancellation
between numerator polynomial and denominator polynomial. This happens if and only if the
realization (A,B,C,D) is not minimal, which is equivalent with that is not both controllable and
observable [28, Thm. 7.2].
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2. Background

Feedback control

The concept of control can be defined as designing the input signal u(t) in order to
steer the output signal y(t), and in feedback control the value of u(t) is often based
on the value of y(t) or its mismatch with a desired reference signal. This is often
done by letting u(t) be the output of another causal LTI SISO dynamical system
with input depending on y(t). To this end, let P (s) denote the transfer function for
a dynamical system and let K(s) represented the controller, i.e., a transfer function
where u(t) is the output. In feedback control K(s) is connected to P (s), and these
interconnections are often represented using block-diagrams. An example is shown
in Figure 2.2, where r(t) is a desired reference signal that we would like y(t) to
mimic, and e(t) := r(t)− y(t) is the instantaneous error.

K(s) P (s)
ur e y

−

Figure 2.2: A feedback control system.

A symbolic calculation based on the block-diagram in Figure 2.2 gives that

y = P (s)u
u = K(s)(r − y)

}
=⇒ (1 + P (s)K(s))y = P (s)K(s)r,

and the system is called well-posed or well defined if

1 + P (s)K(s) 6= 0 for all s ∈ C̄+, (2.1.4)

cf. [32, Sec. 3.1] [41, p. 53]. If (2.1.4) holds, then the closed-loop transfer function
PK/(1 + PK) from r to y is analytic in C̄+. Moreover, it is also bounded which
means that the system is stable in energy sense. However, in this system u is not an
external signal but an internal signal. This means that the above stability results
do not tell us what happens with u. For this reason, the concept of internal stability
has been introduced. A system is called internally stable if all bounded external
signal gives rise to bounded internal signals [32, p. 35]. It can be shown that a
transfer function for a feedback loop as show in Figure 2.2 is internally stable if and
only if it fulfills (2.1.4) and there are no pole-zero cancellations of poles and zeros
in C+ when forming the product P (s)K(s) [32, p. 36].

A note on the factorization of Hp(C+)-functions

As we saw earlier, the function spaces Hp(C+), and especially H∞(C+), turns out
to play an important roll for the analysis and design of linear dynamical systems. It
turns out that all functions f ∈ Hp(C+) have a particular structure, meaning that
they can be uniquely factorized as a product of three types of analytic functions.

12



2.1. Linear dynamical systems, analytic functions, and feedback control

This kind of factorization is useful in many cases, and in this subsection we will thus
summarize these results. Moreover, in the end of the subsection we will comment on
the explicit relation to finite-dimensional linear dynamical systems. For an in-depth
treatment of the subject, see, e.g., [55, 35] in which all results below can be found.

To this end, any f ∈ Hp(C+) can be uniquely factorized as

f(s) = λB(s)S(s)F (s),

where λ ≥ 0 is a constant, and B,F, S ∈ Hp(C+) are particular types of Hp(C+)-
functions. These different parts are presented presented below. First, B(s) is called
a Blaschke product if

B(s) =

(
s− 1

s+ 1

)k∏
n

|1− β2
n|

1− β2
n

s− βn
s+ β̄n

,

where ∑
n

<(βn)

1 + |βn|
<∞. (2.1.5)

Here, β1, β2, . . . are the zeros of f in C+ that are not in the point s = 1, and k is the
(finite) order of a (potential) zero of f in s = 1. The condition (2.1.5) guarantees
that the expression for the Blaschke product converge to an analytic function [55,
p. 132]. Moreover, [f/B](s) defines a Hp(C+)-function without zeros in C+. As a
final note on Blaschke products, note that |B(s)| ≤ 1 for all s ∈ C+ and |B(iω)| = 1.

Furthermore, S(s) is called a singular function and has the form

S(s) = e−ρs exp

[
−
∫ ∞
−∞

ωs+ i

ω + is
dµ(ω)

]
where ρ is a nonnegative real number, and dµ is a finite, singular, nonnegative
measure on R (including the possibility that dµ ≡ 0). Moreover, |S(s)| ≤ 1 for all
s ∈ C+, |S(iy)| = 1 a.e., and S(s) 6= 0 for s ∈ C+, cf. [55, p. 133].

Any Hp(C+)-function of the form B(s)S(s) is called an inner function. The
function F (s) is called an outer function and has the form

F (s) = exp

[
1

π

∫ ∞
−∞

log
(
|f(iω)|

)ωs+ i

ω + is

1

1 + ω2
dω

]
.

Some important properties of outer functions are that i) F (x+ iω) has nontangential
limits x→ 0 which converge to in Lp(R)-norm to f(iω) [55, p. 128-133], ii) |F | = |f |
a.e. on the imaginary axis (both B and S have absolute value 1 there), and iii) that
|F (s)| ≥ |f(s)| for s ∈ C+. Moreover, since F does not have any zeros in C+ it is
invertible on there, and the inverse is also an analytic function on C+.

Conversely, assume that f is a function of the form f = BSF where i) B is a
Blaschke product, ii) S is a singular function, and iii) F is constructed as an outer
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function from a nonnegative measurable function g ∈ Lp(R) such that∫ ∞
−∞

log
(
g(ω)

)
1 + ω2

dω > −∞. (2.1.6)

Then f ∈ Hp(C+) [35, Thm. 11.7]. Since an outer function F is uniquely defined
from the nonnegative function g ∈ Lp(R) fulfilling (2.1.6), such a function g is also
sometimes referred to as an outer function.9

Finally, we will connect these different factors to concepts from control, and
in particular to causal proper LTI SISO systems that are stable in energy sense.
To this end, we first note the all L2-stable finite-dimensional transfer functions
Ĝ can be factorized into an L2-stable minimum phase transfer function and an
L2-stable all-pass transfer function, Ĝ = Ĝmin-phaseĜall-pass [32, p. 91]. A minimum
phase transfer function is a transfer function that has no zeros in C+ [32, p. 90][93,
p. 283]. Moreover, an all-pass transfer function is a transfer function so that
|Ĝall-pass(jω)| = 1 for all ω. The name all-pass comes from the fact that, as we noted
before, for a sinusoidal input signal u(t) = sin(ω0t) we get a sinusoidal output signal
y(t) = |Ĝall-pass(jω0)| sin(ω0t + ∠Ĝall-pass(jω0)) = sin(ω0t + ∠Ĝall-pass(jω0)), and
thus the magnitude of the output signal is unchanged for all frequencies [32, p. 90].
Now, the factors introduced above for H∞(C+)-functions generalize these concepts
to infinite-dimensional systems that are energy stable. In fact, as outer functions
have no zeros (and no poles) in C+, they can be interpreted as an extension of
L2-stable finite-dimensional minimum phase transfer functions. Moreover, inner
functions have unit magnitude on the imaginary axis which means that they are
the generalization of L2-stable finite-dimensional all-pass functions. In fact, all
L2-stable finite-dimensional all-pass functions are Blaschke products with a finite
number of zeros, cf. [32, p. 91]. As another example, note that the time-delay system
introduced above, which was an infinite-dimensional system with transfer function
Ĝ(s) = e−ts, corresponds to a singular function with ρ = t and dµ ≡ 0.

Summary of discrete-time systems

Here we will briefly summarize some of the corresponding results for discrete-time
systems. In this case, the Z-transform takes the role of the Laplace transform. For
a sequence g := {g`}`∈Z we define the Z-transform as [86, Chp. 10]10

ĝ := Z(g) :=

∞∑
`=−∞

g`z
−`.

9Note that in [35, Chp. 11], the notation Hp is used to denote the Hardy spaces on C+ as
we have defined them here, while Hp is used to denote a larger class of functions. Using the
notation in [35] and comparing [35, Thm. 11.6] and [35, Thm. 11.7] we see, for example, that
g(ω) = log(1+|ω|) defines an outer function in H1 but not in H1, since log(1+|ω|)/(1+ω2) ∈ L1(R)
but log(1 + |ω|) 6∈ L1(R).

10Note that one sometimes defines the Z-transform using positive powers, i.e., as
∑∞
`=−∞ g`z

`.
However, the two definitions are equivalent and all results are easily translated using, e.g., the
Möbius transformation M(z) = 1

z
.
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2.2. Stochastic processes and spectral estimation

Similarly as before, the Z-transform of a causal LTI SISO system thus takes the form
Z(g) =

∑∞
`=0 g`z

−`, and any nonempty region of convergence thus has the form of
the complement of a disc centered at the origin. Moreover, being a Laurent series of
a complex variable it is clearly an analytic function in the region of convergence [98,
Thm. 10.6].

We can now introduce the Hardy spaces on the complement of the unit disc:
Hp(D̄C) is the space of functions f that are analytic in D̄C such that f ∈ Lp(T)
[89, Def. 1.3.3], [55, p. 39]. However, since T has bounded total mass we have that
Lp(T) ⊂ Lq(T) for all 1 ≤ q ≤ p ≤ ∞,11 which thus mean that Hp(D̄C) ⊂ Hq(D̄C)
for all 1 ≤ q ≤ p ≤ ∞. Now we can use the same kind of arguments about stability
as was done for the continuous-time case: A system is BIBO stable, i.e., a bounded
linear map between U = Y = `∞(Z), if and only if the impulse response g belongs
to `1(Z) [86, Sec. 2.3.7] [83, Sec. 7.5.2]. Similarly, for Y = U = `2(Z) the system is
stable if and only if ĝ ∈ H∞(D̄C) [83, Lem. 7.2.3]. Moreover, equivalent derivations
and observations on finite-dimensional systems, rational transfer functions, and finite
difference equations can be made also in for discrete-time systems (cf. Section 2.2).
This also leads to that for finite-dimensional proper LTI SISO systems, BIBO stability
is equivalent with that all poles have magnitude less than one [28, Thm. 5.D3].

Remark 2.1.4. As a final note we observe that H∞(C+) and H∞(D̄C) are in fact
in a bijective correspondence, since the Möbius transformation M(s) = s−1

s+1 is a

bijective conformal map from D̄C to C̄+ (cf. [89, Sec. 1.4]) and since a function that
is bounded remains bounded also after composition with the transform.

2.2 Stochastic processes and spectral estimation

This section formally introduces the concept of a stochastic process, second-order
stationary processes, and the spectrum a of discrete-time second-order stationary
process. It also introduces and motives the rational covariance extension problem,
which is a spectral estimation problem that was posed by R.E. Kalman in 1981 [58].
The material presented below is a collection of some of the material presented in
the text books [92, 42, 98, 57, 105, 72].

Random variables and stochastic processes

A probability space is a triplet (Ω,A, P ), where (Ω,A) is a measure space and P is
a measure defined on A, such that P (Ω) = 1. The intuitive interpretation of this
definition is that the elements A ∈ A are the random events that can occur and the
value P (A) is probability of the event A. One of the most fundamental notions in
probability theory is a random variable, the generalization of which is a so-called
random element [57, p. 24]. To define the latter, let (Ω,A, P ) be a probability

11A more general statement is that for any measure space (X,A, µ), the two conditions
i) supA∈A µ(A) < ∞, and ii) Lp(T) ⊂ Lq(T) for all 0 < q ≤ p ≤ ∞, are equivalent [106,
Thm. 2].
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space and (Ξ,B) a measure space. A random element X is a measurable function
X : Ω→ Ξ, and the probability of the outcome X(ω) ∈ B is formally defined for
any set B ∈ B as

P (X(ω) ∈ B) := P (X−1(B)) = (P ◦X−1)(B).

In this case we can interpret X(ω) ∈ B ∈ B as an (indirect) observation of the
random event ω ∈ Ω. Moreover, given a random element X, the expected value
(mean value) of X is defined as E[X] :=

∫
Ω
X(ω)dP (ω).12

In this setting, a (complex) random variable is simply the name for a random
element in the case when Ξ is equal to R (C), and a (complex) random vector is
a random element with Ξ equal to Rd (Cd) for some d = 2, 3, . . .. Moreover, a
stochastic process can be defined as a random element that maps into a sequence
space or function space [57, p. 24]. However, a stochastic process can equivalently be
seen as a collection of random variables {X(ω, t)}t∈T , where T is some index set [57,
p. 24] [92, Chp. 2]. Analogously to dynamical systems, if T is N or Z we say that it
is a discrete-time process and if T is R+ or R we say that it is a continuous-time
process. Moreover, for a fixed ω ∈ Ω, X(ω, t) is a function of the second argument t
and this is called a realization or sample path of the process.

The mean value of a stochastic process is, by definition, a function of t since

m(t) := E
[
X(·, t)

]
=

∫
Ω

X(ω, t)dP (ω) =

∫
R
x[P ◦X(·, t)−1](x)dm,

where the last equality holds if we assume that the process is real-valued, and
where dm is the standard Borel measure on R. In a similar fashion we can define
higher-order moments of the stochastic process, the most commonly used being the
second-order moments. These are called the covariances and are defined as

c(t, s) = E
[
(X(·, t)−m(t))(X(·, s)−m(s))∗

]
= E

[
X(·, t)X(·, s)∗

]
−m(t)m(s)∗.

A process is said to be second-order stationary (or weakly stationary) if for some
constant m, m(t) = m a.e., and if the covariance function c(t, s) is a function only of
the argument t− s, i.e., with a slight abuse of notation if c(t, s) = c(t− s) [72, p. 42].
Finally, a second-order stationary stochastic process is called ergodic if the mean
and covariances of a realization are the same as the ensemble mean and covariances,
i.e., if for the sample average

m̂T :=
1

2T + 1

T∑
t=−T

X(ω, t)

we have that limT→∞ m̂T = m = E
[
X(·, t)

]
for ω a.e. dP , and if for the sample

covariances

ĉT (τ) :=
1

2T + 1

T∑
t=−T

(X(ω, t)− m̂T )(X(ω, t− τ)− m̂T )∗

12For definitions on how abstract integration is defined, see, e.g, [98, Chp. 1] [57, Chp. 1].
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2.2. Stochastic processes and spectral estimation

we have that limT→∞ ĉT (τ) = c(τ) for all τ ∈ Z and ω a.e. dP [72, Def. 13.1.3]. The
concept is defined similarly for a continuous-time stochastic process [92, p. 17].

Spectra for discrete-time second-order stationary processes

For the remaining of Section 2.2 we will, unless otherwise explicitly stated, focus
on discrete-time, second-order stationary, and ergodic processes. We therefore
introduce a somewhat simplified notation. To this end, we will start by a slight
abuse of notation and considering {yt ∈ C}t∈Z both as a stochastic process, and as
time series, the latter being nothing but one realization of the stochastic process.
In the same spirit, we will still write things like E[yt] for the expectation of the
stochastic process, which due to the ergodicity assumption is the same as the average
over the specific realization. Moreover, in addition to the above assumptions, by
the second-order stationarity and ergodicity assumptions we will without loss of
generality also assume that the time series is zero-mean. This means that we get a
simplified expression for the covariances, namely

ck = E[yty
∗
t−k].

The power spectrum of a stochastic process describes the average power distribu-
tion across frequencies in the process. This can be seen as a generalization of the
energy spectrum of a deterministic signal, which describes the distribution of the
signal energy across the frequency components of the signal [105, Chp. 1]. Formally,
the power spectrum is defined as the nonnegative measure µ on the complex unit
circle T := (−π, π] such that

ck =
1

2π

∫
T
eikθdµ(θ), k ∈ Z

i.e., the nonnegative measure such that the covariances are Fourier coefficients of µ,
see, e.g., [72, Chp. 3] or [105, Chp. 1]. In the case of a power spectrum with only
absolutely continuous part, i.e., dµ(θ) = Φ(eiθ)dθ, if Φ is also, e.g., continuously
differentiable on T then we have that

Φ(eiθ) =

∞∑
k=−∞

cke
−ikθ, (2.2.1)

i.e., the series converges pointwise [108, Thm. 4.5].13

The spectral estimation problem can now be formulated as follows: From a finite
realization of {yt}t∈Z estimate the power spectrum of the stochastic process. This
is of interest since we in many cases can extract useful information from the power
spectrum, which is hard to directly observe in the time series. As an illustration,

13Note that the assumption on continuous differentiability can be relaxed if one instead of
pointwise convergence considers other types of convergence, cf. [98, pp. 88-92 and pp. 100-104]
[108, Chp. 5].
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2. Background

consider Figure 2.3. Thus, spectral estimation has a lot of applications, for example
in speech analysis [30, 38], medical diagnostics [2], system identification [72] [104,
Sec. 3.5], and many other areas [105]. Because of its usefulness several different
methods have also been developed for spectral estimation, such as the periodogram
and the correlogram [105, Chp. 2], Burg’s method (maximum entropy) [18, 19]
[105, Sec. 3.9.3], the Capon method [105, Sec. 5.4], rational covariance extension
[58, 44, 45, 27], and others [105].
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(b) Periodogram estimate.

Figure 2.3: An example of a time series is shown in Figure 2.3a and the corresponding
periodigram estimate is shown in Figure 2.3b. From the time series itself it is hard
to tell, but as can be seen in the periodigram there are 10 prominent frequencies
present in the data.

The rational covariance extension problem

Rational covariance extension is a spectral estimation procedure, and to understand
it better we will first introduce the correlogram. The latter is a spectral estimation
method where the estimated spectrum takes the form

Φcorr(e
iθ) =

n∑
k=−n

cke
−ikθ,

and where {ck}nk=−n is an estimate of the true covarainces obtained from the finite
realization of {yt}t∈Z.14,15 Comparing this to (2.2.1), we see that the correlogram

14Note that the correlogram coincides with the periodogram when the biased covariance estimates
are used [105, p. 24].

15Here we have on purpose used a somewhat sloppy notation: We do not make an explicit
difference between estimated and true covariances. The reason for this is that in what follows we
will make the assumption that we have sufficiently good estimates of the covariances, and we will
not explicitly consider estimation procedures for covariances nor errors in the obtained estimates.
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2.2. Stochastic processes and spectral estimation

in fact sets the higher-order covariances to zero. This has several drawbacks, for
example that the function obtained might not be nonnegative. In the rational
covariance extension problem, one instead seeks an extension of the covariance
sequence {ck}nk=−n so that the obtained spectrum (2.2.1) is a nonnegative rational
function. In particular, in [58], R.E. Kalman posed the problem of finding all
extensions of the covariance sequence such that the spectrum is nonnegative and
rational, and where the degree of both the numerator and the denominator is
bounded by n, i.e., given a sequence of covariances c := {ck}nk=−n find all nonnegative

functions Φ(eiθ) so that

(RCEP)


ck =

1

2π

∫
T
eikθΦ(eiθ)dθ, k = −n, . . . ,−1, 0, 1, . . . , n

Φ(eiθ) =
P (eiθ)

Q(eiθ)
, P and Q ∈ P̄+.

Here, P̄+ denotes the set of real-valued nonnegative trigonometric polynomials, i.e.,

P̄+ :=

{
P ∈ C(T)

∣∣∣ P (eiθ) :=

n∑
k=−n

pke
−ikθ, p−k = p∗k, P (eiθ) ≥ 0 for all θ ∈ T

}
,

where C(T) denotes the set of continuous functions on T. Moreover, P̄+ is in fact
a closed convex cone (cf. Section 2.3), and with P+ we denote the interior which
corresponds to all strictly positive trigonometric polynomials.

The interest in (RCEP) comes from stochastic realization theory, and in what
follows we will clarify this connection. For an in-depth treatment of stochastic
realization theory see [72], and for the rational covariance extension problem see
in particular [72, Sec. 12.5 and 12.6] and references therein. To this end, in the
rational covariance extension problem we are not only interested in obtaining an
estimate of the spectrum, but we also want a model for how the stochastic process
is generated. Here, the stochastic process is modeled as coloring of white noise by
filtering it through a BIBO-stable causal finite-dimensional LTI SISO system, and
we want to identify the latter. This theory is thus tightly linked with the theory
presented in Section 2.1, except that the input and output spaces U and Y are now
spaces of discrete-time processes instead of sequences.

Let {ut}t∈Z be a Gaussian white noise process, meaning that i) {ut}t∈Z is a
Gaussian process, i.e., that any finite collection (ut1 , . . . , ut`) is a Gaussian random
vector, and ii) that the power spectrum of the process is constant: Φu(eiθ) ≡ 1.16

Moreover, let {yt} be the output of a BIBO-stable causal finite-dimensional LTI
SISO system A with impulse response g := {gk}k∈Z, where gk = 0 for k < 0
since the system is causal. In particular, this means that A can be formulated
as a so-called autoregressive-moving-average (ARMA) filter [105, Chp. 3], i.e., the

16An equivalent definition for a Gaussian white noise process is that all random variables ut are
Gaussian and independent.
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input-output relation between the two time series can be expressed by the finite
difference equation

yt +

n∑
k=1

ak yt−k =

n∑
k=0

bk ut−k.

Using the machinery from Section 2.1, we apply the Z-transform17 and get that the
transfer function ĝ(z) can be expressed as

ĝ(z) =
∑
k∈Z

gkz
−k =

∑m
k=0 bk z

−k∑n
k=0 ak z

−k =
b(z)

a(z)
, (2.2.2)

where a(z−1) and b(z−1) are complex polynomials with coefficients {ak}nk=0, where
a0 = 1, and {bk}nk=0, respectively.

Since A is linear, it can be shown that the power spectrum of the output process
is given by the power spectrum of the input process and the transfer function ĝ. This
relation is derived in most standard books, see, e.g., [105, Sec. 1.4] [104, Sec. 3.5]
[92, Sec. 4.2], however, we will do this here as well since it nicely illustrates the
connection between the rational covariance extension problem and identification of
a finite-dimensional linear stochastic system (cf. [105, Sec. 3.2]). To this end, let c̃k
be the covariances of the process ut. Using the relation yt = A(u)t =

∑
k∈Z gkut−k

we get that

ck = E[yty
∗
t−k] = E

[(∑
k1∈Z

gk1ut−k1

)(∑
k2∈Z

gk2ut−k−k2

)∗]
=
∑
k1∈Z

∑
k2∈Z

gk1g
∗
k2E[ut−k1u

∗
t−k−k2 ] =

∑
k1∈Z

∑
k2∈Z

gk1g
∗
k2 c̃k+k2−k1 .

Now, assuming that {yt} has an absolutely continuous spectrum that is, e.g.,
continuously differentiable, from (2.2.1) we obtain

Φ(eiθ) =
∑
k∈Z

cke
−ikθ =

∑
k∈Z

∑
k1∈Z

∑
k2∈Z

gk1g
∗
k2 c̃k+k2−k1e

−ikθ

=
∑
k1∈Z

gk1e
−ik1θ

∑
k2∈Z

g∗k2e
ik2θ

∑
k3∈Z

c̃k3e
−ik3θ = |ĝ(eiθ)|2Φu(eiθ).

Finally, using i) that Φu(eiθ) ≡ 1 since {ut} is a white noise process, and ii) the
relation in (2.2.2), we get that

Φ(eiθ) = |ĝ(eiθ)|2Φu(eiθ) = |ĝ(eiθ)|2 =
|b(eiθ)|2

|a(eiθ)|2
=

∑m
k=−m pke

−ikθ∑n
k=−n qke

−ikθ =
P (eiθ)

Q(eiθ)

where P and Q ∈ P̄+. To summarize, this shows that if the stochastic process is
generated by filtering white noise through a BIBO-stable causal finite-dimensional

17Note that z−1 corresponds to the (unit) delay operator.
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2.2. Stochastic processes and spectral estimation

LTI SISO system A, then the power spectrum Φ is the quotient of two trigonometric
polynomials. In fact, it can be shown that the converse is also true [92, pp. 98-99]
(cf. Section 2.1). The final link that turns solving (RCEP) into a procedure for
system identification is to obtain the filter coefficients {ak}nk=0 and {bk}nk=0 from
the trigonometric polynomials P and Q. This is possible using so-called spectral
factorization. In short, the spectral factorization theorem states that for any P ∈ P̄+

we have that P (eiθ) = |b(eiθ)|2 for some polynomial b(z−1) of degree bounded by
n, and where we can take all zeros of b(z) to be in the closed unit disc D̄ [105,
Sec. 3.2][92, p. 99][33, Thm. 1.1].

To summarize some of the early results on the rational covariance extension
problem, in [44, 45] it was shown that (RCEP) has a solution if and only if the
Toeplitz matrix of covariances is positive definite, i.e., if and only if

T (c) =


c0 c−1 . . . c−n
c1 c0 . . . c−n+1

...
. . .

...
cn cn−1 . . . c0

 � 0.

It was also shown that for each c so that T (c) � 0 and for each numerator polynomial
P ∈ P+, there is a denominator polynomial Q ∈ P+ so that P/Q is a solution to
(RCEP). In [44, 45] it was also conjectured that for each pair (c, P ) there is a unique
Q so that (RCEP) holds, which was shown to be true in [27]. A constructive method
for computing the unique Q was developed in [23, 24]. This method uses convex
optimization, and also gives an alternative proof for the existence and uniqueness of
a denominator polynomial Q. The results can be summarized as in the following
theorem.

Theorem 2.2.1 ([23, 24]). The rational covariance extension problem (RCEP) has
a solution if only if T (c) � 0. For such c and any P ∈ P+, there is a unique Q̂ ∈ P+

such that Φ = P/Q̂ is a solution to (RCEP). Moreover, Φ = P/Q̂ is the unique
optimal solution to the convex optimization problem

min
Φ∈L1(T)

Φ≥0

∫
T
P (eiθ) log

P (eiθ)

Φ(eiθ)

dθ

2π

subject to ck =

∫
T
eikθΦ(eiθ)

dθ

2π
, k = −n, . . . , 0, 1, . . . , n.

(2.2.3)

Furthermore, the unique Q̂ is the solution to the dual problem

min
Q∈P̄+

〈c, q〉 −
∫
T
P log(Q)

dθ

2π
,

where q = [q∗n, . . . , q0, . . . , qn]T and where Q(eiθ) =
∑n
k=−n qke

−ikθ.
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Connection to analytic interpolation As a final note, we observe that the
rational covariance extension problem can also be formulated as an analytic inter-
poilation problem with a rationality constraint on the interpolant, see, e.g., [27,
p. 1843]. To this end, consider a sequence of covariances c. We call a function
f : C → C positive-real if i) f is analytic in D̄C , i.e., f(z) can be written as
f(z) =

∑∞
k=0 fkz

−k for |z| > 1, and ii) <
(
f(z)

)
≥ 0 in D̄C [22, p. 822]. Moreover,

we define f∗(z) := f(z̄−1) =
∑∞
k=0 f̄kz

k, which is analytic in D, and note that this
means that Φ(z) := f(z) + f∗(z) ≥ 0 on T. The rational covariance extension
problem is then equivalent to looking for a positive real f of the form

f(z) = γ
b̃(z)

ã(z)
, (2.2.4)

where γ > 0 is a constant and ã and b̃ are Schur polynomials18 of degree n, such that
f0 = 1

2c0 and fk = ck for k = 1, . . . , n. This last set of conditions can equivalently
be interpreted as interpolation conditions for f and its first n complex derivatives as
z →∞, or expressed in terms of f∗(z) as interpolation conditions on the function
and its first n complex derivatives in the origin z = 0. It can thus be seen as a
Nevanlinna-Pick interpolation problem [32, Sec. 9.2] [43, Sec. I.2], but where the
condition on f being positive-real of the form (2.2.4) makes it nonstandard. This
problem has been investigated in great depth, leading to generalizations of the
results to other Nevanlinna-Pick-type interpolation problems [22]. However, there is
a subtle difference between the two formulations, and the problem (RCEP) needs to
be slightly rephrased in order to make them equivalent, cf. [95, Sec. 4] (Section A.4
in this thesis).

2.3 Convex optimization and duality

As we saw an example of in Theorem 2.2.1, optimization is a useful tool in many
areas. This section will define and explain some of the concepts brought up in
Theorem 2.2.1, such as a dual problem. In particular, the form of optimization we
will consider here are problems of the form: Given a Banach or Hilbert space X and
a function f : X → R, called the objective function, find x̂ that minimizes f . We
often write this problem as minx∈X f(x). However, in some cases it is not possible
to find a minimizer. For example, there might only be a sequence of points xk such
that f(xk) converges to a greatest lower bound of f but where xk does not converge
to a feasible point that attains this greatest lower bound. Therefore, in cases where
we do not know if a minimizer exists we use the notation

inf
x∈X

f(x). (2.3.1)

In many cases we want to find the global minimum x̂, i.e., x̂ such that f(x̂) ≤ f(x)
for all x ∈ X. However, very often we can only guarantee that a minimizer is a

18Schur polynomials are polynomials that are monic and with roots inside the unit disc.
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2.3. Convex optimization and duality

local minimizer, i.e., that there exists an ε > 0 such that f(x̂) ≤ f(x) for all
x ∈ Bε(x̂) := {x ∈ X | ‖x̂− x‖ ≤ ε} [75, p. 177]. That is, unless the problem is a
so-called convex optimization problem since in this case any local minimizer is a
global minimizer, cf. [75, p. 191] [96, p. 264] [8, Prop. 11.4]. In this section we will
present part of the rich theory, especially the one related to convex optimization.
Standard references in this area are [75, 96, 8]. In particular, the emphasis in this
section is on duality in convex optimization, which has been of great use in many of
the appended articles. However, before we can introduce this properly we need to
introduce some other concepts.

Epigraphs and proper, convex, lower semi-continuous functions

A problem of the form (2.3.1) is only of interest if f(x) > −∞ for all x ∈ X, and
if there is at least one point x0 ∈ X so that f(x0) <∞. Such functions are called
proper [96, p. 24]. One might ask why functions that can take the value ∞ is of
interest in optimization. One answer is that this allows us to also write constrained
optimization problems in the form (2.3.1) by using indicator functions, i.e.,

IC(x) =

{
0, if x ∈ C
∞, else,

where C ⊂ X. In fact, in this setting minx∈C f(x) is equivalent to minx∈X f(x) +
IC(x), since any minimizer of the latter must clearly be such that x ∈ C. With this
in mind, one normally defines the effective domain of a function as the set

domf := {x ∈ X | f(x) <∞}.

The concept of a proper function can also be defined using the epigraph. The
epigraph of a function f : X → R is defined as the set [75, p. 192] [96, p. 23] [8,
Def. 8.1]

epif := {(r, x) ∈ R×X | f(x) ≤ r},

i.e., it is the set of all points above the graph of the function. Using this definition,
and if we introduce the convention that the “vertical direction” in epif is the R-
direction, then a function f is proper if epif 6= ∅ and if it contains no vertical lines.
Moreover, f is called a convex function if epif is a convex set. This definition is
equivalent with another definition often used, namely that f is called convex if for
all x0, x1 ∈ X and for all α ∈ [0, 1], f(αx0 + (1 − α)x1) ≤ αf(x0) + (1 − α)f(x1)
[75, p. 192] [96, Thm. 4.1] [8, Prop. 8.4]. This latter definition means that a linear
approximation of the function between two points is always an over-estimate of the
function along the corresponding line. Some of the concepts introduced above are
summarized graphically in Figure 2.4.

The last property of interest that we will introduce here is lower semi-continuity.
A function is continuous if for any sequence {xk} such that xk → x̃ as k → ∞,
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we have that limk→∞ f(xk) = f(x̃) [42, p. 110]. A function is called lower semi-
continuous if instead limk→∞ f(xk) ≤ f(x̃) [96, p. 51]. We can equivalently define
upper semi-continuity, and a function is thus continuous if and only if it is both
lower and upper semi-continuous. Now, in terms of the epigraph, one can show that
a function is lower semi-continuous if and only if the epigraph is a closed set [96,
Thm. 7.1] (cf. [8, Thm. 9.9]).

To conclude this subsection, we note that proper, convex and lower semi-
continuous functions are ideal when working with optimization problems. This
is because any local minimizer is a global minimizer [75, p. 191] [96, p. 264] [8,
Prop. 11.4], and given some extra conditions one can also assert the existence of a
minimizer, cf. [96, Thm. 27.1] [8, Prop. 11.14]. For example, the minimum is attained
if the sublevel sets, which is the family of sets defined by {x ∈ X | f(x) ≤ α} for
α ∈ R, are compact, cf. [8, Prop. 11.11 and 11.14].

epif

domf

x0

x1

αf(x0) + (1− α)f(x1)

x

f(x)

Figure 2.4: Figure illustrating the notions epif , domf , and convexity. Note also
that the function is lower semi-continuous, and thus the epigraph is closed.

Dual spaces, differentials, and adjoints

To define duality in convex optimization, we first need to define duality in the sense
of functional analysis. To this end, consider two normed linear spaces X and Y .
First we note that a linear operator A : X → Y is continuous if and only if it is
bounded [75, p. 144] [42, Thm. 4.4.2], where the operator norm is defined as

‖A‖op := sup
x∈X
x 6=0

‖A(x)‖Y
‖x‖X

= sup
x∈X
‖x‖X=1

‖A(x)‖Y .
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2.3. Convex optimization and duality

Therefore the term bounded and continuous will be used interchangeably. Next, for
a normed linear space X we define the (normed) dual space of X, denoted X∗, as the
space of all bounded linear functionals on X. A fundamental result for what follows
is that this dual space X∗ is in fact a Banach space, i.e., a complete normed linear
space [75, Sec. 5.2][42, p. 150]. However, if this is a Banach space we can also define
the dual space of X∗, which consists of all bounded linear functionals on X∗. This
space is called the second dual of X and is denote X∗∗ [75, Sec. 5.6][42, Sec. 4.10].
Now, for any two elements x∗1, x

∗
2 ∈ X∗ and any two scalars a1, a2 ∈ R, note that

for any x ∈ X we have by the standard definition of operations on functionals that
(a1x

∗
1 + a2x

∗
2)(x) = a1x

∗
1(x) + a2x

∗
2(x). This shows that, in fact, all x ∈ X can be

seen as linear functionals on X∗. Moreover, it can be easily shown that they all
correspond to bounded linear functionals, since by the definition of the operator
norm we have that |x∗(x)| ≤ ‖x∗‖op‖x‖X and thus the operator norm of x ∈ X as
a functional on X∗ is simply ‖x‖X (cf. [75, pp. 115-116] [42, p. 159]). We can thus
identify X with a subset of X∗∗. However, in general X 6= X∗∗; spaces for which
X = X∗∗ are called reflexive [75, p. 116] [42, p. 160].

In passing, we also note that Hilbert spaces are self-dual, i.e., H∗ = H [75,
p. 109] [98, Thm. 4.12]. This means that all bounded linear functionals h∗ on a
Hilbert space can be written as an inner product h∗(·) = 〈h1, ·〉H , for some h1 ∈ H.
This motivates the notation for the so-called dual paring [75, Sec. 5.2] in Banach
spaces, i.e., a mapping 〈·, ·〉X : X∗ ×X → R where for any fixed elements x ∈ X
and x∗ ∈ X∗ we define 〈x∗, x〉X := x∗(x). Using this dual paring we can define
weak convergence and weak∗ convergence [75, Sec. 5.10][42, p. 161 and 170]. A
sequence {xk}k ⊂ X is said to converge weakly to x if for every x∗ ∈ X∗ we have
that 〈x∗, xk〉X → 〈x∗, x〉X . Similarly, a sequence {x∗k}k ⊂ X∗ is said to converge
in weak∗ to x∗ if for every x ∈ X we have that 〈x∗k, x〉X → 〈x∗, x〉X . Using these
types of convergence, a weaker version of the Bolzano-Weierstrass theorem about
bounded sequences on R can be generalized to Banach spaces, cf. [97, Thm. 3.6]
and [98, Thm. 11.29].

Remark 2.3.1. Note the difference between weak convergence and weak∗ convergence
on X∗. In the former we take “test points” from the (normally larger) space X∗∗,
while in the latter we take “test points” from the (normally smaller) space X. Only
for reflexive spaces are the two notions equal.

Using the above notions, we can now define well-known concepts such as direc-
tional derivatives, gradients, and subgradients. To this end, a function f : X → R
is said to have a Gâteaux differential (directional derivative) at a point x in the
direction h if

δf(x;h) := lim
α→0

1

α

(
f(x+ αh)− f(x)

)
=

∂

∂α
f(x+ αh)

∣∣∣
α=0

exists [75, p. 171]. If it exists for all h ∈ X, the function is called Gâteaux
differentiable at x. Moreover, the function is said to be Fréchet differentiable at x if
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there exists a bounded linear operator δf(x; ·) : X → R such that [75, p. 172]

lim
‖h‖X→0

|f(x+ h)− f(x)− δf(x;h)|
‖h‖X

= 0.

It is customary to have the same notation for the two expressions since if the
function is Fréchet differentiable in a point x, then it is also Gâteaux differentiable
in this point and the two differentials are equal [75, p. 173]. The notion of Fréchet
differentiable is thus stricter than that of Gâteaux differentiable. Moreover, note that
δf(x; ·) is a bounded linear functional on X and thus by definition δf(x; ·) ∈ X∗.
This observation can be used to generalize the concept of a gradient. This can be
done by noting that i) Rn is a Hilbert space and thus (Rn)∗ = Rn, and ii) that
a directional derivative in a direction h of a differentiable function f : Rn → R
is given by the inner product with the gradient, i.e., δf(x;h) = 〈∇f(x), h〉Rn [97,
pp. 218-219]. With this in mind we define the gradient of a function f : X → R, if
it exists, as the element ∇f ∈ X∗ such that the Fréchet derivative in a direction h
can be written as [75, p. 175]

δf(x;h) = 〈∇f(x), h〉X .

The interest in the differentials from an optimization perspective comes from the
fact that the differentials gives information about candidate optimal solutions.
More precisely, for everywhere Gâteaux differentiable functions we must, in the
unconstrained case, have that δf(x0;h) = 0 for all h ∈ X in order for x0 to be an
extreme point and hence a potential minima [75, p. 178]. Equivalent statements
can also be made for the constrained case, generalizing the first-order optimality
conditions (known as the KKT-conditions, cf. [96, pp. 280-281]) to Banach spaces,
cf. [75, Sec. 7.7]

Even if a function does not poses a Gâteaux of Fréchet differential we can define
another notion of differential with is very useful, especially in the case of convex
functions. This is the so-called subdifferential. The subdifferential of a function
f : X → R at a point x0, denoted ∂f(x0), is defined as the set

∂f(x0) := {x∗ ∈ X∗ | f(x̃) ≥ f(x0) + 〈x∗, x̃− x0〉X for all x̃ ∈ X},

cf. [75, p. 237] [96, p. 214] [8, Def. 16.1]. This means that the mapping x 7→ ∂f(x)
is a set-valued map, which we denote by ∂f : X ⇒ X∗. Moreover, if no such x∗

exists then we say that ∂f(x) = ∅. Also, by definition if f(x) = ±∞ we say that
∂f(x) = ∅. While ∂f(x) is called the subdifferential, an element x∗ ∈ ∂f(x) is called
a subgradient. One of the nice properties of the subdifferential is that x̂ is a global
minimizer of a proper function f if and only if 0 is a subgradient in x, i.e., if and
only if 0 ∈ ∂f(x̂). This is easily seen from the definition, and sometimes referred to
as Fermat’s rule [8, Thm. 16.2].

Finally, we shortly turn our attention to operators between Banach spaces. For a
continuous linear operator A : X → Y , the adjoint operator is defined as the unique
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continuous linear operator A∗ : Y ∗ → X∗ such that for all x ∈ X and y ∈ Y ∗ [75,
Sec. 6.5][42, Def. 4.13.1]

〈y∗,Ax〉Y = 〈A∗y∗, x〉X .

Dual optimization problems

Having introduced the above notions from functional analysis, we can now introduce
the notion of duality in optimization. Loosely expressed, the idea behind duality
is to analyze the problem (2.3.1) via another problem. For this to make sense the
two problems need to be linked in some way. Moreover, the related problem needs
to be “easier” and more “well-behaved” than the original problem, for example it
could be convex and the minimum could be attained. Duality theory can also be
used to derive so-called optimality conditions, which are necessary and/or sufficient
conditions that characterize which x ∈ X that could be optimal solutions to (2.3.1).
An example of this mentioned above are the so-called KKT-conditions, cf. [96,
pp. 280-281].

We will here precede as is often done classically, and present Lagrangian and
Fenchel duality separately. However, the two methods are equivalent [77], and the
last paragraph will present a somewhat more unified viewpoint.

Lagrangian duality Given the problem to minimize f : X → R subject to
x ∈ C ⊂ X, a relaxation of the problem is any optimization problem

inf
x∈X

frelax(x)

subject to x ∈ Crelax

such that C ⊂ Crelax and such that frelax(x) ≤ f(x) for all x ∈ C. From this
it is clear that if x̂ is optimal to the former and x̂relax is optimal to the latter,
then frelax(x̂relax) ≤ f(x̂). This kind of formulation is especially interesting if the
relaxation is tight, i.e., if x̂relax ∈ C while also fulfilling frelax(x̂relax) = f(x̂relax). In
this case, x̂relax is clearly a minimum also to the original problem.

This is a rather general example of the principle explained above, in which the
original problem is analyzed via a related problem. On particular type of relaxation
is so-called Lagrangian relaxation. To explain this theory in a general setting, we
need the concept of a convex cone and its dual cone (positive conjugate cone). For
a normed linear space X, a subset P ⊂ X is called a cone if for all x ∈ P we have
that αx ∈ P for all scalars α ≥ 0 [75, p. 18] [96, p. 13] [8, p. 1]. Moreover, the cone
is called a convex cone if it is also a convex set. Now, give a cone P ⊂ X, we say
that x1 ≥P x2 (sometimes just abbreviated x1 ≥ x2) if x1 − x2 ∈ P . Moreover, we
say that x1 >P x2 if x1 − x2 is in the interior of P [75, p. 214]. Finally, we call

P ∗ := {x∗ ∈ X∗ | 〈x∗, x〉X ≥ 0 for all x ∈ P}

the dual cone of P [75, p. 157 and 215].
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Remark 2.3.2. Note that the inequality with respect to a proper convex cone P , i.e.,
a cone such that P ∩−P = {0}, introduces a partial ordering on X. An illustrative
example is X = R and the convex cone given by the nonnegative real numbers:
P = R+. In this case we recover the “ordinary inequality” between real numbers,
since for the latter we trivially have that α1 ≥ α2 is equivalent with α1 − α2 ≥ 0.
In fact, in this case the cone inequality gives rise to a total ordering of R. However,
in general inequalities defined with respect to convex cones only give a partial
ordering. As an example, consider the convex cone that is the positive orthant in R2.
In this case, it induces no ordering between, e.g., [1, 0]T and [0, 1]T . Nonetheless,
inequalities with respect to convex cones can be seen as an attempt to generalize
well-known ideas and concepts regarding inequalities from the real numbers.

Having introduced the above notions we now consider the optimization problem

inf
x∈X

f(x) (2.3.2a)

subject to g(x) ≤P 0. (2.3.2b)

Here, X,Y are Banach spaces, f : X → R is a convex function, P ⊂ Y is a convex
cone, and g : X → Y is a convex function with respect to the convex cone P ⊂ Y .
That g is convex means that g(αx1 + (1− α)x2) ≤P αg(x1) + (1− α)g(x2) for all
x1, x2 ∈ X and α ∈ [0, 1] [75, p. 215] [8, Def. 19.22] (cf. the definition of convexity
for functions f : X → R given above). Note that the convexity of g is not intrinsic
to the function, but depends on the cone P . Also note that the convexity of g with
respect to the cone P ensures that the feasible region Cg,P := {x ∈ X | g(x) ≤P 0}
is convex. We now consider a special type of relaxation for the problem (2.3.2)
called the Lagrangian relaxation. To this end, we introduce the Lagrangian function

L(x, y∗) := f(x) + 〈y∗, g(x)〉Y , (2.3.3)

where y∗ ∈ Y ∗ are known as the Lagrangian multipliers [75, Sec. 8.3] [96, p. 280] [8,
Rem. 19.24]. Now, for a fixed y∗ ∈ Y ∗ consider the problem

inf
x∈X

L(x, y∗). (2.3.4)

First, the feasible region, i.e., domL(·,y∗) , in (2.3.4) clearly contains that of (2.3.2),
i.e., domf+ICg,P

. Second, for each fixed y∗ ∈ P ∗ we have that L(x, y∗) = f(x) +

〈y∗, g(x)〉Y ≤ f(x) for all x ∈ Cg,P and thus for all x fulfilling (2.3.2b). This shows
that for each y∗ ∈ P ∗, (2.3.4) is a relaxation of (2.3.2).

Having obtained a relaxation of the original problem (2.3.2), we can now try to
make the relaxation as tight as possible. This can be done by introducing the so-
called dual function ϕ : Y ∗ → R, which is simply defined as ϕ(y∗) := infx∈X L(x, y∗)
[75, p. 223]. Making the relaxation as tight as possible is then to find the y∗ ∈ P ∗
that maximizes ϕ, i.e., we get the Lagrangian dual problem

sup
y∗∈P∗

ϕ(y∗) = sup
y∗∈P∗

inf
x∈X

L(x, y∗) = sup
y∗∈P∗

inf
x∈X

f(x) + 〈y∗, g(x)〉Y . (2.3.5)
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Under appropriate conditions one can show that (2.3.2) and (2.3.5) have the same
value, and that the optimal solution is actually attained in the primal and/or the
dual problem. The most common such condition is the so-called Slater condition: If
the primal problem (2.3.2) has a finite optimal value, and if there exists an x0 ∈ X
such that g(x0) <P 0, then the dual problem (2.3.5) takes the same value and there
exists a ŷ∗ ∈ P ∗ that achieves it [75, p. 224]. Moreover, in this case the conditions
for optimality can be expressed as saddle-point conditions for the Lagrangian (2.3.3),
cf. [75, Chp. 8], [96, Chp. 28], [8, Sec. 19.4]. The theory can also be extended to
handle equality constraints, however these must be affine for the primal problem to
be convex, cf. [8, Sec. 19.3].

Remark 2.3.3. As a final remark on Lagrangian relaxation we note that the La-
grangian (2.3.3) of a problem (2.3.2) can be constructed irrespective of if the problem
is convex or not. Some of the theory presented above can also be extended to the
nonconvex case, cf. [75, Sec. 8.4, 9.3, and 9.4].

Fenchel duality Given a function f : X → R, the convex conjugate (Fenchel
conjugate or Legendre transform) is defined as the function f∗ : X∗ → R [75,
Sec. 7.10] [96, Chp. 12] [8, Def. 13.1]

f∗(x∗) := sup
x∈X
〈x∗, x〉X − f(x).

From this definition it follows that the objective function value of the globally optimal
solution to (2.3.1) is given by −f∗(0). But f∗ also have many other interesting
properties. For example, let us define the second conjugate of f as the convex
conjugate of f∗, which we denote f∗∗. For reflexive spaces X we have that if f is
proper, then f = f∗∗ if and only if f is lower semi-continuous and convex, cf. [8,
Prop. 13.32][75, p. 198]. In fact, in this case of reflexive spaces we have that f∗∗ is
the closed convex hull of f , cf. [96, Thm. 12.2].

Now, note that irrespectively of if f is convex or not, f∗ is always a convex
function [75, p. 196] [8, Prop. 13.11]. Moreover, from the definition it follows that
if f is proper then f∗(x∗) > −∞ for all x∗. In this case we also have that for all
x∗ ∈ X∗, f∗(x∗) = supx∈X〈x∗, x〉X − f(x) ≥ 〈x∗, x〉X − f(x) for all x ∈ X, with
the implicit understanding that the left side might be∞ and the right side might be
−∞. For all x ∈ domf , i.e., where f(x) is finite, the right hand side is larger than
−∞ and we can rearrange the terms to read f(x) + f∗(x∗) ≥ 〈x∗, x〉X , where the
left hand side might still be ∞. Moreover, it is trivially extended from x ∈ domf to
x ∈ X since f is proper and thus f∗(x∗) > −∞ for all x∗ ∈ X∗. This gives us the
so-called Fenchel-Young inequality, namely that if f is a proper function then

〈x∗, x〉X ≤ f(x) + f∗(x∗) for all x ∈ X and x∗ ∈ X∗, (2.3.6)

cf. [96, p. 105][8, Prop. 13.13].
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Next, consider the problem infx∈X f(x) + g(x) where f, g : X → R are proper
functions. The Fenchel dual problem of this optimization problem is defined to be

sup
x∗∈X∗

−f∗(x∗)− g∗(−x∗),

cf. [8, Def. 15.10]. If we let ν := infx∈X f(x) + g(x) and ν∗ := supx∗∈X∗ −f∗(x∗)−
g∗(−x∗), then ν ≥ ν∗, cf. [8, Prop. 15.12]. This is called the duality gap. In some
cases it can be shown that the duality gap is zero and that the dual problem in fact
attains its optimal solution. One such example is when X is a Hilbert space, f and
g are proper, convex, and lower semi-continuous, and 0 belongs to the interior of
the set domf −domg [8, p. 91 and Prop. 15.13].

This type of duality can also be extended to incorporate other problems. The
first type is of the form infx∈X f(x)− g(x), where g(x) is a concave function. This
can be done by handling −g as a convex function, but can also be done by an
appropriate definition of the concave conjugate of concave function, see [75, Sec.
7.11 and 7.12] or [96, p. 308 and Thm. 31.1]. The second type of extension is to
so-called Fenchel-Rockafellar duality. In this case one considers problems of the
form infx∈X f(x) + g(Lx), where L : X → Y is a bounded linear operator. As we
will see in Section 2.4, this type of problems is common in variational regularization
of inverse problems. The dual of this problem is supy∗∈Y ∗ −f∗(L∗y∗) − g∗(−y∗),
cf. [8, Def. 15.19], and similarly the duality gap can sometimes be shown to be zero,
cf. [8, Prop. 15.22].

As a final remark in this paragraph, we note that the convex conjugate of a
function f can be interpreted as defining nonvertical supporting hyperplanes for
epif . To see this, note that epif ⊂ R×X, so a linear functional in this space is of
the form (r∗, x∗) ∈ R ×X∗. Since the hyperplane is nonvertical we have r∗ 6= 0,
and thus without loss of generality we can always take r∗ = −1 by simply scaling
appropriately. For a fixed x∗0 ∈ X∗, assume that the sup in the definition of f∗ is
attained in a point x0. Now, consider the linear functional (r, x) 7→ 〈x∗0, x〉X − r and
the corresponding hyperplane 〈x∗0, x〉X − r = f∗(x∗0). This gives that in the point
x = 0 we have r = −f∗(x∗0), and in the point x = x0 we have r = f(x0).19 The
latter point is thus a point on the boundary of epif , however for all (r, x) ∈ epif we
have that r ≥ f(x) and thus by the definition of the Fenchel conjugate we have that

〈x∗0, x〉 − r ≤ 〈x∗0, x〉 − f(x) ≤ f∗(x∗0) ∀x ∈ X. (2.3.7)

Therefore, epif is contained on one side of the hyperplane 〈x∗0, x〉X − r = f∗(x∗0).
This means that it is a supporting hyperplane of epif that is tangential in the point
(f(x0), x0). A graphic illustration of this is shown in Figure 2.5. Moreover, since
we assumed that f∗(x∗0) = 〈x∗0, x0〉 − f(x0), using (2.3.7) we can see that this also
means that x∗0 is a subgradient of f in the point x0. In fact, the converse is also

19This is true since we assumed that the supremum that defines f∗(x∗0) is attained in x0.
Equivalently, in (x∗0, x0) ∈ X∗ ×X the Fenchel-Young inequity (2.3.6) is an equality.
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2.3. Convex optimization and duality

true, i.e., if f is a proper function then we have the equivalence

x∗0 ∈ ∂f(x0) ⇐⇒ the Fenchel-Young inequality (2.3.6)
is fulfilled with equality in (x∗0, x0),

cf. [96, Thm. 23.5][8, Prop. 16.9].

epif

(f(x0), x0)

(−f∗(x∗0), 0)

〈x∗, x〉X − r = f∗(x∗0)

x

f(x)

Figure 2.5: The convex conjugate defines supporting hyperplanes for the epigraph.

Lagrangian duality via convex conjugates In this paragraph we will see that
the two dualities defined above are tightly linked. In fact, strong duality for Fenchel-
type primal-dual problems can be obtained using Lagrangian-type arguments, and
strong duality for Lagrangian-type primal-dual problems can be obtained using
Fenchel-type arguments [77]. However, the material can also be unified using a
perturbation-type theory, and this is the path taken here. The material presented is
a summary of [96, Chp. 29-30], [8, Chp. 19].20

To this end, let X,Y be reflexive Banach spaces and consider the standard
minimization problem (2.3.1), where f is assumed to be convex. As noted before,
this formulation can include constraints by defining f to be ∞ on some regions. We
now define a perturbation function to f as a function Γ : X × Y → R such that

Γ(x, 0) = f(x).

20 Although the material can be found in the above references, this presentation is inspired
by presentations found on the two web pages https://math.stackexchange.com/questions/

948862/fenchel-dual-vs-lagrange-dual and https://mathematix.wordpress.com/2017/05/07/

lagrange-vs-fenchel-duality/, which both give a nice overview of it.
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2. Background

Here, we consider convex perturbation functions, i.e., functions Γ such that epiΓ ⊂
R×X × Y is a convex set. The primal problem is given by infx∈X Γ(x, 0), but for
each y ∈ Y we may also consider infx∈X Γ(x, y). This is a function of y, and we
define ν : Y → R to be

ν(y) := inf
x∈X

Γ(x, y).

Now, consider the convex conjugate of Γ, i.e., Γ∗ : X∗ × Y ∗ → R defined by

Γ∗(x∗, y∗) := sup
x∈X
y∈Y

〈x∗, x〉X + 〈y∗, y〉Y − Γ(x, y).

From this definition we see that

Γ∗(0, y∗) = sup
x∈X
y∈Y

〈y∗, y〉Y − Γ(x, y) = sup
y∈Y
〈y∗, y〉Y − inf

x∈X
Γ(x, y)

= sup
y∈Y
〈y∗, y〉Y − ν(y) = ν∗(y∗).

Now note that the solution to (2.3.1) is by definition given by ν(0). However,
since we assume that the spaces are reflexive we have that Y ∗∗ = Y . Therefore
ν∗∗ : Y → R. Moreover, ν∗∗(y) ≤ ν(y) for all y ∈ Y (cf. the paragraph on Fenchel
duality above) and if ν is proper, convex and lower semi-continuous then ν∗∗ = ν,
cf [8, Prop. 19.11 and 19.12]. Furthermore, by definition

ν∗∗(y) = sup
y∗∈Y ∗

〈y, y∗〉Y ∗ − ν∗(y∗).

Taking all of this together we get a primal-dual pair of problems via

inf
x∈X

Γ(x, 0) = inf
x∈X

f(x) = ν(0) ≥ ν∗∗(0) = sup
y∗∈Y ∗

−ν∗(y∗) = sup
y∗∈Y ∗

−Γ∗(0, y∗).

Lagrangian duality can now be recovered from this frame-work by perturbing
(2.3.2) and considering

inf
x∈X

f(x)

subject to g(x) ≤ y,

cf. [75, p. 216]. By introducing the set Cg,P (y) := {x ∈ X | g(x) ≥P y}, the
indicator function ICg,P (·)(x, y), and by defining Γ(x, y) := f(x) + ICg,P (·)(x, y), we
can recover similar results as described in the paragraph on Lagrangian duality.
Also the saddle-point properties can be recovered by an appropriate definition of a
Lagrangian for Γ, cf. [96, p. 296 and Cor. 30.5.1] [8, pp. 280-281].

Remark 2.3.4. As a final remark in this section we note that in the above presentation
of optimization, convex problems have indirectly been portrayed as if they are “easy”
to solve. Although convex problems are normally easier than nonconvex problems,
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convex problems can also be “hard” to solve. For example, the problem of finding
the minimizer of a multidimensional polynomial p : Rn → R is well-known to be a
“hard” problem. Still this can be reformulated as a convex optimization problem, in
fact even a linear one, namely (cf. [66, pp. 5-6])

inf
µ∈BV(Rn)

∫
Rn
p(x)dµ(x)

subject to µ(Rn) = 1

µ ≥ 0,

where BV(Rn) is the space of singed finite measures of bounded variation, i.e. the
dual space of the space of continuous functions that vanish at infinity, cf. [98, Thm.
6.19]. In the above formulation, the inequality µ ≥ 0 simply means that µ is a
finite measure, or expressed equivalently that any Hahn-decomposition Rn = A ∪B
for µ, such that A carries the positive mass and B the negative mass, is such that
µ(B) = 0 [42, Sec. 1.10] [98, pp. 119-126]. If an optimal solution to the above
problem exists and is finite, then it is given by an impulse in the global minimizer x̂
of p(x), and thus solves the original “hard” problem.

Another example is the standard quadratic programming problem minx∈Rn x
TQx

subject to
∑n
i=1 xi = 1 and x ≥ 0, but where the Hessian Q is not necessarily positive

definite. This is known to be a “hard” problem, but it can be relaxed to a convex
problem over the cone of so-called completely positive matrices, i.e., matrices in the
convex cone {A ∈ Rn×n | A =

∑m
j=1 aja

T
j where aj ∈ Rn+ and m finite}. Moreover,

this relaxation can then be shown to be tight, meaning that the original “hard”
problem can be solved by solving this convex relaxation. For more details we refer
the read to [34] and references therein.

2.4 Inverse problems, ill-posedness, and variational
regularization

Mathematically, an inverse problem can be stated as the problem of reconstructing
an entity ftrue ∈ X representing the object under investigation from data g ∈ Y ,
assuming that the two are related according to

g = A(ftrue) + δg. (2.4.1)

Here, A : X → Y is the so-called forward operator, which models how the data is
formed in the absence of noise. Moreover, X and Y are suitable Hilbert or Banach
spaces, often denote the reconstruction space and data space, respectively. Finally,
δg is a Y -valued random element which correspond to the noise that will inevitably
be present in data. Note that more advanced noise models than simple additive
noise can of course also be considered; here we limit ourselves to this case just in
order to simplify the exposition.
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In contrast, the direct problem can be see as obtaining a sufficiently good model
for the forward operator A. If possible, this is often done by first-principle modeling,
however, this might be hard or even impossible. One example is when A represents
the solution operator of a PDE that might not have a unique closed-form-type
expression for the solution. In some cases one can also apply system identification
procedures to obtain a model for the forward operator. Either way, aspects that are
important when deriving the model is that the operator A captures the relevant
physics while still remaining mathematically tractable. Here, we will not dwell
further on these aspects and instead we assume that we have access to an appropriate
forward operator A.

Solving inverse problems are of course (relatively) easy if the inverse operator
A−1 : Y → X exists, the inverse is “well-conditioned”, and the noise level is low.
However, many inverse problems of interest are so-called ill-posed inverse problems,
which loosely speaking means that there exists no “well-condition” inverse. In
this case, an arbitrarily small amount of noise could lead to an arbitrarily bad
approximation of ftrue. The notion ill-posed was introduce by Hadamard: An
inverse problem is said to be well-posed if

i) for each data there exists at least one solution to the problem,

ii) for each data the solution is unique,

iii) the solution depends continuously on data,

and otherwise it is called an ill-posed problem [37, p. 31] [61, p. 9].

A special case of interest that gives rise to ill-posed problems is when A : X → Y
is a so-called compact linear operator and when X is infinite-dimensional. To be
precise, a continuous linear operator A : X → Y , where X and Y are Banach spaces,
is called compact if for all bounded Ω ⊂ X the image A(Ω) ⊂ Y is compact [42,
p. 186] [61, Def. A.31]. Now, any operator with a nonempty kernel clearly gives rise
to an ill-posed inverse problem since a solution will not be unique. Therefore, only
operators that are injective (one-to-one) can be give rise to well-posed problems.
However, if A is compact and injective, although the inverse A−1 exists it is an
unbounded operator if dim(X) =∞ [61, Thm. 1.17] and therefore not continuous
[42, Thm. 4.4.2], thus violating point iii) above. This means that any inverse problem
involving a compact linear operator A : X → Y with dim(X) =∞ will be ill-posed.

In order to solve ill-posed inverse problems one uses regularization. A regular-
ization is a parametrized family of operators {A†θ}θ that approximates the inverse
mapping. In particular, the family should be such that when the noise δg in the
data goes to zero, there is a (at least implicit) selection rule for the parameter θ so

that A†θ(g)→ f when θ → 0 according to this selection rule [37, Def. 3.1] (cf. [61,
Def. 2.1 and Def. 2.3]). One way which is often used to construct such an operator

A†θ is by using so-called variational regularization.
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Variational regularization

Variational regularization is a type of regularization in which the reconstruction
problem is formulated as an optimization problem. This means that we define the
reconstruction operator A†θ : Y → X as

A†θ : g 7→ arg min
f

D(A(f), g) + θS(f). (2.4.2)

In this formulation, D : Y ×Y → R is the data discrepancy function, S : X → R is the
regularization function, and θ ∈ R+ is the regularization parameter which controls
the trade-off between D and S. These functions need to be chosen appropriately: D
should to be a relevant measure of the data-misfit, and S needs to encode relevant a
priori information of the type of reconstructions sought. The latter is done implicitly
by letting S penalize undesirable solutions. This means that the functions need to be
designed for each application. However, luckily, in many cases there are “standard
functions” to try like ‖A(f)− g‖Y for data discrepancy and 1-norm-type functions
as regularization, the latter intended to promote a suitable notion of sparsity in the
reconstruction [17].

The formulation in (2.4.2) can also be interpreted from a statistical perspective.
To this end, let pg(g | f) be the likelihood of data g, i.e., the probability distribution
of observing data g given the “parameters” f. Now, taking θ = 0 in (2.4.2) and taking
the data discrepancy function to be the negative log-likelihood, i.e., D(A(f), g) =

− log(pg(g | f)), the operator A†θ=0 is the maximum likelihood estimator. However,
for ill-posed inverse problems this approximate inverse operator is typically still
unstable with respect to data, meaning that the solution might not be unique and
that small changes in g gives rise to large changes in the reconstruction f̂g := A†θ=0(g),
cf. [9, Sec. 2.1]. To stabilize the reconstruction operator, one can take a Bayesian
perspective and introduce a Gibbs prior on f with density pf(f) = 1

c e
−θS(f), where

c is an appropriate scaling constant. Using Bayes rule, one finds that the posterior
density takes the form pf(f | g) ∝ pg(g | f)pf(f), and by taking the negative

logarithm of this we identify that A†θ as defined in (2.4.2) is the maximum a
posteriori estimator [9, Sec. 2.2].

Examples of inverse problems

Finally, we will here outline a few examples of inverse problems. These problems are
computed tomography (CT), an inverse problem in magentization, and the rational
covariance extension problem.

Computed tomography CT is a noninvasive imaging modality for investigating
internal two- or three-dimensional structures of objects by using penetrating waves
or particles. It has a wide range of applications, e.g., X-ray CT [82, 81] in medical
imaging and electron tomography (ET) [84, 80] in biology and material science. In
this section we will mainly focus on the mathematics associated with X-ray CT.
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In imaging, the domain of the forward operator A is a set of real-valued functions
f : Ω→ R, where Ω ⊂ Rn is normally compact and n = 2 or 3. In X-ray CT, f(x)
corresponds to the attenuation of the X-ray in the point x of the object. To describe
a simple model for the physics, let I(x) be the intensity of the X-ray in the point x.
Given the attenuation f(·), an X-ray with intensity I(·) that travels a small distance
∆x through a point x will have a change (decrease) in intensity described by

∆I(x) ≈ −f(x)I(x)∆x.

More rigorously, this is described by d
dxI(x) = −f(x)I(x), and integrating this

equation along the entire line L that the X-ray travels trough the object gives a
model for the data acquisition, namely

log

(
Iin
Iout

)
=

∫
L

f(x)dx,

cf. [81, p. 1]. Here, Iin is the intensity of the incoming X-ray beam and Iout is the
intnesity of the outgoing X-ray beam. Both of these are known: Iin by the design
of the machine and Iout by measuring it using detectors. Thus, in tomographic
imaging the data acquisition is normally modeled as line integrals of the function f .
Moreover, this means that the range of the operator is a set of real-valued functions
on the set of lines M in Rn. This forward operator A is called the ray transform.

The set of lines M ⊂ Rn is a manifold,21 and to express the action of A we can
introduce coordinates on this manifold. To this end, note that a line in Rn can
be described by a directional vector ω on the unit sphere Sn−1, to which the line
is parallel, and a point x ∈ Rn that it passes through. However, this description
is redundant since any of the points along the line can be chosen. To reduce this
redundancy, we also enforce that the point must be in the orthogonal complement
of the space spanned by unit direction chosen. One set of coordinates on M is thus
(ω, x) ∈ Sn−1 × Rn with x ∈ ω⊥, where ω⊥ ⊂ Rn is the unique plane through the
origin with ω ∈ Sn−1 as its normal vector. In the aforementioned coordinates, the
ray transform is expressible as [81, Chp. 2]

A(f)(ω, x) :=

∫ ∞
−∞

f(x+ tω)dt. (2.4.3)

Using the ray transform, tomographic data is modeled as values of A(f)(ω, x) for a
sampling of ω ∈ Sn−1 and x ∈ ω⊥. This is illustrated in Figure 2.6 for a so-called
fan-beam geometry. With slight abuse of terminology, one refers to a data point
as the “projection” of f along the line given by (ω, x). However, although the
continuous transform is in principle invertible [81, Thm. II.2.1], when data is only
available from a finite subsample {(ωk, xk)}`k=1 this is no longer true. In fact, in
this case the inverse problem is ill-posed [81, pp. 35-36].

21In fact, M is often called the real projective space [68, Ex. 1.5] or a Grassmanian manifold
[68, Ex. 1.36].
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Detector

Source

X-ray

Object

(a) First position of the
source-detector pair.

(b) Second position of the
source-detector pair.

(c) Third position of the
source-detector pair.

Figure 2.6: Figure illustrating the data collection in X-ray CT using a fan-beam
geometry [82, Sec. 3.1.2] [81, Sec. III.3]. The source-detector pair is rotated around
the object, and examples of three different rotations are shown in Figures 2.6a,
2.6b, and 2.6c. For each position of the source-detector pair a number of X-rays are
emitted from the source and the intensity of these X-rays, after passing through
the object, are registered at the detector. Each such detection corresponds to a line
integral of the attenuation f at a certain sampling point (ω, x).

Magnetization of thin rock samples This inverse problem comes from geo-
science. The goal is to recover the magnetization, m, of a thin rock sample from
measurements of the vertical component Hz of the field22 H generated by the sample
at a given hight h, cf. Figure 2.7. This is of interest for understanding the history
and the earths magnetic field, and also the history of magnetic fields of other planets
and astorids, see, e.g., [7, 6] and references therein.

Le Ω be a compact set in R3. The magnetization is then a vector field defined
on Ω, i.e., m : Ω→ R3, and is denoted by

m : (x, y, z) 7→

mx(x, y, z)
my(x, y, z)
mz(x, y, z)

 .
This magnetization m will produce a field in the ambient space, which we denote
by H or H(m). For a fixed m, H(m) is a vector field H(m) : R3 → R3, (x, y, z) 7→
[Hx(x, y, z), Hy(x, y, z), Hz(x, y, z)]

T . By Maxwell’s equations for magnetostatics
[51, Chp. 6], for points outside the support of m, i.e., for x := (x, y, z) ∈ R3 such

22The naming of this “magnetic field” is debated, see, e.g., [51, p. 271]. In what follows we will
therefore only refer to it as H or as “the field”.
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that x 6∈ Ω, this field is given by

H(m)(x) = −µ0∇φ(m)(x), (2.4.4a)

φ(m)(x) =
1

4π

∫
Ω

〈m(x̃),x− x̃〉R3

‖x− x̃‖3R3

dx̃, (2.4.4b)

cf. [7, Sec. 2.1]. Here, φ(m) is the scalar potential that exists by the fact that the
filed H(m) is curl-free in the absence of free external currents [51, p. 269], and µ0

is the magnetic permeability in vacuum.
In the case of thin samples, the sample is assumed to be a compact set Ω contained

in a plane. For simplicity we assume that the plane is oriented in the x-y-plane,
call it R2

z=0, and thus the z-unit vector e3 = (0, 0, 1)T is normal to it. Moreover, it
is assumed that data are measurements of Hz on a plane that is parallel to R2

z=0

and located at a height h (the plane R2
z=h). For an illustration of this set-up, see

Figure 2.7. By using (2.4.4), an expression for the forward operator A : m 7→ Hz(m)
can be derived. To this end, let Pz be the Poisson kernel for the upper half-space,

given by Pz(x) := z/(2π‖x‖3/2R3 ), and let Pz∗ denote the convolution with this kernel
“at height” z > 0, i.e., the convolution is only performed in the first two coordinates
while z is kept fix. Moreover, let Rx and Ry be the Riesz transforms defined for
f ∈ L2(R2) by23

Rx(f)(x, y) := lim
ε→0

1

2π

∫
R2\Bε(x,y)

f(x̃, ỹ)
x− x̃

((x− x̃)2 + (y − ỹ)2)3/2
dx̃dỹ,

where Bε(x, y) := {(x̃, ỹ) ∈ R2 |
√

(x̃− x)2 + (ỹ − y)2 < ε} is the ball in R2 of
radius ε centered around (x, y). Ry is defined in an equivalent fashion. The action
of A can then be expressed as

A(m)(x) = −µ0
∂

∂z
φ(m)(x)

= −µ0

2

∂

∂z

[
Pz ∗

(
R1

(
mx(·, ·, z)

)
+R2

(
my(·, ·, z)

)
+mz

)]
(x), (2.4.5)

where x ∈ R3 is a point with z > 0,24 see [7, Thm. 2.1] and [6, Sec. 3.1].
Since all operators involved in (2.4.5) are linear, the forward operator A is a linear

operator. Moreover, it is bounded and thus continuous [6, Sec. 3.2] and therefore
is also has an adjoint operator [6, Sec. 3.3]. However, the kernel of the operator
is nonempty [6, Prop. 2], which makes the recovery of m from measurements of
Hz(x, y, h) an ill-posed linear inverse problem.

The rational covariance extension problem as an inverse problem Al-
though this thesis considered the rational covariance extension problem (RCEP) in

23Alternatively, the Riesz transform can be defined using the Fourier transform [6, Eq. (9)].
24When sampled on R2

z=h, as described above and indicated in Figure 2.7, clearly z = h > 0.
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x

y

z

Ω
m(x0) =

mx(x0)
my(x0)
mz(x0)


x0

h

H(x1) =

Hx(x1)
Hy(x1)
Hz(x1)


x1

Figure 2.7: Figure illustrating the geometry of the inverse problem in magnetization.
Ω ⊂ R2

z=0 := {(x, y, z) ∈ R3 | z = 0} is the compact set on which the magnetization
m has support. Measurements of Hz are taken at hight h above the thin specimen,
on the plane parallel to R2

z=0.

the context of system identification, it can also be viewed as an inverse problem.
To this end, let the forward operator be A : BV(T) → C2n+1, where, as before,
BV is the space of signed finite measures of bounded variation on T, i.e., the dual
space of the space of the continuous functions on T (called C(T)) [75, Sec. 5.5] [98,
Thm. 6.19] [42, Thm. 4.14.8]. The action of the operator is given by

A : dµ 7→
[∫ π

−π
eikθdµ(θ)

]n
k=−n

,

i.e., it maps a measure to the corresponding 2n+ 1 trigonometric moments. We can
also derive the adjoint operator A∗ : C2n+1 → BV(T)∗ by the following calculation:

〈A(dµ), p〉C2n+1 =

n∑
k=−n

(∫ π

−π
eikθdµ(θ)

)
p∗k =

∫ π

−π

(
n∑

k=−n

p∗ke
ikθ

)
dµ(θ)

= 〈dµ,A∗(p)〉BV(T)∗ ,
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i.e., A∗ : p 7→
∑n
k=−n p

∗
ke
ikθ. In fact, from this we see that the range of A∗ is

the set of all trigonometric polynomials (not necessarily real-valued), and thus
A∗ : C2n+1 → C(T) ⊂ BV(T)∗. Therefore, although BV(T) is not reflexive, the
adjoint of the adjoint operator can be identified with the operator itself, i.e., A∗∗ = A.

The second constraint posed in (RCEP) can be seen as a constraint on the type
of measure sought. In particular, the inverse problem is not to find any measure
that matches the given data, but to parametrize all nonnegative measures with
only absolutely continuous part Φ ∈ L1(T) (that matches the data), and where the
absolutely continuous part can be written as Φ = P/Q a.e. for P and Q ∈ P̄+. In
fact, the results in Theorem 2.2.1 can now be interpreted from a perspective of
variational regularization: The primal problem (2.2.3) is a variational regularization
which finds the solution dµ = Φdθ that matches the convariances and which has
minimal distance to P in the Kullback-Leibler sense [47]. In this context, the result
of the theorem states that this regularizing function “promotes rational solutions”.
Moreover, viewed from this perspective the formulation can be extended to other
compactly supported moment problems, which has been done in [25, 26, 46]. This
is also related to work on maximum entropy solutions to moment problems, see,
e.g., [64, 65, 79, 12, 13, 14, 15].

Remark 2.4.1. As a final remark here, we note that this last example illustrates that
the distinction between system identification and inverse problems is not as clear as it
was indicated in Chapter 1. In Section 2.2, the rational covariance extension problem
was derived from a system identification perspective, however in this preceding
paragraph it was seen as an inverse problem. Similarly, estimating coefficients in
differential equations can be called both a system identification problem, cf. [104,
Chp. 6], and an inverse problem [37, Sec. 1.6] [61, Ex. 1.10], depending on the
community to which one belongs.

2.5 A note on machine learning and neural networks

Although the current boom in machine learning research started relatively recently,
machine learning has has been around for quite a while. Moreover, machine learning
is a much larger area than just neural networks, cf. [10]. However, to limit the
scope, this section will only present material on the latter since this is what is most
relevant for the appended papers.

Machine learning with neural networks has been an active area of research
since at least the 1940s [48, Sec. 1.2.1] [102, Sec. 5.1]. Moreover, it has several
connections to other topics treated in this thesis: It has been linked to system
identification at least since the early 1990s [74], and some of the methods used for
training are closely related to calculus of variations and dynamical programming,
see, e.g., [48, Sec. 6.6], [102, Sec. 5.5] and references therein. Some claim that
the “new deep learning era” started with AlexNet [62], which is a deep neural
network for image classification. Irrespectivly if this is completely true or not25 it

25 There were also other achievements around the same time, many of which were also in imaging

40



2.5. A note on machine learning and neural networks

serve as a good example of an application where a machine learning (data-driven)
method successfully outperformed “ordinary” (model-driven) methods. With [62],
the authors competed in “ImageNet Large Scale Visual Recognition Challenge” in
2012 and won [100], reducing the classification errors in the image test set with
around ten percentage point compared to the runner-up. This trend has continued,
cf. [48, Fig. 1.12], and the machine learning methods reached “super-human” levels
for image classification a few years later [53, 56]. This type of success stories has
undoubtedly contributed to the surge in machine learning and deep learning research
in the last couple of years. The following section is intended as a brief introduction
to the area for a mathematically inclined audience.

In the following subsection we will first introduce supervised and unsupervised
machine learning: What are the mathematical problems one tries to solve and how
are they solved conceptually? This can be treated without explicitly introducing
the concept of a neural network. In the subsequent subsection, we will introduce
the concept of a neural network, and also shortly describe how the “learning” is
normally done in practice, i.e., how the corresponding optimization problems are
actually solved.

Supervised and unsupervised machine learning

In this section we will try to clarify the difference between supervised and unsu-
pervised machine learning. These concepts are not always strictly defined in the
literature, cf. [48, Sec. 5.1.3], why such an attempt will most likely fall short from
some aspects. Nevertheless, in many cases machine learning using neural networks
can be seen as “automatic parameter tuning” of certain parametrized operators.
The automatic tuning is normally done by minimizing an appropriately chosen
loss function, most of the time involving an expectation. To be more precise, let
Bγ : A → B be a parametrized operator with parameters γ ∈ Γ ⊂ Rm. Today,
the number of parameters m can easily be in the order of millions or more, cf. [48,
Fig. 1.11]. Moreover, the sets of inputs A and outputs B of the operator can be very
different for different problems: Sometimes they are finite sets, sometimes Hilbert
or Banach spaces, and sometimes manifolds.

In supervised learning one considers (A × B)-valued random elements (a, b)
that follows some distribution P(a,b). The idea is to design the operator Bγ so
that it can predict the outcome of b by only observing the outcome of a. For a
given parametrization of Bγ the goal is thus to find “optimal” parameters γ̂ for the
operator, where “optimal” is normally defined to be

γ̂ = arg min
γ∈Γ

E(a,b)

[
D(Bγ(a), b)

]
.

Here, D : B × B → R is a suitable distance measure (cf. the data discrepancy
functional in variational regularization, Section 2.4), and as indicated the expectation

applications. One example is an architecture for unsupervised learning for feature detection, e.g.,
face detection in images [67]. These results also got public outreach in ordinary press [78].

41



2. Background

is taken over the joint probability distribution P(a,b). However, this problem can
normally not be solved directly. Instead, this optimization problem is approximated
by considering a finite number of pairs (ai, bi) that are assumed to be independent
and identically distributed (i.i.d.) realizations of (a, b). The expectation is then
approximated with a finite average over these pairs, which gives the problem

γ̂ = arg min
γ∈Γ

1

N

N∑
i=1

D(Bγ(ai), bi). (2.5.1)

For suitable choices of Bγ and D this is a smooth optimization problem in γ, and in
this case a stationary point to this cost function could be found by using gradient
descent. However, for large N computing the gradient of the above expression is
too time consuming. Instead, one typically uses a stochastic-type optimization
algorithm, like stochastic gradient decent [48, Sec. 5.9], in which a small number
n� N of the samples {(ai, bi)}Ni=1 are randomly selected (called a minibatch) and
a gradient with respect to γ is computed based on these samples. How the gradient
computation is done will be explained in the next subsection.

In contrast, unsupervised machine learning considers A-valued random elements
that follows some distribution Pa. Here the goal is to find the optimal parameters

γ̂ = arg min
γ∈Γ

Ea

[
S(Bγ(a))

]
, (2.5.2)

where S : B → R is a suitable loss function, cf. [48, Eq. (5.102)]. For an example of
such a problem, see Remark 2.5.1 at the end of the subsection. Again, since this can
normally not be solved directly26 we consider a finite number of N i.i.d. samples ai
of a and approximate the optimization problem with

arg min
γ∈Γ

1

N

N∑
i=1

S(Bγ(ai)).

Similarly to the supervised case, a stationary point to this cost function is normally
obtained using some type of stochastic gradient descent.

One risk with a cost function of the form (2.5.1) or (2.5.2) is that of over-
fitting the given data, especially when the parametrized operators have millions
of parameters. Therefor it is common to use some type of regularization for the
parameters γ in the training, see, e.g., [48, Chp. 7], [74] or [102, Sec. 4.4 and 5.6.3]
and references therein. For the problem (2.5.1), and similarly for (2.5.2), this means
that one instead considers

arg min
γ∈Γ

E(a,b)

[
D(Bγ(a), b)

]
+ θG(γ),

where G : Γ→ R is a regularization functional that promotes certain structures in
the set of parameters, and θ is the regularization parameter.

26For an illustrative toy-example that does have a closed-form analytic solution, see [5, Ex. 4.1]
which is Example F.4.1 in this thesis.
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Remark 2.5.1. While unsupervised machine learning is sometimes used simply
because data pairs (ai, bi) are to expensive to generate, e.g., by manual labeling
of images, there are problems that are “intrinsically unsupervised”. One example
is the application in [5] (Paper F in this thesis). Another example is so-called
autoencoders [48, Chp. 14]. This is a neural network that can be decomposed in two
parts Bγ = B2

γ2 ◦ B
1
γ1 , and that tries to learn the identity mapping. Normally this is

done by minimizing a functional of the type S(Bγ(a)) := ‖a− (B2
γ2 ◦B

1
γ1)(a)‖. While

this sounds trivial, note that it is not by any means sure that the parametrization of
Bγ is such that it can “easily” represent the identity operator. In fact, if the output
of B1

γ1 has a dimension which is much smaller than the input, while the output of
B2
γ2 has the same dimension as the input, then the optimization can be interpreted

as learning a sparse representation of the possible outcomes under the distribution
Pa. This can be used, e.g., to learn a pair of compression-decompression algorithms
for certain types of data, where B1

γ1 would work as the compression algorithm while
B2
γ2 would work as the decompression algorithm. In many applications it is also

assumed that the data distribution Pa has support on a lower-dimensional manifold.
This method could then be interpreted as learning coordinate representations of this
manifold: After training the low-dimensional input to B2

γ2 are the local coordinates,
and the network returns an appropriate point on the manifold in a higher-dimensional
space, cf. [48, Chp. 14.6].

Neural networks and backpropagation

The specific paramtrization of the operator Bγ is normally called the network
architecture. A commonly used family of architectures is so-called (feed-forward)
neural networks, cf. [48, Sec. 6.0 and 6.4]. As indicated by the name, these were in
the beginning intended as models of how the human brain might work [48, p. 13].
Specifically, in a neural network architecture the operator takes the form

Bγ = fn ◦ Anγn ◦ . . . f
1 ◦ A1

γ1 . (2.5.3)

Here, Aiγi : R`i → Rki are affine operators, and f i : Rki → R`i+1 are nonlinear

functions. Each component f i ◦ Aiγi is called a layer. As indicated by the notation,
γ = [γ1, . . . , γn] and we normally only optimize over the parameters in the affine
operators. In some cases Aiγi is allowed to be any affine operator, i.e., it is represented
by a dense matrix and a vector, in which case the layer is called fully-connected. In
other cases, certain structures are imposed, and, e.g., in imaging applications it has
been seen that it is often useful to restrict the linear part of the operators Aiγi to
be convolutions [48, Chp. 9].27 The motivation for this is to get networks that are
translation invariant [48, p. 254] (cf. time-invariant systems in Section 2.1).

The functions f i are normally so-called “pointwise” nonlinearities, or they
have an action which is “local”. To understand the terminology of “pointwise”

27 To be more precise, the discrete operators are normally cross-correlation-type operators, since
the kernel is not transposed before applying it, cf. [48, pp. 332-333].
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and “local” action, note that the output of each operator Aiγi is a vector Rki . A

“pointwise” nonlinearity simply means that f i acts on each component of this vector
independently, i.e., with a slight abuse of notation, that for x ∈ Rki the function is
given by f i(x) = [f i(x1), . . . , f i(xki)]

T .28 Commonly used examples of pointwise
nonlinearities are the sigmoid function f(x) = 1/(1+e−x) [48, Sec. 6.3.2], and the so-
called rectified linear unite (ReLu) which is given by f(x) = max(0, x) [48, Sec. 6.3.1].
If f i has a “local” action it means that it only acts on a relatively small number of
samples in the vector, e.g., f(x) = [f(x1, x2, x3), f(x2, x3, x4), . . . , f(xki , x1, x2)]T .
These are often called pooling layers and a common type in imaging applications
is max pooling [48, Sec. 9.3], which is given by f(x) = [maxi∈Cj xi]

T
j=1,...,`i+1

where

Cj are appropriate subsets of Zki typically corresponding to a set of pixels that are
neighboring to each other.

Having formally introduce the concept of a neural network, we will now briefly
touch upon how machine learning problems of the form (2.5.1) and (2.5.2) are solved
in practice. As briefly mentioned in the above subsection, this type of problems are
normally solved using (stochastic) gradient-type methods. However, these gradients
are normally computed using automatic differentiation [48, Sec. 6.5.9], cf. [50]. Due
to the structure of (2.5.3) this can also be done in a computationally efficient way
that also saves memory, which is called backpropagation [99] [48, Sec. 6.5]. To
explain the idea, consider an operator Bγ that has the structure (2.5.3), and let Bjγ
be the first j layers, i.e., Bjγ = f j ◦ Ajγj ◦ . . . f

1 ◦ A1
γ1 and Bnγ = Bγ . For one of the

elements in the sum (2.5.1), let us take the partial derivative with respect to γn and
apply the chain rule (see, e.g., [97, Thm. 5.5]). This gives the expression

∂

∂γn
D(Bγ(ai), bi) =

∂D(wn+1, bi)

∂wn+1

∣∣∣∣
wn+1=Bγ(ai)

∂fn(vn)

∂vn

∣∣∣∣
vn=Anγn (Bn−1

γ (ai))

∂Anγn(wn)

∂γn

∣∣∣∣
wn=(Bn−1

γ (ai))

.

Here, the first term belongs to R1×`n+1 , the second to R`n+1×kn , and the third to
Rkn×dim(γn). Now, if we instead take the partial derivative with respect to γn−1,
the first two terms will be identical. This means that these terms only need to be
computed ones, while they can be used many times. Similarly, any partial derivative
of γj , for j ≤ n− 1, can be written as

∂

∂γj
D(Bγ(ai), bi) =

∂D(wn+1, bi)

∂wn+1

∣∣∣∣
wn+1=Bγ(ai)

n∏
k=j+1

 ∂fk(vk)

∂vk

∣∣∣∣
vk=Akγk (Bk−1

γ (ai))

∂Akγk(wk)

∂wk

∣∣∣∣∣
wk=(Bk−1

γ (ai))


28Note that in such a case we have the `i+1 = ki.

44



2.5. A note on machine learning and neural networks

∂f j(vj)

∂vj

∣∣∣∣
vj=Ajγj (Bj−1

γ (ai))

∂Ajγj (wj)
∂γj

∣∣∣∣∣
wj=(Bj−1

γ (ai))

.

By taking the derivatives in the order ∂γi for i = n, n− 1, . . . , 1, and only storing
the product of the terms that reappear, a lot of computational time and memory
storage space is saved.

Remark 2.5.2. As a final note, observe that the theoretical understanding of neural
networks is, to the best of my knowledge, still limited. It is therefore difficult to
explain the successful application in certain areas, and also to predict to which
extent they can be expected to generalize to other areas. However, recently there
has been a lot of work on expanding the theoretically understanding, especially
of (feed-forward) neural networks. Example of such works are [11] where they
characterize the trade-off between complexity and approximation properties of deep
neural networks, and [52, 101] where they interpreting them as discretizations of
ODEs and PDEs, respectively. The learning problem itself has also been recasted
as an optimal control problem, leading to new types of training algorithms based
on the Pontryagin maximum principle [70]. A final example is [87, 88], where
convolutional neural networks are investigated from the perspective of so-called
convolutional sparse coding, which is related to the literature on sparse solutions to
linear equations, cf. [17]. However, although the literature around this is growing
very rapidly, I find that it is still safe to say that much remains to do when it comes
to creating a fundamental theoretical understand of the area.
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The main part of this thesis is the six appended papers in Part II. Here follows a
short summary of each paper, also clarifying the authors contributions to each of
them.

Paper A: Multidimensional rational covariance extension

Paper A of this thesis contains material from the publications

• A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance
extension with applications to spectral estimation and image compression. SIAM
Journal on Control and Optimization, 54(4):1950–1982, 2016.

• A. Ringh, J. Karlsson, and A. Lindquist. Further results on multidimensional
rational covariance extension with application to texture generation. In IEEE
Annual Conference on Decision and Control (CDC), pages 4038–4045. IEEE, 2017.

In particular, the main body of the paper is an edited version of the first paper.
The paper in this thesis also contains an example in texture generation and Wiener
system identification from the second paper.

Summary The paper investigates generalizations of the rational covariance ex-
tension problem [58, 44, 45, 27, 23] to higher dimensions. The approach taken in
the paper is to extend the convex optimization problem proposed in [23], similar
to what has already been done in [46]. We derive the form of the optimal solution,
prove existence and uniqueness of it, and derive the dual problem. The papers also
extend part of the work in [20, 21, 39], whereby both the denominator and the
numerator polynomial are estimated by also using cepstral coefficients. Moreover,
in the spirit of [71] the paper also shows that a discretized version of the problem
can be used to find an approximate solution, cf. [94].

Contribution The main ideas of this paper emerged from discussions between
all three authors. The author of this thesis has then been a main part in the
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theoretical development around these ideas, has done the numerical implementations
and simulations, and has been an active part in writing the manuscript.

Paper B: Multidimensional rational covariance extension
with approximate covariance matching

Paper B of this thesis is an edited version of the paper

• A. Ringh, J. Karlsson, and A. Lindquist. Multidimensional rational covariance
extension with approximate covariance matching. SIAM Journal on Control and
Optimization, 56(2):913–944, 2018.

Summary This papers continues on the work in [95] (Paper A in this thesis), and
considers approximate covariance matching formulations in the rational covariance
extension framework. This is of interest since in applications the covarainces used
will be estimated from a finite amount of data and thus contain errors, and since the
condition that guarantees the existence of a solution is nontrivial to test. Such ideas
have been considered previously in [103, 40] [4, Chp. B], and this work expand upon
these. In fact, two different formulations for approximate matching are investigated,
each one containing a tuning (regularization) parameter that indicates to which
degree we want to enforce matching of the covariances. For both formulations we
derive the form of the solution, and show existence and uniqueness. Moreover, we
show that the two formulations are in fact equivalent, in the sense that there is
an homotopy between the two sets of solutions obtained when varying the tuning
parameters.

Contribution This paper is a continuation of the work in Paper A, and similarly
it is also the result of a cooperation between all three authors. The author of this
thesis has thus been an active part in formulating the research questions, developing
the theoretical results, performing the numerical experiments, and writing of the
manuscript.

Paper C: Lower bounds on the maximum delay margin by
analytic interpolation

Paper C of this thesis is an edited version of

• A. Ringh, J. Karlsson, and A. Lindquist. Lower bounds on the maximum delay
margin by analytic interpolation. Accepted to IEEE Annual Conference on Decision
and Control (CDC). IEEE, 2018.

A preprint of the above paper is available as arXiv preprint arXiv:1803.09487.
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Summary The maximum delay margin of a plant is a robustness measure on
how sensitive the plant is to delay in the feedback loop. However, how to compute
the maximum delay margin of a general plant is still an unsolved problem. This
work considers finding lower bounds on the maximum delay margin, and builds
on [90, 91] where lower bounds are derived using a sufficient condition of “small
gain”-type. This gives rise to an analytic interpolation problem, which in [90, 91] is
simplified by introducing a rational approximation of the irrational transfer function
coming from the delay-term. Instead, we omit this approximation and tackle the
interpolation problem directly by using analytic function theory. This only leads
to a marginal improvement of the lower bound, but the direct approach also gives
an increased understanding of the sufficient condition. This in turn enables us to
introduce of a tuning parameter that can be used to obtain better lower bounds.
The improvement is finally demonstrated in numerical examples.

Contribution The idea to solve the problem directly using analytic interpolation
theory is due to J. Karlsson after a discussion with J. Chen, one of the authors of
[90, 91]. The rest of the work is, just as the previous two papers, the result of a
joint effort by all three authors.

Paper D: Generalized Sinkhorn iterations for regularizing
inverse problems using optimal mass transport

Paper D of this thesis is an edited version of the paper

• J. Karlsson, and A. Ringh. Generalized Sinkhorn iterations for regularizing in-
verse problems using optimal mass transport. SIAM Journal on Imaging Sciences,
10(4):1935–1962, 2017.

Summary The optimal mass transport problem is a geometric framework for
how to transport masses in an optimal way [107]. Although it can be formulated
as a linear programming problem, when the two marginals have large dimensions,
the size of this linear program becomes prohibitively large. In particular, this is
the case when using it to compute the distance between two images. A recent
development to address this builds on using an entropic barrier term and solving
the resulting optimization problem using so-called Sinkhorn iterations [29]. In this
work we show how these results can be used and extended in order to solve other
optimization problems involving an optimal transport term. In particular, we derive
iterations similar to the Sinkhorn iterations for computing the proximal operator of
the optimal transport distance. Moreover, in many cases of interest the matrix that
defines the transportation cost gets a Toeplitz-block-Toeplitz structure. We utilize
this to speed up the computations and reduce the memory requirements of the
algorithm by doing matrix-vector multiplications using the fast Fourier Transform.
Finally, this opens up for using it in variational regularization in inverse problems
by using variable splitting techniques, and this is demonstrate by an example in CT.
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Contribution The research was initiated by J. Karlsson, and the idea of using
optimal mass transport as a regularizer in inverse problem is due to him. The idea
of using variable splitting is due to myself. I have also done most of the coding and
numerical examples. All parts of the paper is the result of a close collaboration
between the authors.

Paper E: Learning to solve inverse problems using
Wasserstein loss

Paper E of this thesis is an updated and edited version of the paper

• J. Adler, A. Ringh, O. Öktem, and J. Karlsson. Learning to solve inverse
problems using Wasserstein loss. arXiv preprint arXiv:1710.10898, 2017.

The results of the paper were presented at the workshop Optimal Transport &
Machine Learning at the conference Advances in Neural Information Processing
Systems (NIPS) in 2017.

Summary In supervised machine learning, pairs (fi, gi) of ground-truths fi
and corresponding input gi are used to optimize (“learn”) the parameters in a
parametrized operator (“neural network”). This paper investigates what happens
if these pairs (fi, gi) are corrupted by noise. In particular, it considers the case of
using machine learning for solving ill-posed inverse problems in imaging. In this case
the input gi is measurement data corresponding to fi. However, in this work noise
is introduced by letting the data gi be generated from a “geometrically distorted”
version of fi. This will of course affect the quality of the learned reconstruction
operator, but the degree of the degradation will depend on how the training is done,
i.e., which cost function that is used in the optimization. We derive theoretical
results that indicates that training with standard mean squared error loss could give
a reconstruction operator which severely degrade the quality of the reconstructions,
while training with optimal transport loss could give a reconstruction operator that
better compensate for these distortions. We also perform a numerical experiment in
CT by training a neural network on this kind of distorted data, and the results of
this experiment are in line with the theoretical predictions.

Contribution The idea of using optimal mass transport as loss function in training
emerged in discussions between all four authors. The implementation is based on
the code associated with [1] and [59] (Paper D in this thesis), and has been done by
J. Adler. The author of this thesis has contributed to the theoretical results in the
paper, and also to the writing of the paper.

Paper F: Data-driven nonsmooth optimization

Paper F of this thesis is an edited version of the paper
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• S. Banert, A. Ringh, J. Adler, J. Karlsson, and O. Öktem. Data-driven
nonsmooth optimization. arXiv preprint arXiv:1808.00946, 2018.

The paper has been submitted for publication, and the results have been presented
at the SIAM Conference on Imaging Science in 2018.

Summary The paper considers the use of machine learning to “learn” an opti-
mization solver. This has been considered before, notably in the “LISTA paper”
[49], but also recently in [69, 3]. The idea is that the objective function evaluated in
the output of the neural network is a natural loss function for training, which means
that training can be done in an unsupervised fashion. However, what differentiate
this work from previous work is the parametrization of the neural network and the
consequences of such a parametrization. Here, the key idea is to first specify a class
of optimization algorithms using a generic iterative scheme involving only linear
operations and applications of proximal operators. The architecture is inspired from
unrolling iterative schemes for solving optimization problems, and truncating them
after a finite number of iterations. This makes the network suitable for solving
large-scale optimization problems with a possibly nonsmooth objective function,
and also leads to provable convergence for some of the trained networks. To demon-
strate the possibilities of the approach, we consider examples arising in tomographic
reconstruction and image deconvolution, and in particular a family of total variation
regularization problems.

Contribution Most authors have contributed to most parts of the work. However,
a rough outline is as follows: The idea to use unsupervised learning for solving
inverse problems via variational regularization is due to J. Adler and O. Öktem. The
idea to consider the schemes in (F.3.1) and (F.4.3) is due to by myself and J. Adler.
The fixed-point analysis in Section F.3 was done by myself and J. Karlsson, while
the proofs of Theorems F.3.1 and F.3.10 are due to S. Banert. I have implemented
the code for the numerical experiments, with help from J. Adler and the code
corresponding to [1]. Most of the writing has been done by myself together with
S. Banert.
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Copyright notice

As indicated above, some of the material in Part II of this thesis has been pub-
lished elsewhere. The following is a full disclosure of the copyright holders of the
corresponding material.

• Paper A:

– Sections A.1 through A.7, as well as sections A.9 and A.10:
© 2016 Society for Industrial and Applied Mathematics.

– Section A.8: © 2018 IEEE.

This copyright includes all figures referenced in the corresponding sections.
In particular, this means that IEEE holds the copyright for figures A.6, A.7,
A.8, and A.9, while Society for Industrial and Applied Mathematics holds the
copyright for the remaining figures in this paper.

• Paper B: © 2018 Society for Industrial and Applied Mathematics.

• Paper C: © 2018 IEEE.

• Paper D: © 2017 Society for Industrial and Applied Mathematics.

In accordance with guidelines from the IEEE, the following statement also needs
to be included in this copyright notice.

In reference to IEEE copyrighted material which is used with permis-
sion in this thesis, the IEEE does not endorse any of KTH Royal
Institute of Technology’s products or services. Internal or personal
use of this material is permitted. If interested in reprinting/repub-
lishing IEEE copyrighted material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribu-
tion, please go to http://www.ieee.org/publications_standards/

publications/rights/rights_link.html to learn how to obtain a Li-
cense from RightsLink. If applicable, University Microfilms and/or
ProQuest Library, or the Archives of Canada may supply single copies
of the dissertation.
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Abstract

The rational covariance extension problem (RCEP) is an important prob-
lem in systems and control occurring in such diverse fields as control, esti-
mation, system identification, and signal and image processing, leading to
many fundamental theoretical questions. In fact, this inverse problem is a
key component in many identification and signal processing techniques and
plays a fundamental role in prediction, analysis, and modeling of systems and
signals. It is well-known that the RCEP can be reformulated as a (truncated)
trigonometric moment problem subject to a rationality condition. In this
paper we consider the more general multidimensional trigonometric moment
problem with a similar rationality constraint. This generalization creates
many interesting new mathematical questions and also provides new insights
into the original one-dimensional problem. A key concept in this approach
is the complete smooth parametrization of all solutions, allowing solutions
to be tuned to satisfy additional design specifications without violating the
complexity constraints. As an illustration of the potential of this approach
we apply our results to multidimensional spectral estimation, Wiener system
identification, and image compression.

Keywords: covariance extension, trigonometric moment problem, convex optimiza-
tion, generalized entropy, multidimensional spectral estimation, system identification,
image compression

A.1 Introduction

In this paper we consider the (truncated) multidimensional trigonometric moment
problem with a certain complexity constraint. Many problems in multidimensional
systems theory including realization, control, and identification problems, can be
cast in this framework [6]. Other applications of this type are image processing [25]
and spectral estimation in radar, sonar, and medical imaging [79].

More precisely, given a set of complex numbers ck, k ∈ Λ, where k := (k1, . . . , kd)
is a vector-valued index belonging to a specified index set Λ ⊂ Zd, find a nonnegative
bounded measure dµ such that

ck =

∫
Td
ei(k,θ)dµ(θ) for all k ∈ Λ, (A.1.1)
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where T := (−π, π], θ := (θ1, . . . , θd) ∈ Td, and (k,θ) :=
∑d
j=1 kjθj is the scalar

product in Rd. Moreover, let eiθ := (eiθ1 , . . . , eiθd). By the Lebesgue decomposition
[75, p. 121], the measure dµ can be decomposed in a unique fashion as

dµ(θ) = Φ(eiθ)dm(θ) + dµ̂(θ) (A.1.2a)

with an absolutely continuous part Φdm with spectral density Φ and Lebesgue
measure

dm(θ) := (1/2π)d
d∏
j=1

dθj

and a singular part dµ̂ containing, e.g., spectral lines. This is an inverse problem,
which in general has infinitely many solutions if one exists. A first problem of
interest to us in this paper is how to smoothly parametrize the family of all solutions
that satisfy the rational complexity constraint

Φ(eiθ) =
P (eiθ)

Q(eiθ)
, where P,Q ∈ P̄+\{0}, (A.1.2b)

where P+ is the convex cone of positive trigonometric polynomials

P (eiθ) =
∑
k∈Λ

pke
−i(k,θ) (A.1.3)

that are positive for all θ ∈ Td, and P̄+ is its closure; P+ will be called the positive
cone. Moreover, we use the notation ∂P+ := P̄+\P+ for its boundary, i.e., the
subset of nonnegative P ∈ P̄+ that are zero in at least one point. In this paper we
develop a theory based on convex optimization for this problem.

For d = 1 and Λ = {0, 1, . . . , n} this trigonometric moment problem with
complexity constraints is well understood, and it has a solution with dµ̂ = 0 if and
only if the Toeplitz matrix

T (c) =


c0 c−1 . . . c−n
c1 c0 c−n+1

...
. . .

...
cn cn−1 . . . c0


is positive definite [55]. Such a sequence, c0, . . . , cn, will therefore be called a positive
sequence in this paper.

In his pioneering work on spectral estimation, J.P. Burg observed that among
all spectral densities Φ satisfying the moment constraints

ck =

∫
T
eikθΦ(eiθ)

dθ

2π
, k = 0, 1, . . . , n, (A.1.4a)
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the one with maximal entropy ∫
T

log Φ(eiθ)
dθ

2π
(A.1.4b)

is of the form Φ(eiθ) = 1/Q(eiθ), where Q(eiθ) is a positive trigonometric polynomial
[7, 8]. Later, in 1981, R.E. Kalman posed the rational covariance extension problem
(RCEP) [43]: given a finite covariance sequence c0, . . . , cn, determine all infinite
extensions cn+1, cn+2, . . . such that

Φ(eiθ) =

∞∑
k=−∞

cke
−ikθ

is a positive rational function of degree bounded by 2n. This problem, which is
important in systems theory [55], is precisely a (one-dimensional) trigonometric mo-
ment problem with the complexity constraint (A.1.2b). The designation “covariance”
emanates from the fact that c0, c1, c2, . . . , can be interpreted as the covariance lags
E{y(t+ k)y(t)} = ck of a wide-sense stationary stochastic process y with spectral
density Φ.

In 1983, T.T. Georgiou [33] (also see [34]) proved that to each positive covariance
sequence and positive numerator polynomial P , there exists a rational covariance
extension of the sought form (A.1.2b). He also conjectured that this extension is
unique and hence gives a complete parameterization of all rational extensions of
degree bounded by 2n. This conjecture was first proven in [19], where it was also
shown that the complete parameterization is smooth, allowing for tuning. The proofs
in [33, 34, 19] were nonconstructive, using topological methods. Later a constructive
proof was given in [14, 15], leading to an approach based on convex optimization.
Here Φ is obtained as the maximizer of a generalized entropy functional∫

T
P (eiθ) log Φ(eiθ)

dθ

2π
(A.1.5)

subject to the moment conditions (A.1.4a), and the problem is reduced to solving a
dual convex optimization problem. Since then, this approach have been extensively
studied [35, 15, 9, 10, 27, 62, 54, 73, 71, 11, 84, 28, 64], and the approach has
also been generalized to a quite complete theory for scalar moment problems
[12, 16, 38, 13, 17]. Moreover a number of multivariate counterparts, i.e., when Φ is
matrix-valued, have also been solved [32, 37, 65, 5, 67, 53, 83, 2].

A considerable amount of research has also been done in the area of multidi-
mensional spectral estimation; for example, Woods [82], Ekstrom and Woods [26],
Dickinson [23], and Lev-Ari et al. [51] to mention a few. Of special interest are also
results by Lang and McClellan [49, 50, 59, 60, 48, 47], as they consider a similar
entropy functional. In many of these areas it seems natural to consider rational
models. Nevertheless, the multidimensional version of the RCEP has only been
considered at a few instances, for the two-dimensional case in [37, 36] and in the
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more general setting of moment problems with arbitrary basis functions in our
recent paper [46].

The purpose of this paper is to extend the theory of rational covariance extension
from the one-dimensional to the general d-dimensional case and to develop methods
for multidimensional spectral estimation. In Section A.2 we summarize the main
theoretical results of the paper. This includes the main theorem characterizing
the optimal solutions to the weighted entropy functional, which is then proved in
Section A.3. In Section A.4 we prove that under certain assumptions the problem is
well-posed in the sense of Hadamard and provide comments and examples related to
these assumptions. In Section A.5 we consider simultaneous matching of covariance
lags and logarithmic moments, and Section A.6 is devoted to a discrete version of the
problem, where the measure dµ consists of discrete point masses placed equidistantly
in a discrete grid in Td. This is a generalization to the multidimensional case of
recent results in [54] and is motivated by computational considerations. In fact,
these discrete solutions provide approximations to solutions to moment problems
with absolutely continuous measures and allow for fast arithmetics based on the
fast Fourier transform (FFT) (cf. [71]). Sections A.7, A.8, and A.9 are devoted to
three examples of how the theory can be applied; the first in system identification,
the second in Wiener system identification and texture generation, and the third
in image compression. Finally, the paper also contains an appendix to which some
proofs are deferred in order to improve readability.

A.2 Main results

Given the moments {ck}k∈Λ, the problem under consideration is to find a positive
measure (A.1.2) of bounded variation satisfying the moment constraint (A.1.1).
Let us pause to pin down the structure of the index set Λ. In view of (A.1.1),
we have c−k = c̄k, where ¯ denotes complex conjugation. Revisiting the one-
dimensional result [16, 18, 17] for moment problems with arbitrary basis functions,
we observe that the theory holds also for sequences with “gaps”, e.g., for a sequence
c0, . . . , ck−1, ck+1, . . . , cn. As seen in [46] this observation equally applies to the
multidimensional case. Therefore, we shall consider covariance sequences {ck}k∈Λ,
where Λ ⊂ Zd is any finite index set such that 0 ∈ Λ and −Λ = Λ. We will denote
the cardinality of Λ by |Λ|. Further, let nj = max{kj |k ∈ Λ} denote the maximum
range of Λ in dimension j.

Next, given the inner product

〈c, p〉 =
∑
k∈Λ

ckp̄k,

we define the open convex cone

C+ :=
{
c | 〈c, p〉 > 0 for all P ∈ P̄+ \ {0}

}
,

the closure of which, C̄+, is the dual cone of P̄+, with boundary ∂C+.

70



Multidimensional rational covariance extension

We now extend the domain of the generalized entropy functional in (A.1.5) to
multidimensional nonnegative measures of the type (A.1.2) and consider functionals

IP (dµ) =

∫
Td
P (eiθ) log Φ(eiθ) dm(θ), (A.2.1)

where Φ is the absolutely continuous part of dµ.1 This functional is concave, but
not strictly concave since the singular part of the measure does not influence the
value. This leads to the optimization problem to maximize (A.2.1) subject to
the moment constraints (A.1.1). Since the constraints are linear, this is a convex
problem. However, as it is an infinite-dimensional optimization problem, it is more
convenient to work with the dual problem, which has a finite number of variables but
an infinite number of constraints. In fact, the dual problem amounts to minimizing

JP (Q) = 〈c, q〉 −
∫
Td
P (eiθ) logQ(eiθ)dm(θ) (A.2.2)

over all Q ∈ P̄+, and hence Q(eiθ) ≥ 0 for all θ ∈ Td. Note that (A.2.2) takes an
infinite value for Q ≡ 0.

Theorem A.2.1. For every c ∈ C+ and P ∈ P̄+ \ {0} the functional (A.2.2)
is strictly convex and has a unique minimizer Q̂ ∈ P̄+ \ {0}. Moreover, there
exists a unique ĉ ∈ ∂C+ and a nonnegative singular measure dµ̂ which has support
supp(dµ̂) ⊆ {θ ∈ Td | Q̂(eiθ) = 0} such that

ck =

∫
Td
ei(k,θ)

(
P

Q̂
dm+ dµ̂

)
for all k ∈ Λ

and

ĉk =

∫
Td
ei(k,θ)dµ̂, for all k ∈ Λ.

For any such dµ̂, the measure dµ(θ) = (P (eiθ)/Q̂(eiθ))dm(θ) + dµ̂(θ) is an optimal
solution to the problem to maximize (A.2.1) subject to the moment constraints
(A.1.1). Moreover, dµ̂ can be chosen with support in at most |Λ| − 1 points.

Corollary A.2.2. Let c ∈ C+. Then, for any

dµ =
P

Q
dm, P,Q ∈ P̄+\{0}

satisfying the moment condition (A.1.1), Q is the unique minimizer over P̄+ of the
dual functional (A.2.2).

1Note that the absolutely continuous part is uniquely defined by the Lebesgue decomposition,
and hence the functional IP (dµ) is uniquely defined. Moreover, this definition of IP (dµ) can be
motivated by the fact that limn→∞

∫
Td log(Φ(eiθ) + fn(θ))dm(θ) =

∫
Td log(Φ(eiθ))dm(θ) for any

log-integrable Φ and nonnegative “good kernel” fn(θ) (see, e.g., [78, p. 48]). See also the discussion
in Section A.3.
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This corollary implies that, for any c ∈ C+, any measure dµ with only absolutely
continuous rational part matching c can be obtained by solving (A.2.2) for a suitable
P . However, although c ∈ C+, not all P result in an absolutely continuous solution
dµ = (P/Q)dm that satisfies (A.1.1). Nevertheless, the case when this happens is
of particular interest.

Corollary A.2.3. Suppose that d ≤ 2. Then, for any c ∈ C+ and P ∈ P+ there
exists a Q ∈ P+ such that dµ = (P/Q)dm satisfies (A.1.1). Moreover this Q is the
unique solution to the strictly convex optimization problem to minimize the dual
functional (A.2.2) over all Q ∈ P+.

This result can be deduced from the early work of Lang and McClellan [49],
although they do not consider rational solutions explicitly, nor parameterizations
of them. Note that Corollary A.2.3 is only valid for P ∈ P+, while Theorem A.2.1
holds for all P ∈ P̄+ \ {0}. This will be further discussed in Section A.4, where the
proof of Corollary A.2.3 will also be concluded.

Covariance and cepstral matching

It follows from Theorem A.2.1 and Corollary A.2.3 that Q is completely determined
by the pair (c, P ). For d = 1 the choice P ≡ 1 leads to Burg’s formulation (A.1.4),
which has been termed the maximum-entropy (ME) solution. On the other hand,
better dynamical range of the spectrum can be obtained by taking advantage of the
extra degrees of freedom in P . Several methods for selecting P have been suggested
in the one-dimensional setting. Examples are methods based on inverse problems
as in [44, 30, 45], a linear-programming approach as in [9, 10], and simultaneous
matching of covariances and cepstral coefficients as in [61] and independently in
[9, 10, 27, 54]. Here, in the multivariate setting, we consider the selection of P based
on the simultaneous matching of logarithmic moments.

We define the (real) cepstrum of a multidimensional spectrum as the (real)
logarithm of its absolutely continuous part. The cepstral coefficients are the corre-
sponding Fourier coefficients

γk =

∫
Td
ei(k,θ) log Φ(eiθ)dm(θ) for k ∈ Λ \ {0}. (A.2.3)

For spectra that only have an absolutely continuous part this agrees with earlier
definitions in the literature (see, e.g., [63, pp. 500-507] or [22, Chapter 6]).

Given a set of cepstral coefficients we now also enforce cepstral matching of the
sought family of spectra. This means that we look for Φ = P/Q that also satisfies
(A.2.3). Note that the index k = 0 is not included in (A.2.3). In fact, for technical
reasons, we shall set γ0 = 1. Also to avoid trivial cancelations of constants in P/Q,
we need to introduce the set

P+,◦ := {P ∈ P+ | p0 = 1}.
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Theorem A.2.4. Let γk, k ∈ Λ \ {0}, be any sequence of complex numbers such
that γ−k = γ̄k, and set γ = {γk}k∈Λ, where γ0 = 1. Then, for c ∈ C+, the convex
optimization problem (D) to minimize

J(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td
P log

(
P

Q

)
dm (A.2.4)

subject to (P,Q) ∈ P̄+,◦ × P̄+ has an optimal solution (P̂ , Q̂). If such a solution

belongs to P+,◦ ×P+, then Φ̂ = P̂ /Q̂ satisfies the logarithmic moment condition

(A.2.3) and dµ = Φ̂dm the moment condition (A.1.1). Moreover, Φ̂ is also an
optimal solution to the problem (P) to maximize

I(Φ) =

∫
Td

log Φ dm (A.2.5)

subject to (A.1.1) and (A.2.3) for dµ = Φdm. Finally, if d ≤ 2, then P̂ ∈ P+,◦
implies that Q̂ ∈ P+.

For reasons to become clear in Section A.5, the optimization problems (P) and
(D) will be referred to as the primal and dual problems, respectively. A drawback
with Theorem A.2.4 is that even when d ≤ 2, a solution to the dual problem can
be guaranteed to have a rational spectrum that satisfies (A.1.1) and (A.2.3) only if
P̂ ∈ P+,◦. In fact, as we shall see in Section A.5, for a solution with P̂ ∈ ∂P+,◦ we

might have Q̂ ∈ ∂P+ and hence covariance mismatch. A remedy in the case d ≤ 2 is
to use the Enqvist regularization, introduced in the one-dimensional setting in [27].
This makes the optimization problem strictly convex and forces the solution P̂ into
the set P+,◦. In this way we obtain strict covariance matching and approximative
cepstral matching. This statement will be made precise in Theorem A.5.7 in Section
A.5.

The circulant covariance extension problem

In the recent paper [54], Lindquist and Picci studied, for the case d = 1, the situation
when the underlying stochastic process y(t) is periodic. For the N -periodic case,
the covariance sequence must satisfy the extra condition cN−k = c̄k, i.e., the N ×N
Toeplitz matrix of one period is Hermitan circulant. In this case, the spectral

measure must be discrete with point masses at ζ` = ei`
2π
N , ` = 0, 1, . . . , N − 1, on

the discrete unit circle, and instead of the moment condition (A.1.1) we have

ck =
1

N

N−1∑
`=0

Φ(ζ`)ζ
k
` , (A.2.6)

which is the inverse discrete Fourier transform of the sequence (Φ(ζ`)).
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This was generalized to the multidimensional case in [72], where a circulant
version of Theorem A.2.1 and Corollary A.2.3 was derived. For N := (N1, . . . , Nd),
consider the discretization of the d-dimensional torus

ζ` := (e
i`1

2π
N1 , . . . , e

i`d
2π
Nd ),

where
ZdN := {` = (`1, . . . , `d) | 0 ≤ `j ≤ Nj − 1, j = 1, . . . , d},

and define ζk
` =

∏d
j=1 ζ

kj
`j

. Next, let P+(N) be the positive cone of all trigonometric

polynomials (A.1.3) such that P (ζ`) > 0 for all ` ∈ ZdN. Moreover, define the
interior C+(N) of the dual cone as the set of all {ck}k∈Λ such that 〈c, p〉 > 0 for all
P ∈ P̄+(N) \ {0}. Clearly P+(N) ⊃ P+, and hence C+(N) ⊂ C+. Then Theorem
2 and Corollary 3 in [72] can be combined in the following theorem.

Theorem A.2.5 ([72]). Suppose that 2nj < Nj , for j = 1, . . . , d, and let c ∈ C+(N)

and P ∈ P̄+(N) \ {0}. Then, there exists a Q̂ ∈ P̄+(N) \ {0} such that Q̂ is a
solution to the convex problem to minimize2

JN
P (Q) = 〈c, q〉 − 1∏d

j=1Nj

∑
`∈ZdN

P (ζ`) logQ(ζ`)

over all Q ∈ P̄+(N). Moreover, there exists a nonnegative function µ̂ with support
supp(µ̂) = {ζ` | Q̂(ζ`) = 0, ` ∈ ZdN} such that

ck =
1∏d

j=1Nj

∑
`∈ZdN

ζk
`

(
P (ζ`)

Q̂(ζ`)
+ µ̂(ζ`)

)
, (A.2.7)

and the number of mass points for µ̂ can be chosen so that at most |Λ| − 1 points
µ̂(ζ`) are nonzero. Finally, if P ∈ P+(N) then Q̂ ∈ P+(N), which is then also
unique, and hence Φ = P/Q̂ satisfies (A.2.7) with µ̂ ≡ 0.

In [54] it was shown in the one-dimensional case that as N →∞ the solution
of the discrete problem, call it Q̂N , converges to the solution to the corresponding
continuous problem, call it Q̂. This gives a natural way to compute an approximate
solution to the continuous problem using the fast computations of the discrete Fourier
transform. The same also holds in higher dimensions, as seen in the following result.

Theorem A.2.6. Suppose that P ∈ P̄+ \ {0} and c ∈ C+, and let Q̂ and Q̂N be
the optimal solutions of Theorems A.2.1 and A.2.5, respectively. Then

lim
min(N)→∞

Q̂N = Q̂

uniformly.

2Note that limits such as P log(Q) and P/Q may not be well defined in the multidimensional
case, and therefore we define the expressions P log(Q) and P/Q to be zero whenever P = 0. This
is not needed in the continuous case as the set where P is zero is of measure zero.
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A.3 The multidimensional RCEP

Most of this section will be devoted to proving Theorem A.2.1. Some technical
details are deferred to the appendix. Possible interpretations of P will be discussed
in the end of the section together with an example showing the non-uniqueness of
the measure dµ̂.

Proof of Theorem A.2.1

Deriving the dual problem

For a given P ∈ P̄+ \ {0} and c ∈ C+, consider the primal problem to maximize
(A.2.1) subject to the moment constraints (A.1.1) over the set of nonnegative
bounded measures, i.e., over dµ = Φdm + dµ̂, where Φ is a nonnegative L1(Td)
function and dµ̂ is a nonnegative singular measure. The Lagrangian of this problem
becomes

LP (Φ, dµ̂, Q) =

∫
Td
P log Φdm+

∑
k∈Λ

q̄k

(
ck −

∫
Td
ei(k,θ)(Φdm+ dµ̂)

)
,

where q̄k, k ∈ Λ, are Lagrange multipliers. Identifying
∑

k∈Λ q̄ke
i(k,θ) with the

trigonometric polynomial Q, this can be simplified to

LP (Φ, dµ̂, Q) =

∫
Td
P log Φ dm+ 〈c, q〉 −

∫
Td
QΦdm−

∫
Td
Qdµ̂.

The dual function supdµ≥0 LP (Φ, dµ̂, Q) is finite only if Q ∈ P̄+ \ {0}. To see this,

let Q 6∈ P̄+, i.e., suppose there is a θ0 ∈ Td for which Q(θ0) < 0. Then, by letting
µ̂(θ0)→∞ in the singular part dµ̂, we get that LP (Φ, dµ̂, Q)→∞. Moreover, if
Q ≡ 0 then since P is continuous and P 6≡ 0 there is a small neighbourhood where
P > 0. Letting Φ→∞ in this neighbourhood we again have that LP (Φ, dµ̂, Q)→∞.
Hence we can restrict the multipliers to P̄+ \ {0}.

Now note that any pair (Φ, dµ̂) maximizing LP (Φ, dµ̂, Q) must satisfy
∫
Td Qdµ̂ =

0, or equivalently, that the support of dµ̂ is contained in {θ ∈ Td |Q(eiθ) = 0}.
Otherwise letting dµ̂ = 0 would result in a larger value of the Lagrangian.

Note that the value of the Lagrangian becomes −∞ for any Φ that vanishes on
a set of positive measure, and hence such a Φ cannot be optimal. Now, for any
direction δΦ such that Φ + εδΦ is a nonnegative L1(Td) function for sufficiently
small ε > 0, consider the directional derivative

δLP (Φ, dµ̂, Q; δΦ) = lim
ε→0

1

ε
(LP (Φ+δΦ,dµ̂,Q)−LP (Φ,dµ̂,Q)) =

∫
Td

(
P

Φ
−Q

)
δΦdm.

For a stationary point this must be nonpositive for all feasible directions δΦ, and in
particular this holds for δΦ = Φ sign(P −QΦ) which by construction is a feasible
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direction. For this direction, the constraint becomes
∫
Td |P −QΦ|dm ≤ 0, requiring

that Φ = P/Q a.e., which inserted into the dual function yields

sup
dµ≥0

LP (Φ, dµ̂, Q) = JP (Q) +

∫
Td
P (logP − 1)dm, (A.3.1)

where the last term in (A.3.1) does not depend on Q and

JP (Q) = 〈c, q〉 −
∫
Td
P logQdm. (A.3.2)

Hence the dual problem is equivalent to minimizing JP over P̄+ \ {0}.

Lower semicontinuity of the dual functional

For any Q ∈ P+, JP (Q) is clearly continuous. However, for Q ∈ ∂P+, logQ will
approach −∞ in the points where Q(eiθ) = 0, and hence we need to consider the
behavior of the integral term in (A.3.2). Since P is a fixed nonnegative trigonometric
polynomial, it suffices to consider the integral

∫
Td logQdm. However, this integral

is known as the (logarithmic) Mahler measure of the Laurent polynomial Q [58], and
it is finite for all Q ∈ P̄+ \ {0} [76, Lemma 2, p. 223]. This leads to the following
lemma, the proof of which is deferred to the appendix.

Lemma A.3.1. For any P ∈ P̄+\{0} and c ∈ C+, the functional JP : P̄+\{0} → R
is lower semicontinuous.

The uniqueness of a solution

From the first directional derivative

δJP (Q; δQ) = 〈c, δq〉 −
∫
Td

P

Q
δQdm

of the dual functional (A.3.2), we readily derive the second

δ2JP (Q; δQ) =

∫
Td

P

Q2
(δQ)2dm,

which is clearly nonnegative for all variations δQ. Therefore, since, in addition, the
constraint set P̄+ is convex, the dual problem is a convex optimization problem. To
see that JP is actually strictly convex, note that since P is positive a.e., so is P/Q2.
Therefore, for δ2JP (Q; δQ) to be zero we must have δQ = 0 a.e., which implies
that it is zero everywhere since it is continuous. This implies that if there exists a
solution, this solution is unique.
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The existence of a solution

If we can show that JP has compact sublevel sets, then JP must have a minimum
since it is lower semicontinuous (Lemma A.3.1).

Lemma A.3.2. The sublevel sets J−1
P (−∞, r] are compact for all r ∈ R.

For the proof of Lemma A.3.2 we need the following lemma modifying Proposition
2.1 in [17] to the present setting.

Lemma A.3.3. For a fixed c ∈ C+, there exists an ε > 0 such that for every
(P,Q) ∈ (P̄+ \ {0})× (P̄+ \ {0})

JP (Q) ≥ ε‖Q‖∞ −
∫
Td
Pdm log ‖Q‖∞. (A.3.3)

Proof. Since 〈c, q〉 is a continuous function, it achieves a minimum on the compact
set {Q ∈ P̄+ \ {0} | ‖q‖∞ = 1}, where ‖q‖∞ := maxk∈Λ |qk|. The minimum value
κc must be positive since c ∈ C+ and hence 〈c, q〉 > 0 for any q ∈ P̄+ \ {0}. For any
Q ∈ P̄+ \ {0} we thus have

〈c, q〉 =

〈
c,

q

‖q‖∞

〉
‖q‖∞ ≥ κc‖q‖∞. (A.3.4)

By Lemma A.10.1, ‖Q‖∞ ≤ |Λ|‖q‖∞ , and hence by choosing ε ≤ κc/|Λ| we get

〈c, q〉 ≥ κc‖q‖∞ ≥
κc
|Λ|
‖Q‖∞ ≥ ε‖Q‖∞. (A.3.5)

To obtain a bound on the second term in (A.3.2), we observe that∫
Td
P logQdm =

∫
Td
P log

[
Q

‖Q‖∞

]
dm+

∫
Td
Pdm log ‖Q‖∞ ≤

∫
Td
Pdm log ‖Q‖∞,

since Q/‖Q‖∞ ≤ 1. Hence (A.3.3) follows.

Proof of Lemma A.3.2. For any r ∈ R, which is large enough for the sublevel set
{Q ∈ P̄+ \ {0} | r ≥ JP (Q)} to be nonempty,

r ≥ JP (Q) ≥ ε‖Q‖∞ −
∫
Td
Pdm log ‖Q‖∞

for some ε > 0 (Lemma A.3.3). Comparing linear and logarithmic growth we see
that the sublevel set is bounded both from above and from below. Moreover, since
JP is lower semicontinuous (Lemma A.3.1), the sublevel sets are also closed [75,
p. 37]. Therefore they are compact.
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Existence of a singular measure

It remains to show that there exists a measure dµ̂ as prescribed by the theorem,
and that dµ = (P/Q̂)dm+ dµ̂ is in fact an optimal solution to the primal problem
to maximize (A.2.1) subject to the moment constraints (A.1.1). To this end, note
that JP is a closed, proper, strictly convex function with nonempty interior of the
effective domain, where an example of the latter is the point Q ≡ 1. Now, let q̂ be
the unique minimum of JP , and hence the zero vector is a subgradient of JP at q̂.
By Theorem 25.6 in [74] the set of subgradients of JP at q̂ can be written as

0 ∈ ∂JP (q̂) = closure(convS(q̂)) +K(q̂), (A.3.6)

where K(q̂) = {−ĉK | 〈ĉK , q − q̂〉 ≥ 0 for all q ∈ P̄+ \ {0}} is the normal cone, and
S(q̂) is the set of limit points of sequences of the form (∇JP (q`))`∈Z+ for which
q` ∈ P+ and such that q` converges to q̂ as ` → ∞. Let v = (vk)k∈Λ ∈ S(q̂).
Then there is a sequence (q`)`∈Z+

⊂ P+ such that q` → q̂ and ∇q̄`,kJP (q`) = ck −∫
Td e

i(k,θ)(P/Q`)dm→ vk for k ∈ Λ.3 In particular the sequence
∫
Td(P/Q`)dm is

bounded, hence there is a subsequence of (P/Q`)dm that converges to a nonnegative
measure in weak∗ [57, p. 128]. Since the corresponding nonnegative polynomials
Q` → Q̂ converge uniformly, the weak∗ limit of the subsequence of (P/Q`)dm is
of the form (P/Q̂)dm+ dµ̂S, where µ̂S is a nonnegative measure with support in
null(Q̂). The linear maps dµ 7→

∫
Td e

i(k,θ)dµ are closed for k ∈ Λ, and consequently

S(q̂) ⊂
{
v

∣∣∣∣ vk = ck −
∫
Td
ei(k,θ)

(
P

Q̂
dm+ dµ̂S

)
for k ∈ Λ,

and where µ̂S ≥ 0 and supp(µ̂S) ⊂ null(Q̂)

}
, (A.3.7)

which is closed and convex. Next, note that K(q̂) = {−ĉK | 〈ĉK , q̂〉 = 0, ĉK ∈ C̄+}.
Inserting this and (A.3.7) into (A.3.6) yields

0 = ck −
∫
Td
ei(k,θ)P

Q̂
dm−

(∫
Td
ei(k,θ)dµ̂S + ĉK,k

)
︸ ︷︷ ︸

=:ĉk

for k ∈ Λ, (A.3.8)

for some ĉ ∈ C̄+ with 〈ĉ, q̂〉 = 0. Moreover, it is shown in [48] that for any ĉ ∈ ∂C+

there exists a discrete nonnegative representation dµ̂ with support in |Λ| − 1 points
that satisfies

∫
Td e

i(k,θ)dµ̂ = ĉk for k ∈ Λ. To show that the solution is optimal also
for the primal problem we observe that, for all dµ = Φdm+ dµ̂,

IP (Φ) ≤ LP (Φ, dµ̂, Q) ≤ JP (Q) +

∫
Td
P (logP − 1)dm.

3Here ∇z denotes the Wirtinger derivatives, ∇z = (∂/∂x − i∂/∂y)/2 and ∇z̄ = (∂/∂x +
i∂/∂y)/2, where z = x+ i y is a complex variable [69, pp. 66-69].
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Since equality holds for the feasible point dµ = (P/Q̂)dm+ dµ̂, optimality follows.
This completes the proof of Theorem A.2.1.

An alternative proof of the results above on the dual problem (lower semi-
continuity, uniqueness of solution, and existence of solution) can be constructed
along the lines of [31, Section 5]. In the proof of that paper they use the existence
of a coercive spectral density, which in our case follows from the existence of a
spectral density in the exponential family [37]. Also compare this with the proofs of
Theorems 5.1 and 5.2 in [46], which deals with a more general setting.

Comments and an example

In the one-dimensional case it has already been observed that P need not be confined
to the cone P̄+ \ {0} but could be a general nonnegative integrable function with
zero locus of measure zero [16, 17]. This fact was implemented in [38] to interpret
the functional (A.1.5) as a Kullback-Leibler pseudo-distance between P and Φ and
hence with P as a Kullback-Leibler prior. In fact, maximizing (A.1.5) is equivalent
to minimizing the Kullback-Leibler divergence

D(P‖Φ) :=

∫
T
P log

(
P

Φ

)
dm,

which is nonnegative for functions with the same total mass and equal to zero only
when the functions are equal. In our present more general setting, P could be any
absolutely integrable, nonnegative function for which the set {θ ∈ Td | P (eiθ) = 0}
has measure zero. In this context it is also possible to interpret the functional
(A.2.1) as a Kullback-Leibler distance, not only between the two functions P and Φ,
but between the two measures dp := Pdm and dµ. Since dp is absolutely continuous
with respect to dµ we obtain (cf. [70, Equation (3.1)])∫

Td
P log

(
P

Φ

)
dm =

∫
Td

log

(
dp

dµ

)
dp

where (dp/dµ) = P/Φ is the Radon-Nikodym derivative.
Except in the one-dimensional case, the singular part of the measure is in

general not unique. To illustrate this fact, we consider the following example in two
dimensions, similar to Example 5.4 in [46], where Q has zeros along a line.

Example A.3.4. Given Λ = {(0, 0), (−1, 0), (1, 0), (0,−1), (0, 1), (−1,−1), (1, 1),
(−1, 1), (1,−1)}, consider

P (eiθ1 , eiθ2) = (1− cos θ1),

Q̂(eiθ1 , eiθ2) = (1− cos θ1)(2− cos θ2).

Let c be the covariances of the spectrum Φ = P/Q̂, i.e., c0,0 = 1/
√

3, c1,0 =
0, c0,1 = −1 + 2/

√
3, c1,1 = 0, and c−1,1 = 0, the remaining covariances being
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uniquely determined by the conjugate symmetry c−k = c̄k. Moreover, let ĉ be given
by

ĉk =

∫
T2

ei(k,θ)δ(θ1)dθ1
dθ2

2π

so that ĉ0,0 = 1, ĉ1,0 = 1, ĉ0,1 = 0, ĉ1,1 = 0, and ĉ−1,1 = 0. Clearly P, Q̂ ∈ P̄+ \ {0},
and thus c ∈ C+ since

〈c, r〉 =
∑
k∈Λ

ckr̄k =

∫
T2

R(eiθ)
P (eiθ)

Q̂(eiθ)
dm(θ) > 0

for any R ∈ P̄+ \ {0}. In the same way,

〈ĉ, q̂〉 =

∫
T2

Q̂(eiθ)δ(θ1)dm(θ) =

∫ π

−π
(1− cos θ1)δ(θ1)dθ1

∫ π

−π
(2− cos θ2)

dθ2

2π
= 0,

and thus ĉ ∈ ∂C+. Hence, (Q̂, ĉ) is the unique pair prescribed by Theorem A.2.1 for
the covariance sequence c+ ĉ and the numerator polynomial P . However, since Q̂ is
zero for θ1 = 0, any measure dµ̂ with support constrained to the line θ1 = 0 and
mass 1 such that

∫
T2 cos θ2dµ̂ = 0 is a solution.

A.4 Well-posedness and counter examples

The intuition behind Corollary A.2.3 is that the optimal solution Q̂ is repelled from
the boundary by the following assumption (Assumption A.4.1) whenever P ∈ P+.
Then, since the measure dµ̂ can only have mass in the zeros of Q, we must have
dµ̂ = 0.

Assumption A.4.1. The cone P̄+ has the property∫
Td

1

Q
dm(θ) =∞ for all Q ∈ ∂P+.

As noted in [17], Assumption A.4.1 always holds in the one-dimensional case
(d = 1), since the trigonometric functions are Lipschitz continuous. Using results
by Georgiou [36, p. 819] it can be shown that this assumption is also valid for
d = 2. However, Lang and McClellan [49] note that Assumption A.4.1 does not
hold in general for dimensions d ≥ 3. To see this, they consider the polynomial
Q(eiθ) =

∑d
`=1(1− cos θ`) ∈ ∂P+ and show that

∫
Td

1
Qdx <∞ for d ≥ 3. In fact,

we have the following amplification of this fact, the proof of which we defer to the
appendix.

Proposition A.4.2. For d ≥ 3, Assumption A.4.1 does not hold if the index set Λ
contains at least three linearly independent vector-valued indices.
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Observe that a problem of dimension d ≥ 3 for which Λ contains less than three
linearly independent vector-valued indices trivially reduces to a problem in one or
two dimensions. Hence in general we identify Assumption A.4.1 with the case d ≤ 2.
Corollary A.2.3 now follows directly from the following lemma.

Lemma A.4.3. Let P ∈ P+, and suppose that Assumption A.4.1 holds. Then the
optimal solution Q̂ to the problem to minimize (A.2.2) over all Q ∈ P̄+ belongs to
P+.

Proof. Let Q ∈ ∂P+ be arbitrary. Then, for any ρ > 0, Q(eiθ) + ρ > 0 for all
θ ∈ Td. Hence the functional JP is also differentiable in Q+ ρ, and the directional
derivative in the direction 1 is

δJP (Q+ ρ; 1) = 〈c, 1〉 −
∫
Td

P

Q+ ρ
dm.

Now note that P/(Q+ ρ) is nonnegative in all points, that it is pointwise monotone
increasing for decreasing values of ρ, and that it converges pointwise in an extended
real-valued sense4 to P/Q. Hence by Lebesgue’s monotone convergence theorem
[75, p. 21] we have, as ρ→ 0,∫

Td

P

Q+ ρ
dm −→

∫
Td

P

Q
dm,

which, since P ∈ P+, is infinite by Assumption A.4.1. Therefore 1 is a descent
direction from the point Q, and hence the optimal solution is not obtained there.
Since Q ∈ ∂P+ is arbitrary, this means that the optimal solution is not attained on
the boundary, i.e., we have Q̂ ∈ P+.

It turns out that the multidimensional rational covariance extension problem
for d ≤ 2 is in fact well-posed in the sense of Hadamard, i.e., the solution depends
smoothly on c and P , which is an important property when it comes to tuning of
solutions to design specifications. This follows from the following generalizations to
the multidimensional case of Theorems 1.3 and 1.4 in [17], proved in the appendix.

Theorem A.4.4. Let fp : P+ → C+ be the map from Q to c, given component-wise
by

ck =

∫
Td
ei(k,θ)P

Q
dm

for a fixed P ∈ P+. If d ≤ 2, fp is a diffeomorphism.

Theorem A.4.5. Suppose that d ≤ 2. Let fp be as in Theorem A.4.4, and let
c ∈ C+ be fixed. Then the function gc : P+ → P+ mapping P to Q = (fp)−1(c) is
a diffeomorphism onto its image Q+.

4In this case, the limit may be ∞.
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By Corollary A.2.3, the unique solution Q̂ of the dual problem belongs to the
interior P+ for every pair (c, P ) ∈ C+ ×P+ if Assumption A.4.1 holds. Note that,
while the more general Theorem A.2.1 holds for all P ∈ P̄+ \ {0}, Corollary A.2.3
is only valid for P ∈ P+. The reason for this is that if P ∈ P+ the directional
derivative of JP tends to −∞ on the boundary by Assumption A.4.1, so a minimum
is not attained there, as we just saw in the proof of Lemma A.4.3. On the other
hand, if P ∈ ∂P+, we have

∫
Td(P/Q)dm <∞ for some Q ∈ ∂P+; take, for example,

Q = P . More generally, the integral may not diverge if the zeros of Q belong to a
subset of the zeros of P . In this case, there is no guarantee that the optimal solution
is an interior point. The following simple one-dimension example illustrates this.

Example A.4.6. Consider a one-dimensional problem of degree one, i.e., with Λ =
{−1, 0, 1}. Fix c = (1, c1), where c1 ∈ (−1, 0) is arbitrary. Clearly the Toeplitz
matrix T (c) = [ck−`]

n
k,`=0 is positive definite, and hence c ∈ C+. We fix P (eiθ) =

2 + eiθ + e−iθ, which belongs to ∂P+ since P (eiπ) = 0. We want to find a Q ∈ P+

of degree at most one so that Φ = P/Q matches the covariance sequence c, i.e,

ck =

∫
T
eikθ

P

Q
dm, k = 0, 1. (A.4.1)

Any such Q must have the form Q(eiθ) = λ(1− ρeiθ)(1− ρ̄e−iθ) for some λ > 0 and
|ρ| < 1. Now, clearly

Φ(eiθ) = λ−1 2 + eiθ + e−iθ

1− |ρ|2
1− |ρ|2

(1− ρeiθ)(1− ρ̄e−iθ)
,

where the second factor takes the form

1

1− ρeiθ
+

1

1− ρ̄e−iθ
− 1 = · · ·+ ρ̄2e−2iθ + ρ̄e−iθ + 1 + ρeiθ + ρ2e2iθ + · · · ,

which implies that c0 = λ−1(2 + ρ+ ρ̄)(1− |ρ|2)−1 and c1 = λ−1(1 + ρ)2(1− |ρ|2)−1.
Since c0 = 1, we have c1 = (1+ρ)2(2+ρ+ ρ̄)−1, which has positive, real denominator.
Then, since c1 < 0, 1 + ρ is purely imaginary, which is impossible since 1 + ρ has
a positive real part. Hence, there is no Q ∈ P+ of degree at most one satisfying
(A.4.1). However, for a certain Q ∈ ∂P+, namely, Q(eiθ) = (2 + eiθ + e−iθ)/(1 + c1),
we obtain dµ = (P/Q)dm− c1δ(θ − π)dθ, i.e.,

dµ = (1 + c1)dm− c1δ(θ − π)dθ,

which matches c with −1 < c1 < 0. Now Φ = 1 + c1 and the singular measure
dµ̂ = δ(θ − π)dθ has all its mass at the zero of Q, as required by Theorem A.2.1.

In this context it is interesting to note that the covariance extension problem is
usually formulated as a partial realization problem where one wants to determine
an extension of the partial covariance sequence c so that

Φ+(z) =
1

2
c0 +

∞∑
k=1

ckz
−k
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is positive real, i.e., Φ+ maps the unit disc to the right half of the complex plane;
see, e.g., [55]. Then Φ+(eiθ) + Φ+(eiθ)∗ is the corresponding spectral density Φ(eiθ).
In our example such a solution is provided by

Φ+(z) =
1

2

(
1 + c1 − c1

1− z
1 + z

)
=

1

2
+ c1z − c1z2 + · · · ,

yielding precisely Φ = 1 + c1. The singular measure never appears in this framework.

A.5 Logarithmic moments and cepstral matching

Given c ∈ C+, Corollary A.2.3 and Theorem A.4.5 together provide a complete
smooth parameterization in terms of P ∈ P+ of all Φ = P/Q such that dµ = Φdm
satisfies the moment equations (A.1.1). Therefore the solution can be tuned to
satisfy additional design specification by adjusting P . How to determine the best P
is, however, a separate problem. Theorem A.2.4, to be proved next, extends results
from the one-dimensional case to simultaneously estimate P using the cepstral
coefficients and logarithmic moment matching.

Proof of Theorem A.2.4. The proof follows along the same lines as that of Theorem
A.2.1. By relaxing the primal problem (P) we get the Lagrangian

L(Φ, P,Q) =

∫
Td

log Φ dm+
∑
k∈Λ

q̄k

(
ck −

∫
Td
ei(k,θ)Φ dm

)
(A.5.1)

+
∑

k∈Λ\{0}

p̄k

(∫
Td
ei(k,θ) log Φ dm− γk

)
,

where q̄k and p̄k are Lagrangian multipliers. Setting p0 = γ0 = 1 and rearranging
terms, this can be written as

L(Φ, P,Q) = 〈c, q〉 −
∫
Td
QΦ dm− 〈γ, p〉+ 1 +

∫
Td
P log Φ dm, (A.5.2)

where the first term in (A.5.1) has been incorporated in the last term of (A.5.2).
As before, supΦ≥0 L(Φ, P,Q) is only finite if we restrict Q to P̄+, and similarly

we need to restrict P to P̄+,◦. Taking the directional derivative of (A.5.2) in any
direction δΦ such that Φ + εδΦ is a nonnegative L1(Td) function for all ε ∈ (0, a)
for a sufficiently small a > 0, we obtain

δL(Φ, P,Q; δΦ) =

∫
Td

(P
1

Φ
−Q)δΦdm.

For the directional derivative to be nonpositive for all feasible directions δΦ we need
Φ = P/Q a.e. (cf. Section A.3), which inserted into (A.5.2) yields

sup
Φ
L(Φ, P,Q) = J(P,Q) + 1−

∫
Td
Pdm, (A.5.3)
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with J(P,Q) given by (A.2.4). A closer look at the last term in (A.5.3) shows that

∫
Td
Pdm =

∫
Td

∑
k∈Λ

pke
i(k,θ)dm =

∑
k∈Λ

pk

d∏
j=1

∫ π

−π
eikjθj

dθj
2π

= 1,

since all integrals vanish except those for k1 = . . . = kd = 0. Consequently, J is
precisely the dual functional (A.5.3).

Using the Wirtinger derivative to form the gradient of J (see, e.g., [69, pp. 66-69]),
we obtain

∂J(P,Q)

∂q̄k
= ck −

∫
Td
ei(k,θ)P

Q
dm, k ∈ Λ, (A.5.4a)

∂J(P,Q)

∂p̄k
=

∫
Td
ei(k,θ) log

(
P

Q

)
dm− γk, k ∈ Λ \ {0}. (A.5.4b)

In deriving (A.5.4b) we used the fact that

∫
Td
ei(k,θ)dm =

d∏
j=1

∫ π

−π
eikjθj

dθj
2π

= 0, k 6= 0. (A.5.5)

Therefore, if P̂ ∈ P+,◦ and Q̂ ∈ P+, and hence the optimal solution is a stationary

point of J, then the spectrum Φ = P̂ /Q̂ fulfills both covariance matching (A.1.1)
and cepstral matching (A.2.3).

The following three lemmas ensure the existence of a solution and show that
the problem is in fact convex. The arguments are similar to those in the proof of
Theorem A.2.1, and are given in the appendix.

Lemma A.5.1. Given c ∈ C+ and a sequence γ = {γk}k∈Λ with γ0 = 1 and γ−k =
γ̄k, the functional (P,Q) 7→ J(P,Q) is lower semicontinuous on P̄+,◦ × (P̄+ \ {0}).

Lemma A.5.2. The sublevel sets J−1(−∞, r] are compact.

Lemma A.5.3. The dual problem (D) in Theorem A.2.4 is convex on the domain

P̄
(n1,...,nd)
+,◦ × P̄

(n1,...,nd)
+ .

Next we show that if Q̂ ∈ P+ and P̂ ∈ P+,◦ then Φ̂ = P̂ /Q̂ is also optimal

for the primal problem of Theorem A.2.4. This follows by observing that Φ̂ is a
primal feasible point and that the primal functional (A.2.5) takes the same value
as the Lagrangian (A.5.1) in this point, since we have covariance and cepstral
matching (cf. the proof of Theorem A.2.1). Finally, if d ≤ 2 then Q̂ ∈ P+ whenever
P̂ ∈ P+,◦, which follows directly from Lemma A.4.3. This concludes the proof of
Theorem A.2.4.
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From this proof we see that the stationarity of J(P,Q) in Q ensures covariance
matching and the stationarity in P provides cepstral matching. Therefore we can
only guarantee matching for a solution in the interior P+,◦ ×P+. This subtle fact
was overlooked in [10, 27], where it is claimed that we also have covariance matching
for P̂ ∈ ∂P+,◦. However, even when d ≤ 2, we cannot guarantee that there is

a solution Q̂ belonging to the interior P+ if P̂ ∈ ∂P+,◦. The following example
illustrates this.

Example A.5.4. Consider the one-dimensional problem with c0 = 2, c−1 = c1 = 1,
and γ1 = −1. Set

P (eiθ) = 1− (eiθ + e−iθ)/2 = 1− cos θ,

and Q = P . Clearly P and Q belong to the boundary, since P (ei0) = Q(ei0) = 0.
Moreover Φ = P/Q = 1, so there is neither covariance matching nor cepstral
matching. A simple calculation shows that ∂J/∂q0 = ∂J/∂q1 = ∂J/∂p1 = 1.
However, for any feasible direction (δq0, δq1, δp1) in (P,Q) we have Re{δp1} ≥ 0
and Re{δq0 + 2δq1} ≥ 0, and hence there is no feasible descent direction from this
point. Therefore we have a local minimum, which, by convexity, is also a global
minimum. Consequently, we have an optimal solution on the boundary where we
have neither covariance nor cepstral matching.

Remark A.5.5. From Theorem A.2.1 we know that it is possible to achieve covariance
matching in this example by adding a nonnegative singular measure dµ̂, representing
spectral lines. In fact, a similar statement can be proved for cepstral matching,
namely that there exists a nonpositive measure dµ̃ such that supp(dµ̃) ⊆ {θ ∈ Td |
P̂ (θ) = 0} and

γk =

∫
Td
ei(k,θ)

(
log(P̂ /Q̂)dm(θ)− dµ̃(θ)

)
for all k ∈ Λ \ {0}. However, while the physical interpretation of dµ̂ in Theorem
A.2.1 is clear, in this case it is not obvious what dµ̃ represents in terms of the
spectrum.

Note that the optimization problem is convex but in general not strictly convex,
and hence the solution might not be unique. This is illustrated in the following
example (cf. [55, Remark 12.5.7, and p. 506]).

Example A.5.6. Again consider a one-dimensional problem, this time with c0 = 1,
c−1 = c1 = 0, and γ1 = 0. Choosing

P (eiθ) = Q(eiθ) = 1− ρ cos θ, |ρ| ≤ 1,

we obtain Φ = 1, which matches the given covariances and cepstral coefficients.
Therefore all P and Q of this form are stationary points of J and are thus optimal
for the dual problem in Theorem A.2.4.

In one dimension there is strict convexity, and thus a unique solution, if and
only if there is an optimal solution for which P̂ and Q̂ are coprime [10].
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Regularizing the problem

A motivation for simultaneous covariance and cepstral matching is to obtain a
rational spectrum Φ = P/Q that matches the covariances without having to provide
a prior P . However, even if d ≤ 2, the dual problem in Theorem A.2.4 cannot be
guaranteed to produce such a spectrum that satisfies the covariance constraints
(A.1.1). To remedy this we consider the regularization proposed by Enqvist [27],
which has the objective function

Jλ(P,Q) = J(P,Q)− λ
∫
Td

logP dm,

where λ ∈ (0,∞) is the regularization parameter.
The partial derivative with respect to q̄k is identical to (A.5.4a), whereas the

partial derivative with respect to p̄k becomes

∂Jλ(P,Q)

∂p̄k
=

∫
Td
ei(k,θ)

(
log

(
P

Q

)
− λ

P

)
dm− γk.

By Assumption A.4.1, this gradient will be infinite for P ∈ ∂P+, and hence the
optimal solution is not on the boundary. Moreover, with this regularization, the
optimization problem becomes strictly convex and we thus have a unique solution.

Theorem A.5.7. Suppose that d ≤ 2, and let γk, k ∈ Λ \ {0}, be any sequence
of complex numbers such that γ−k = γ̄k. Set γ = {γk}k∈Λ, where γ0 = 1, and let
c ∈ C+. Then for any λ > 0 there exists a unique solution (P̂ , Q̂) to the strictly
convex optimization problem to minimize

Jλ(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td
P log

(
P

Q

)
dm− λ

∫
Td

logP dm

subject to P ∈ P+,◦ and Q ∈ P+. Moreover, Φ = P̂ /Q̂ fulfills the covariance
matching (A.1.1) and approximately fulfills the cepstral matching (A.2.3) via

γk + εk =

∫
Td
ei(k,θ) log Φ dm, where εk = λ

∫
Td
ei(k,θ)P̂−1dm.

Proof. In view of what has been said, all of the results follow from Theorem A.2.4
except the strict convexity. To prove this, we note that the second directional
derivative of Jλ is given by

δ2Jλ(P,Q; δP, δQ) =

∫
Td
P

(
δP

1

P
− δQ 1

Q

)2

dm+

∫
Td
δP 2 λ

P 2
dm

(cf. the proof of Lemma A.5.3 in the appendix). Since both integrands are nonneg-
ative, they both need to be zero almost everywhere in order for the derivative to
vanish. However, since P > 0, this implies that δP ≡ 0 by continuity. Then the
first integrand becomes δQ2P/Q2 and in the same way we must thus have δQ ≡ 0.
Hence δ2Jλ(P,Q; δP, δQ) > 0, implying uniqueness.
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A.6 The circulant problem

Theorem A.2.5 in Section A.2 can be viewed as a periodic version of Theorem
A.2.1 and Corollary A.2.3, as can be seen by following the lines of [54], where the
one-dimensional problem was first introduced. To this end, we introduce the discrete
measure dνN, i.e.,

dνN(θ) =
∑
`∈ZdN

δ
(
θ1 − φ1(`1), . . . , θd − φd(`d)

) d∏
j=1

dθj
Nj

, (A.6.1)

where φj(`) := 2π`/Nj and δ is the multidimensional Dirac delta function. Then
the moment matching condition (A.2.7) takes the form

ck =
1∏d

j=1Nj

∑
`∈ZdN

ζk
` Φ(ζ`) =

∫
Td
ei(k,θ)Φ(eiθ)dνN,

which is similar to (A.1.1), but where dνN and dm have different mass distributions
(discrete versus continuous). In fact, the main difference in the statements of
Theorem A.2.5 and Theorem A.2.1 together with Corollary A.2.3 is that different
measures and cones are used. In the same way, versions of Theorems A.2.4 and
A.5.7 also hold in the circulant case; see [72] for details.

In connection to this it is also interesting to observe that the discrete counterpart
of Assumption A.4.1, ∫

Td

1

Q
dνN =∞ for all Q ∈ ∂P+(N), (A.6.2)

holds for any measure dνN with discrete mass distribution (see also [49]). However,
if P ∈ ∂P+(N) we may still obtain solutions without covariance matching, because
for any Q that is zero only in a subset of points where P is zero we will have∫
Td(P/Q)dνN <∞ and hence the optimal solution may occur on the boundary.

Remark A.6.1. Although the measure (A.6.1) has mass in points placed in the roots
of unity on the d-dimensional torus, one could also consider other mass distributions.
One could place the mass points in the odd points of the roots of unity, i.e., in the
points {ei(2kj−1)π/N`}N`kj=1, a situation which has been studied in the one-dimensional

case and which correspond to spectra of skew-periodic processes [73]. The same
holds in the multidimensional setting. Also note that all dimensions do not need to
have mass distributions of the same type. For example, the approach in this paper
works even if the process is periodic in some of the dimensions, while nonperiodic in
others.

Convergence of discrete to continuous

In [54] Lindquist and Picci proved for the one-dimensional case that when the
number of mass points in the discrete measure dνN in (A.6.1) goes to infinity, the
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solution converges to the solution of the problem with the continuous measure dm.
The same is true in higher dimensions, and the formal result is given in Theorem
A.2.6 in Section A.2. In this subsection we will prove this statement. Note that we
use the notation

JP (Q) = 〈c, q〉 −
∫
Td
P logQdm, (A.6.3a)

JN
P (Q) = 〈c, q〉 −

∫
Td
P logQdνN, (A.6.3b)

to explicitly distinguish the objective functions using the continuous and the discrete
measure. Moreover let Q̂ be the minimizer of (A.6.3a), subject to Q ∈ P̄+, and Q̂N

be a minimizer of (A.6.3b), subject to Q ∈ P̄+(N). Before proving the theorem,
we make some clarifying observations.

Remark A.6.2. We have already noted that the singular measure dµ̂ is not unique.
However, the corresponding “rest covariance” ĉ, which dµ̂ matches, is unique (cf.
(A.3.8)). In connection with this it is interesting to note that although this is the
case, and although Q̂N → Q̂, in general ĉN 6→ ĉ. To see this, note that for a P
which is positive in all points except for some irrational frequency5 where P = 0, we
will have P ∈ P+(N) for all N, since this point will never belong to the grid. Thus
we will have Q̂N ∈ P+(N) and therefore ĉN = 0. However P ∈ ∂P+, and therefore
we can have Q̂ ∈ ∂P+ and hence ĉ 6= 0. One can construct such an example based
on Example A.4.6 by shifting the spectral line to an irrational frequency point.

Remark A.6.3. In connection to the previous remark, we note that in two dimensions
we have Q̂ ∈ P+ whenever P 6∈ ∂P+, since Assumption A.4.1 is valid for d = 2.
Hence there will be no singular measure. Moreover, since Q̂N → Q̂ as min(N) goes
to infinity, for large enough value of min(N) we must have Q̂N > 0, i.e., Q̂N ∈ P+.
Therefore (P/Q̂N)dνN tends to (P/Q̂)dm in weak∗.

The first thing we need to show is that Q̂N is in fact well-defined. That this is
not evident from the statement of the theorem becomes apparent when noting the
following relationship among the cones of trigonometric polynomials:

P̄+(N) ⊃ P̄+(2N) ⊃ . . . ⊃ P̄+.

For the dual cones we therefore have [57, pp. 157-158]

C̄+(N) ⊂ C̄+(2N) ⊂ . . . ⊂ C̄+,

and thus it is not guaranteed that minimizing (A.6.3b) over Q ∈ P̄+(N) has a
solution for c ∈ C+. However note that when Nl → ∞ the corresponding set
{eikl2π/Nl}kl∈ZNl becomes dense on the unit circle. Therefore P̄+ =

⋂
N∈Zd+

P̄+(N).

Using this we have the following lemma, proved in the appendix, which is a general-
ization to the multivariable case of Proposition 6 in [54].

5An irrational frequency is an angle λπ for which λ is an irrational number.
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Lemma A.6.4. For any c ∈ C+ there exists an N0 such that c ∈ C+(N) for all
min(N) ≥ N0.

This shows that for each c ∈ C+, the problem of minimizing (A.6.3b) over
Q ∈ P̄+(N) does in fact have a solution for large enough values of N. Interestingly,
the lemma is equivalent to limmin(N)→∞ C+(N) = C+.

Proof of Theorem A.2.6. Let Q̂ and Q̂N be as in the statement of the theorem.
Choose a c ∈ C+ and a P ∈ P̄+ \ {0} and fix N0 in accordance with Lemma A.6.4.
Throughout the rest of this proof we only consider min(N) ≥ N0, which means that
an optimal solution Q̂N exists. Moreover, in the proof we need the following result,
which is proved in the appendix.

Lemma A.6.5. The sequence (Q̂N) is bounded in L∞(Td).

Since (Q̂N) is bounded, there is a convergent subsequence, call it (Q̂N) for
convenience, converging in the L∞(Td) norm to some function Q̂∞. Since (Q̂N) is
a set of continuous functions, this means that the convergence is in fact uniform
and hence Q̂∞ is a continuous function. Now since i) the convergence is uniform, ii)
Q̂∞ is continuous, and iii) the grid points become dense on Td as min(N) goes to
infinity, we obtain Q̂∞(eiθ) ≥ 0 for all θ, and hence Q̂∞ belongs to P̄+ \ {0}.

It remains to show that Q̂∞ = Q̂. This will be done by proving that ‖Q̂∞ −
Q̂‖∞ ≤ ε for all ε > 0. To do this, fix a Q̃ ∈ P+ and consider Q̂ + ηQ̃, which
belongs to P+ for all η > 0. By simply adding and subtracting ηQ̃, the triangle
inequality gives

‖Q̂∞ − Q̂‖∞ ≤ η‖Q̃‖∞ + ‖(Q̂∞ + ηQ̃)− Q̂‖∞. (A.6.4)

We want to bound the second term. To this end, note that

JP (Q̂+ ηQ̃)− JP (Q̂) = 〈c, ηq̃〉 −
∫
Td
P log

(
1 +

ηQ̃

Q̂

)
dm,

and, since the integral is nonnegative, we obtain

JP (Q̂+ ηQ̃) ≤ JP (Q̂) + η〈c, q̃〉. (A.6.5)

The same holds for JN
P , i.e., JN

P (Q̂N + ηQ̃) ≤ JN
P (Q̂N) + η〈c, q̃〉. By optimality we

also have JN
P (Q̂N) ≤ JN

P (Q̂+ ηQ̃) <∞ for all η > 0, and hence

JN
P (Q̂N + ηQ̃) ≤ JN

P (Q̂+ ηQ̃) + η〈c, q̃〉. (A.6.6)

Now, since Q̂N + ηQ̃ → Q̂∞ + ηQ̃ ∈ P+, we know that, for large enough values
of min(N), we have Q̂N + ηQ̃ ∈ P+. Therefore, the left hand side of (A.6.6) is
guaranteed to be well-defined for all values of min(N) larger than this value. We
can thus take the limit on both sides of (A.6.6) to obtain

JP (Q̂∞ + ηQ̃) ≤ JP (Q̂+ ηQ̃) + η〈c, q̃〉,
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which together with (A.6.5) yields

JP (Q̂∞ + ηQ̃) ≤ JP (Q̂) + 2η〈c, q̃〉. (A.6.7)

Now consider the sets Dδ = {Q ∈ P̄+ | JP (Q) ≤ JP (Q̂) + δ}. Since the Hessian
at the optimal solution is positive definite we have

⋂
δ>0Dδ = {Q̂}. Therefore, it

follows from (A.6.7) that η > 0 can be chosen so that ‖(Q̂∞ + ηQ̃)− Q̂‖∞ < ε̃ for
any ε̃ > 0. Consequently, by selecting η sufficiently small, we may bound (A.6.4) by
an arbitrary small positive number. Hence Q̂∞ = Q̂.

A.7 Application to system identification

The power spectrum of a signal represents the energy distribution across frequencies
of the signal. For a multidimensional, discrete-time, zero-mean, and homogeneous6

stochastic process {y(t)}, defined for t ∈ Zd, the power spectrum is defined as the
nonnegative measure dµ on Td whose Fourier coefficients are the covariances

ck =

∫
Td
ei(k,θ)dµ.

In one dimension the singular part of the measure represents spectral lines, and
if the absolutely continuous part is also rational, Φ = P/Q, one can use spectral
factorization to determine the filter coefficients for an autoregressive-moving-average
(ARMA) model which, when fed with white noise input, reproduces a stochastic
signal with the same power distribution as Φ. Therefore the one-dimensional rational
covariance extension problem can be used for system identification [55].

With the theory developed in this paper we can estimate rational spectra in
higher dimensions. However spectral factorization is not in general possible when
d > 1 [24]. For d = 2, Geronimo and Woerdeman have established conditions for
when it is possible to factorize a given trigonometric polynomial as a sum-of-one-
square [39, Theorem 1.1.1]. These include a nontrivial rank condition on a reduced
matrix of Fourier coefficients, which we shall call Γred, but also gives an explicit
algorithm for obtaining the factors in cases when it is possible. Nevertheless, in the
following example we will illustrate how the theory could be used in the case when
covariances and cepstral coefficients come from a rational, factorizable spectrum.

We consider a two-dimensional recursive filter with transfer function

b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)
=

∑
k∈Λ+

bke
−i(k,θ)∑

k∈Λ+
ake−i(k,θ)

,

6Homogeneity implies that covariances ck := E{y(t+k)y(t)} are invariant with “time” t ∈ Zd.
From this it is also easy to see that c−k = c̄k.
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Figure A.1: The true spectrum.

where Λ+ = {(k1, k2) ∈ Z2 | 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 2} and the coefficients are given
by b(k1,k2) = Bk1+1,k2+1 and a(k1,k2) = Ak1+1,k2+1, where

B =

 0.9589 −0.0479 0.0959
0.0959 0.0479 0.0959
−0.0959 0.0479 0.1918

 , A =

 1.0000 0.1000 0.0500
−0.1000 0.0500 −0.0500
0.2000 −0.0500 −0.1000

 .
Then the corresponding spectrum is given by

Φ(eiθ) = Φ(eiθ1 , eiθ2) =
P (eiθ1 , eiθ2)

Q(eiθ1 , eiθ2)
=

∣∣∣∣ b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)

∣∣∣∣2 ,
and hence the index set Λ of the coefficients of the trigonometric polynomials P
and Q is given by Λ = {(k1, k2) ∈ Z2 | |k1| ≤ 2, |k2| ≤ 2}.

We approximate the continuous problem with a discrete one in accordance with
Theorem A.2.6. The two-dimensional spectrum Φ is evaluated on a grid of size
30× 30, and shown in Figure A.1. The trigonometric polynomials corresponding to
the true spectrum are shown in Figure A.2. Its covariances and cepstral coefficients
are computed, and a spectrum is then estimated by (unregularized) covariance and
cepstral matching along the lines of Theorem A.2.4. The problem is solved numer-
ically using CVX, a Matlab package for solving disciplined convex programming
problems [41, 40], and the resulting spectrum is shown in Figure A.3a. The relative
error7 is shown in Figure A.3b. As seen from the relative error, we recover the true
spectrum with good accuracy. For the ME solution, the resulting spectrum and
relative error are shown in Figure A.4.

For system identification we are now interested in factorizing the two rational
spectra as a sum-of-one-square, if possible. To check factorizability for the two
solutions, we apply the rank condition from [39, Theorem 1.1.1], which requires

7We define the relative error between two functions Φtrue and Φest be the pointwise evaluation
of |Φtrue − Φest|/Φtrue.
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(a) The true polynomial P . (b) The true polynomial Q.

Figure A.2: The spectrum of the system

(a) Estimated spectrum. (b) Relative error.

Figure A.3: Spectrum estimated with covariance and cepstral matching.

(a) ME-spectrum. (b) Relative error.

Figure A.4: The ME-estimation and relative error to true spectrum.
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that the corresponding submatrix Γred ∈ C6×6 should be of rank four in both cases.
However, such a matrix is generically full rank and we have to study the singular
values in order to determine the numerical rank.

To illustrate this issue, in Figure A.5 we plot the singular values of Γred for the
respective polynomials. Figure A.5b shows the singular values corresponding to the
solution Qtrue P computed with the true polynomial P as prior (cf. Theorem A.2.1
and Section A.3). This solution, as well as the solution obtained by covariance and
cepstral matching, gives the exact spectrum back, up to numerical errors, and hence
should be factorizable. For both these solutions we can also observe a significant
decrease in size between the fourth and the fifth singular values in Figure A.5b.
This indicates that the matrices in fact have numerical rank four, and spectral
factorization is thus possible. Performing the spectral factorization on the solution
with covariance and cepstral matching gives polynomials with coefficients

Best =

 0.9589 −0.0479 0.0959
0.0959 0.0479 0.0959
−0.0959 0.0479 0.1918

, Aest =

 1.0000 0.1000 0.0500
−0.1000 0.0500 −0.0500

0.2000 −0.0500 −0.1000

,
which agree completely with the true coefficients.

For the ME spectrum on the other hand there is no guarantee that it will
be factorizable. In general there is a priori no reason why spectral factorization
should be possible. However, in Figure A.5b we observe a decrease in size between
the fourth and the fifth singular values also for the ME solution ΦME = 1/QME,
although this decrease is significantly smaller than for the other polynomials. If for
the moment we assume that the rank condition on Γred is actually (approximately)
satisfied and apply the factorization algorithm of [39], we obtain the coefficients

AME =

 1.0317 0.1423 −0.0251
−0.1881 −0.0173 −0.1252

0.2872 −0.0570 −0.2597


for the possible spectral factor aME of QME. Forming the corresponding true Q,
namely, |aME|2, and comparing it with QME, we obtain a relative error of up to
10% with respect to QME. We leave the question whether this is a reasonable
approximation to a future study. Note also that if the ME spectrum is factorizable,
the factors are given directly from the covariances by the Geronimo and Woerdeman
algorithm. However if this is not the case, rational covariance extension will still
give a rational spectrum. An important open question related to this, and suggested
by the above analysis, is whether the solution can be tuned by an appropriate choice
of P so that the rank condition is satisfied, and hence factorization is possible.

A.8 Application to texture generation

Wiener systems form a class of nonlinear dynamical systems that consist of a linear
dynamic part composed with a static nonlinearity, as in Figure A.6. They belong
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(a) Singular values of Γred for different P . (b) Singular values of Γred for different Q.

Figure A.5: The singular values of the reduced covariance matrix.

Linear system Static nonlinearity
ut xt yt

Figure A.6: A Wiener system with thresholding as static nonlinearity.

to a class of so called block-oriented systems, which has a long history [4], and
applications are found in many areas of science and engineering [3]. A lot of research
has been done in the area of identification of Wiener systems, see, e.g, [42] and
references therein, and the area is still active [56, 80, 1].

In this example we shall use Wiener systems to model and generate textures.
The idea of using dynamical systems for modeling of textures and images is not new
and has been considered in, e.g., [21, 65]. The setup we present here is motivated by
[29], where thresholded Gaussian random fields are used to model porous materials
for design of surface structures in pharmaceutical film coatings.

To this end, we let {xt; t ∈ Zd} be the stationary output of a linear system with
Gaussian white noise input {ut; t ∈ Zd}, and let yt = f(xt) where f is the static
nonlinearity

f(x) =

{
1 x > τ

0 otherwise,
(A.8.1)

where the thresholding parameter τ is assumed to be unknown. We assume that ut
is a zero-mean process, and hence xt is also a zero-mean Gaussian process, which
we assume to be normalized c0 := E[x2

t ] = 1. Due to these assumptions, the output
yt of the static nonlinearity has mean

E[yt] = P (yt = 1) = 1− P (xt ≤ τ) = 1− φ(τ), (A.8.2)
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where φ(τ) is the Gaussian cumulative distribution function

φ(τ) =

∫ τ

−∞

1√
2π

exp(−s2/2)ds.

Covariances of thresholded Gaussian variables

Next we consider the relation between the covariances of the input xt and those of
the output yt, respectively, and use this to estimate the covariances of the process
xt [3, 66].

To this end, let x1, x2 ∈ N(0, 1) be two jointly Gaussian stochastic variables and
set y` = f(x`), for ` = 1, 2, where f : R→ R is a given function. In addition, let ρ
and r be the covariances ρ := E[x1x2] and r := E[y1y2]−E[y1]E[y2], respectively.
We are interested in the relation between ρ and r, and to this end we introduce
R := E[y1y2]. Now note that R is related to the covariance ρ via [66, Equation (21)]
(see also [3, p. 32]), i.e.,

∂R

∂ρ
=

∫
R2

exp
(
−x

2
1+x2

2−2ρx1x2

2(1−ρ2)

)
2π
√

1− ρ2
f ′(x1)f ′(x2)dx1dx2.

In our case f(x) is given by (A.8.1), and thus f ′(x) = δτ (x) is a Dirac delta function
at τ . Therefore

∂R

∂ρ
=

1

2π
√

1− ρ2
exp

(
− τ2

1 + ρ

)
,

and from this it follows that

R(ρ) = b+

∫ ρ

0

1

2π
√

1− s2
exp

(
− τ2

1 + s

)
ds,

for some constant b. In order to determine b, first note that ρ = 0 implies that
x1 and x2 are uncorrelated, and hence independent, since the joint distribution is
Gaussian. This in turn means that y1 and y2 are independent, since f is a static
function, and hence we get

b = R(0) = E[y1y2] = E[y1]E[y2].

Therefore r can be expressed as

r = R(ρ)− E[y1]E[y2]

=

∫ ρ

0

1

2π
√

1− s2
exp

(
− τ2

1 + s

)
ds.

(A.8.3)

The integrand is well-defined for −1 < ρ < 1, and the integral converges for all
values in the closed interval [−1, 1]. Moreover, the integrand is strictly positive on
(−1, 1) and by the inverse function theorem this transformation is invertible.
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Estimating the linear part of the Wiener system

By using the inverse of (A.8.3) we can estimate the covariances ck := E[xt+kxt]
from estimates of the covariances rk := E[yt+kyt] − E[yt+k]E[yt]. Note however
that (A.8.3) depends on the threshold parameter τ , which is assumed to be unknown.
In order to estimate τ we use (A.8.2), which gives τest = φ−1(1 − E[yt]). Having
estimates of the covariances ck, we can now appeal to Theorem A.2.1 in order to
estimate a rational spectrum for xt.

Given this rational spectral density we want to recover a linear dynamical system
corresponding to the spectrum. However, as was discussed in Section A.7 this
is nontrivial, and we therefore resort to a heuristic and apply the factorization
procedure in [39, Theorem 1.1.1] although some of the conditions required to ensure
the existence of a spectral factor may not be met (cf. Section A.7)

The complete procedure for identifying the Wiener system with thresholding as
static nonlinearity is summarized in Algorithm A.1.

Algorithm A.1

Input: (yt)
1: Estimate threshold parameter: τest = φ−1(1− E[yt])
2: Estimate covariances: rk := E[yt+kyt]− E[yt+k]E[yt]
3: Compute covariances ck := E[xt+kxt] by using (A.8.3)
4: Estimate a rational spectrum using Theorem A.2.1
5: Apply the factorization procedure in [39, Theorem 1.1.1]

Output: τest, coefficients for the linear dynamical system

Simulation results

Next we test the procedure outlined above on simulated data. To this end, we
consider the two-dimensional recursive filter with transfer function given by

b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)
=

∑
k∈Λ+

bke
−i(k,θ)∑

k∈Λ+
ake−i(k,θ)

,

where Λ+ = {(k1, k2) ∈ Z2 | 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 2} and the coefficients are given
by b(k1,k2) = Bk1+1,k2+1 and a(k1,k2) = Ak1+1,k2+1, where

B =

 0.75 −0.2 0.05
0.2 0.3 0.05
−0.05 −0.05 0.1

, A =

 3.6623 −4.0222 0.9987
−4.0939 4.8705 −1.1913

1.2018 −1.3539 0.2155

.
The threshold parameter in (A.8.1) is set to τ = 0.06.

The system is simulated with Gaussian white noise as input, and 500 × 500
samples are taken as output. These samples are used to estimate the threshold
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(a) True spectrum.

(b) Identified ME spectrum. (c) Identified and factorized ME spectrum.

(d) Identified spectrum with true P . (e) Identified and factorized spectrum with
true P .

Figure A.7: Log-plot of the true spectrum and the identified spectra, both before
and after factorization.
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parameter, which gives the estimate τest = 0.0570. Moreover, they are used to
estimate covaraiances rk on a grid Λ = {(k1, k2) ∈ Z2 | |k1| ≤ 3, |k2| ≤ 3}. Note
that this grid Λ does not agree with the true degree of the linear system. From
the estimated covariances (rk) we determine the covariances (ck), which are then
used in the dual optimization problem described in Theorem A.2.1. We compute
the solution with two different P , the first one being P ≡ 1, which corresponds to
the maximum entropy (ME) solution, and the second one being P = Ptrue, i.e., the
trigonometric polynomial corresponding to the filter b. The optimization problems
are solved using the CVX toolbox in Matlab [41, 40]. The corresponding spectra
obtained are shown in Figure A.7. As can be seen in the figure, using the true
P gives a better agreement with the true spectrum, shown in Figure A.7a, which
indicates that an appropriate tuning of p can improve the fit. Although there
are methods in the literature on how to do simultaneously estimation of p and q
[10, 27, 44, 72] (cf. Theorem A.2.4), the question on how to best select p is still
open.

After estimating the spectra, we compute estimates of filter coefficients for the
autoregressive part of the linear system, and the corresponding estimates are

AME =


4.1270 −3.8799 0.3572 0.2297
−5.4210 4.0752 0.4412 −0.2174

2.4057 −0.0926 −1.7157 0.1816
−0.4199 −0.6931 0.9018 −0.1010

,

ATrue P =


3.7207 −4.3079 1.3210 −0.0861
−4.2527 5.4070 −1.6585 0.0364

1.3381 −1.6108 0.1836 0.2351
−0.0562 0.0019 0.2183 −0.2145

.
Using these filter coefficients, together with the corresponding filter coefficients for the
moving-average part, we simulate the estimated Wiener system. The corresponding
generated textures are shown in Figure A.8. Visually, the generated textures seem
to have similar structures. However, by comparing the covariances, which are shown
in Figure A.9, it can be seen that the texture generated by the filter obtained using
the true p matches the higher order covariances considerably better.

A.9 Application to image compression

Since the expression (A.1.2b) is determined by a limited number of parameters,
this approach enables compression of data. Moreover, the smoothness of the
parameterization will facilitate tuning to specifications. Therefore we apply the two-
dimensional circulant RCEP to compression of black-and-white images. Compression
is achieved by approximating the image with a rational spectrum, thereby using
fewer parameters. We compare the ME spectrum to the solution resulting from
regularized covariance and cepstral matching. By choosing n1 � N1, n2 � N2,
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(a) Output of true system. (b) Output of identified max-
imum entropy system.

(c) Output of identified sys-
tem with true p.

(d) Close-up of Figure A.8a. (e) Close-up of Figure A.8b. (f) Close-up of Figure A.8c.

Figure A.8: Output of the true and the identified systems. Figures A.8a - A.8c show
500× 500 samples, and Figures A.8d - A.8f show 100× 100 samples.

(a) Covariances rk of texture
in Figure A.8a.

(b) Covariances rME
k of tex-

ture in Figure A.8b.
(c) Covariances rTrue P

k of
texture in Figure A.8c.

(d) Absolute error |rk−rME
k |. (e) Absolute error

|rk − rTrue P
k |.

Figure A.9: Covariances and covariance errors for the textures. Here k = (k1, k2)
where the x-axis corresponds to k1 and the y-axis corresponds to k2.
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where N1 and N2 are the dimensions of the image, we obtain a significant reduction
in the number of parameters describing the image.

A seemingly straight-forward way is to compute the covariances and cepstral
coefficients directly from the image, and then use these to compute the spectrum.
However, if the discrete spectrum is zero in one of the grid points, the (discrete)
cepstrum is not well-defined. Hence simultaneous covariance and cepstral matching
cannot be applied. Therefore we transform the image, denoted by Ψ, using Φ = eΨ.
Since Ψ is real, Φ is guaranteed to be real and positive for all discrete frequencies, and
Ψ is obtained as Ψ = log Φ. We then compute (A.1.1) and (A.2.3) and obtain the
approximant Φ̂ from Theorem A.5.7. Here we use the real sequences of covariances
and cepstral coefficients obtained by extending the image by symmetric mirroring
(i.e., using the discrete cosine transform [68, Section 4.2]). However, the covariances
and cepstral coefficients of Φ can also be computed as the inverse two-dimensional
FFT of eΨ and Ψ, respectively.

Moreover, note that an ME solution of the same maximum degree as a solution
with a full-degree P has about half the number of parameters. To compensate for
this, we let the degree of the ME solution be a factor

√
2 higher (rounded up), in

order to get a fair comparison.

Compression of simplistic images

To better understand the different methods we first perform compression on a simple
image of only black and white squares. The original image is shown in Figure A.10
and various results are shown in Figure A.11. Figure A.11a, shows that, if too few
coefficients are used, the compression cannot represent the harmonics present in the
image, regardless of the use of a nontrivial P . A visual assessment of the result shows
that A.11e clearly outperforms A.11a, and that A.11f is still slightly better than
A.11b. However A.11c and A.11d are better than A.11g and A.11h, respectively.
In order to more objectively assess the quality of the two different compression
methods, we also compute the MSSIM value of the compressed images. This is a
measure, taking values in the interval [0, 1], for evaluating quality and degradation
of images, for which 1 means exact agreement [81]. A plot of the MSSIM value for
compressions of different degree is shown in Figure A.12. However note that this
measure does not agree completely with the visual impression of all images. Most
notably, the measure gives a higher value to the grey image in Figure A.11a than
the image with structure in Figure A.11e.

Compression of real images

We now apply the methods to some more realistic images. In the first example,
shown in Figure A.13a, the original image is the Shepp-Logan phantom often used
in medical imaging [77], of size 256 × 256 pixels. In Figure A.13b a compression
using covariance and cepstral mathing is shown, where n1 + 1 = n2 + 1 = 30. Hence
this image is described by 2 · 302 = 1800 parameters, compared to the original
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Figure A.10: A simplistic test image. Each black or white square is 128× 128 pixels.

(a) Cepstral match-
ing, n = 4.

(b) Cepstral match-
ing, n = 10.

(c) Cepstral match-
ing, n = 11.

(d) Cepstral match-
ing, n = 30.

(e) ME solution, n =
6.

(f) ME solution, n =
15.

(g) ME solution, n =
16.

(h) ME solution, n =
43.

Figure A.11: Compressions of the simple image shown in Figure A.10. The top
row shows compression with regularized covariance and cepstral matching, where
λ = 10−2, and the bottom row shows compression with the ME solution. In all
cases n1 = n2, and the pair of compressions in each column have approximately the
same number of parameters, namely, nme ≈

√
2nceps.

2562 = 65536 parameters, which corresponds to a reduction in parameters of about
97%. We also compute an ME compression, with degree n1+1 = n2+1 = 45 ≈

√
2·30

which is shown in Figure A.13c.

The second example is a compression of the classical Lenna image, often used
in the image processing literature. The original image, shown in Figure A.14a, is
512× 512 pixels. For regularized cepstral matching we set n1 + 1 = n2 + 1 = 60,
corresponding to a compression rate of about 97%, and the result is shown in
Figure A.14b. The ME compression, computed with n1 + 1 = n2 + 1 = 85 ≈

√
2 · 60,

is shown in Figure A.14c.
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Figure A.12: MSSIM values of different compression levels, plotted against n for
the compression with cepstral matching. Hence the corresponding ME compression
has d

√
2ne coefficients.

Table A.1: MSSIM values of different compression techniques on the two test images.

Shepp-Logan Lenna

Compression MSSIM value Compression MSSIM value

Cepstral 0.8690 Cepstral 0.7451
ME 0.7044 ME 0.7489

The MSSIM values for these compressions are shown in Table A.1. They seem
to agree with the visual impression. Interestingly the compression with cepstral
matching is better for the Shepp-Logan phantom. However, in the Lenna image
neither of the methods outperform the other. The ME compression has more ringing
artifacts, but it is less blurred than the cepstral compression. We believe that this
is related to the fact that if you have relatively few sharp transitions in pixel values,
which is the case in Figures A.10 and A.13a, placing both poles and zero close to
each other can achieve this transition efficiently and thus give better quality on the
compressed image. However when this is not the case, as with the Lenna image,
the trade-off between having spectral zeros or matching higher frequencies is more
complex.

Similar methods have previously been used for compression of textures [21, 65],
where, instead of a scalar two-dimensional moment problem, a one-dimensional
vector problem is considered. Here the image is modeled by a periodic stochastic
vector process rather than a two-dimensional random field, leading to a discrete
vector moment problem akin to the one presented in [54]. This is connected to the
circulant moment problem considered in Section A.2 and to modeling of reciprocal
systems [52, 20].
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(a) Original image. (b) Cepstral matching, n = 30
and λ = 10−2.

(c) ME solution, n = 45.

Figure A.13: Compression of the Shepp-Logan phantom with a compression rate of
about 97%.

(a) Original image. (b) Cepstral matching, n = 60
and λ = 10−2.

(c) ME solution, n = 85.

Figure A.14: Compression of the Lenna image with a compression rate of about
97%.

A.10 Appendix

In this appendix we provide the proofs that have been deferred in the main text. Some
of the proofs use general properties of multidimensional trigonometric polynomials,
summarized in this lemma.

Lemma A.10.1. For all P ∈ P̄+ we have i) |pk1...,kd | ≤ p0...,0 and ii) ‖P‖∞ ≤
|Λ|‖p‖∞.

Proof. The fact that |pk| =
∣∣∫

Td e
i(k,θ)Pdm

∣∣ ≤ ∫Td |ei(k,θ)| |P |dm = p0 shows i).
Next we note that P has |Λ| coefficients, and hence

‖P‖∞ ≤ sup
θ∈Td

∑
k∈Λ

|pk||ei(k,θ)| =
∑
k∈Λ

|pk| ≤ |Λ|‖p‖∞,
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which proves ii).

Proof of Lemma A.3.1. To show lower semicontinuity of

JP (Q) = 〈c, q〉 −
∫
Td
P logQdm = 〈c, q〉+

∫
Td
−P logQdm

we note that 〈c, q〉 is continuous and hence only the integral needs to be considered.

Fix any Q ∈ P̄+ \ {0}. From [76, p. 223] we know that it is log-integrable.
Moreover, let (Qn) be a sequence of trigonometric polynomials in P̄+ \ {0} that
converges to Q in L∞(Td). We know that Q is bounded, and, since the convergence
Qn → Q is uniform, we must have M := supn{maxθ[Qn]} < ∞, and thus 0 ≤
Q/M ≤ 1 and 0 ≤ Qn/M ≤ 1 for all n. Moreover, limn→∞− log(Qn/M) =
− log(Q/M) in an extended real-valued sense. Since −P log(Qn/M) ≥ 0, by Fatou’s
lemma [75, p. 23], we have∫

Td
−P log

(
Q

M

)
dm ≤ lim inf

n→∞

∫
Td
−P log

(
Qn
M

)
dm.

Since (Qn) is an arbitrary sequence, the functional is lower semicontinuous in Q.
Moreover, since Q is also arbitrary it follows that JP is lower semicontinuous on
P̄+ \ {0}.

Proof of Proposition A.4.2. Let k1,k2,k3 ∈ Λ be three linearly independent index
vectors. First note that for the nonnegative trigonometric polynomial Q(eiθ) =∑3

`=1(1− (ei(k`,θ) + e−i(k`,θ))/2) we have Q(ei0) = 0, and hence Q ∈ ∂P+. Next
we will show that

∫
Td Q

−1dm(θ) is finite. By the variable change φ = Aθ, where

A ∈ Rd×d is selected to be invertible and with the `th row equal to k` for ` = 1, 2, 3,
the integral becomes∫

Td

1

Q
dm(θ) =

∫
A(Td)

det(A)−1∑3
`=1(1− cos(φ`))

dm(φ),

where the set A(Td) = {Aθ | θ ∈ Td}. Due to the periodicity of the integrand, the
integral is bounded by

κ

∫
T3

dφ1dφ2dφ3∑3
`=1(1− cos(φ`))

for some constant κ that depends on A and d. This bound is finite [49, 46], and
therefore the proposition follows.

To prove Theorem A.4.4, we need the following lemma.

Lemma A.10.2. fp is a bijective map.
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Proof. By Corollary A.2.3, fp is injective, since there is a unique minimizer of
(A.2.2) over all Q ∈ P+. Hence there is at most one q corresponding to a certain
c, proving injectivity. Surjectivity also follows from Corollary A.2.3. We fix a
P ∈ P+ and simply note that there exists a unique solution for all c ∈ C+, given by
q = (fp)−1(c).

Proof of Theorem A.4.4. In the proof of Theorem A.2.1 we saw that for all nontrivial
variations δQ, ∂2JP (Q; δQ) > 0. Hence

∂fpk
∂q`

=

∫
Td
ei(k−`,θ) P

Q2
dm =

∂2JP (Q)

∂q`∂q̄k
(A.10.1)

is positive definite. Next, we define the map

ϕp : C+ ×P+ → {(rk)k∈Λ ∈ C|Λ| | r−k = r̄k,k ∈ Λ} ∼= R|Λ|

as

ϕpk(c, q) = ck −
∫
Td
ei(k,θ)P

Q
dm,

component-wise. By Corollary A.2.3, ϕp(c, q) = 0 has a unique solution for each c ∈
C+. Since ∂ϕp/∂q = ∂fp/∂q is invertible, the implicit function theorem implies that
q = (fp)−1(c) is locally a C1 function and hence a local diffeomorphism. However,
fp is a bijection (Lemma A.10.2) and therefore a (global) diffeomorphism.

By Theorem A.4.4, the function gc is a well-defined map. The proof of Theorem
A.4.5 now follows along the same lines.

Lemma A.10.3. gc is a bijective map.

Proof. Surjectivity of gc on the image Q+ follows directly from definition. A
straight-forward generalization of Lemma 2.4 in [17] shows that gc is injective.

Proof of Theorem A.4.5. Let the map

ϕc : P+ ×P+ → {(rk)k∈Λ ∈ C|Λ| | r−k = r̄k,k ∈ Λ} ∼= R|Λ|

be given by

ϕck(p, q) = ck −
∫
Td
ei(k,θ)P

Q
dm.

The Jacobian with respect to q is the same as (A.10.1). Hence q = gc(p) is C1 by the
implicit function theorem. Since (A.10.1) gives a positive definite Jacobian matrix,

∂ϕck
∂p`

= −
∫
Td
ei(k−`,θ) 1

Q
dm

defines an invertible Jacobian. Hence p = (gc)−1(q) is C1, so gc is a local diffeomor-
phism. Since it is a bijection (Lemma A.10.3), it is a (global) diffeomorphism.
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Proof of Lemma A.5.1. For any Q ∈ P̄+ \{0}, logQ is integrable [76, p. 223]. Since
P ∈ P̄+,◦, P is not the zero polynomial, hence, since x log x→ 0 as x→ 0, P logP
is integrable and in fact continuous for all P ∈ P̄+,◦. Hence∫

Td
P logP dm−

∫
Td
P logQdm =

∫
Td
P log

(
P

Q

)
dm,

and therefore we can rewrite the functional J(P,Q) as

J(P,Q) = 〈c, q〉 − 〈γ, p〉+

∫
Td
P logP dm−

∫
Td
P logQdm.

All terms in this expression are continuous, except possibly the last integral. However,
following along the same lines as in the proof of Lemma A.3.1, we can apply Fatou’s
lemma showing that J(P,Q) is lower semicontinuous.

Proof of Lemma A.5.2. To show that J has compact sublevel sets J−1(−∞, r], we
proceed as in [55, p. 503] by first splitting the objective function into two parts

J1(P,Q) = 〈c, q〉 −
∫
Td
P logQdm and J2(P ) = −〈γ, p〉+

∫
Td
P logP dm.

The sublevel set consists of the (P,Q) ∈ P̄+,◦× P̄+ such that r ≥ J1(P,Q) + J2(P ),
and from Lemma A.3.3 we have J1(P,Q) ≥ ε‖Q‖∞ − log ‖Q‖∞, since

∫
Td Pdm = 1

by (A.5.5). Next we show that J2(P ) is bounded from below. We first note that since
P ∈ P̄+,◦ we have p0 = 1, and thus P is bounded away from the zero polynomial.
Now, since x log(x) achieves a minimum > −∞ on any compact set [0, a], P logP
must achieve a minimum > −∞ on Td. Calling this minimum κP , we have∫

Td
P logP dm ≥

∫
Td
κP dm = κP .

To bound the term −〈γ, p〉 from below we note that

〈γ, p〉 =
∑
k∈Λ

γ̄kpk ≤

∣∣∣∣∣∑
k∈Λ

γ̄kpk

∣∣∣∣∣ ≤∑
k∈Λ

|γ̄k| |pk| ≤
∑
k∈Λ

‖γ‖∞|pk| ≤ ‖γ‖∞|Λ|‖p‖∞

and thus −〈γ, p〉 ≥ −|Λ|‖γ‖∞‖p‖∞ = −|Λ|‖γ‖∞, since ‖p∞‖ = p0 = 1 by Lemma
A.10.1. Hence there exist some ρ > −∞ such that J2(P ) ≥ ρ. From this we have
that for any (P,Q) ∈ J−1(−∞, r],

r ≥ J(P,Q) ≥ ε‖Q‖∞ − log ‖Q‖∞ + ρ.

This shows that the sublevel set J−1(−∞, r] is a subset of {(P,Q) ∈ P̄+,◦ × P̄+ |
ε‖Q‖∞ − log ‖Q‖∞ ≤ r − ρ}. Since P̄+,◦ is bounded, by comparing linear and
logarithmic growth we see that this set is bounded, and thus so is also the sublevel
set. As before, since it is the sublevel set of a lower semicontinuous function it will
be closed, and hence it is compact.
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Proof of Lemma A.5.3. Consider the directional derivative of J in a point (P,Q) ∈
P̄+,◦× ∈ P̄+ in any direction (δP, δQ) such that P+εδP ∈ P̄+,◦, and Q+εδQ ∈ P̄+

for all ε ∈ (0, a) for some a > 0. A quite straight-forward calculation yields

δJ(P,Q; δP, δQ) = 〈c, δq〉 − 〈γ, δp〉+

∫
Td

[
δP log

(
P

Q

)
− δQP

Q

]
dm,

where we have used the fact, obtained from (A.5.5), that
∫
Td δPdm = δp0 = 0, since

p0 = 1 is constant. Likewise, the second directional derivative becomes

δ2J(P,Q; δP, δQ) =

∫
Td
P

(
δP

1

P
− δQ 1

Q

)2

dm,

which is clearly nonnegative for all feasible directions and hence positive semidefinite.
Thus the problem is convex.

Proof of Lemma A.6.4. First note that C+(N) ⊂ C+. To prove the lemma, it is
sufficient to prove that any c ∈ C+ belongs to C+(N) if min(N) is large enough.

Let c ∈ C+. From (A.3.4) there exists κc > 0 such that

〈c, p〉 ≥ κc‖p‖∞ for all p ∈ P̄+. (A.10.2)

We want to show that 〈c, p̂〉 > 0 for any p̂ ∈ P̄+(N)\{0}. Without loss of generality
we may take ‖p̂‖∞ = 1. Then |∂P̂ (eiθ)/∂θj | ≤

∑
k∈Λ |kj |, and, since P̂ (eiθ) ≥ 0 in

θ ∈ TN, it follows that P̂ (eiθ) ≥ −π∆/min(N), where ∆ =
∑

k∈Λ ‖k‖1. Therefore

P̃ := P̂ + π∆/min(N) ∈ P̄+, and by using (A.10.2) we get

〈c, p̂〉 = 〈c, p̂〉+ c0
π∆

min(N)
− c0

π∆

min(N)
= 〈c, p̃〉 − c0

π∆

min(N)

≥ κc‖p̃‖∞ − c0
π∆

min(N)
= κc

(
‖p̂‖∞ +

π∆

min(N)

)
− c0

π∆

min(N)
. (A.10.3)

The last equality follows from the fact that by Lemma A.10.1 we have that ‖p̃‖∞ =
p̃0 = p0 + π∆/min(N) = ‖p̃‖∞ + π∆/min(N). Now we note that κc ≤ c0, since
P ≡ 1 is a feasible point in the minimization defining κc (see the paragraph above
(A.3.4)). Therefore, if κc = c0, then by (A.10.3) we have that 〈c, p̂〉 > 0. If instead
κc < c0, then by selecting min(N) > π∆(1− c0/κc), we obtain 〈c, p̂〉 > κc‖p̂‖∞ > 0.
In any case, since p̂ ∈ P̄+(N) \ {0} is arbitrary, it follows that c ∈ C+(N).

Proof of Lemma A.6.5. For a fixed Q̃ ∈ P+ we have limmin(N)→∞ JN
P (Q̃) = JP (Q̃),

since the sums in (A.6.3b) are Riemann sums converging to (A.6.3a). Hence we can
define L := supN JN

P (Q̃) <∞. Also, by optimality, ∞ > JN
P (Q̃) ≥ JN

P (Q̂N) for all

values of N and also ∞ > JP (Q̃) ≥ JP (Q̂). Using this and Lemma A.3.3 we obtain

L ≥ JN
P (Q̃) ≥ JN

P (Q̂N) ≥ εN‖Q̂N‖∞ − ‖P‖1‖ log(Q̂N)‖∞
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for all values of N. In accordance with (A.3.5), we can choose εN := κN
c /|Λ|, where

κN
c is the minimum value of 〈c, qN〉 on the compact set {Q ∈ P̄+(N) | ‖q‖∞ = 1}.

If we can show κc := infN κN
c > 0, we can choose ε := κc/|Λ| ≤ εN for all N, so

that
L ≥ ε‖Q̂N‖∞ − ‖P‖1‖ log(Q̂N)‖∞.

Then comparing linear and logarithmic growth this implies that (Q̂N) is bounded.
To show that κc > 0 first note that for every finite value of min(N) we have

κN
c > 0. Now assume infN κN

c = 0. Then there must exist a sequence (q?N) such that
〈c, q?N〉 → 0 as min(N)→∞, where q?N ∈ P̄+(N) and ‖q?N‖∞ = 1. Now, since every
q?N is a vector in C|Λ|, the constraint ‖q‖∞ = 1 defines a compact set. Hence there
is a subsequence, also indexed with N, so that q? := limmin(N)→∞ q?N is well-defined
and ‖q?‖∞ = 1. Then 〈c, q?〉 = 0. However, since c ∈ C+ and q? ∈ P̄+, this implies
that q? = 0, which contradicts ‖q?‖∞ = 1. Hence κc > 0, as claimed.
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Abstract

In our companion paper [A. Ringh, J. Karlsson, and A. Lindquist, SIAM
J. Control Optim., 54 (2016), pp. 1950–1982] we discussed the multidimen-
sional rational covariance extension problem (RCEP), which has important
applications in image processing, and spectral estimation in radar, sonar, and
medical imaging. This is an inverse problem where a power spectrum with
a rational absolutely continuous part is reconstructed from a finite set of
moments. However, in most applications these moments are determined from
observed data and are therefore only approximate, and the RCEP may not
have a solution. In this paper we extend the results of our companion paper
to handle approximate covariance matching. We consider two problems, one
with a soft constraint and the other one with a hard constraint, and show
that they are connected via a homeomorphism. We also demonstrate that
the problems are well-posed and illustrate the theory by examples in spectral
estimation and texture generation.

Keywords: approximate covariance extension, trigonometric moment problem,
convex optimization, multidimensional spectral estimation, texture generation

B.1 Introduction

Trigonometric moment problems are ubiquitous in systems and control, such as
spectral estimation, signal processing, system identification, image processing and
remote sensing [5, 20, 59]. In the (truncated) multidimensional trigonometric
moment problem we seek a nonnegative measure dµ on Td satisfying the moment
equation

ck =

∫
Td
ei(k,θ)dµ(θ) for all k ∈ Λ, (B.1.1)

where T := (−π, π], θ := (θ1, . . . , θd) ∈ Td, and (k,θ) :=
∑d
j=1 kjθj is the scalar

product in Rd. Here Λ ⊂ Zd is a finite index set satisfying 0 ∈ Λ and −Λ = Λ. A
necessary condition for (B.1.1) to have a solution is that the sequence

c := [ck | k := (k1, . . . , kd) ∈ Λ] (B.1.2)
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satisfy the symmetry condition c−k = c̄k, where¯denotes the complex conjugate.
The space of sequences (B.1.2) with this symmetry will be denoted by C and will
be represented by vectors c, formed by ordering the coefficient in some prescribed
manner, e.g., lexicographical. Note that C is isomorphic to R|Λ|, where |Λ| is the
cardinality of Λ. However, as we shall see below, not all c ∈ C are bona fide moments
for nonnegative measures dµ.

In many of the applications mentioned above there is a natural complexity
constraint prescribed by design specifications. In the context of finite-dimensional
systems these constraints often arise in the requirement that transfer functions be
rational. This leads to the rational covariance extension problem (RCEP), which
has been studied in various degrees of generality in [25, 26, 36, 52, 53] and can be
posed as follows.

Define eiθ := (eiθ1 , . . . , eiθd) and let

dµ(θ) = Φ(eiθ)dm(θ) + dν(θ), (B.1.3a)

be the (unique) Lebesgue decomposition of dµ (see, e.g., [56, p. 121]), where

dm(θ) := (1/2π)d
d∏
j=1

dθj

is the (normalized) Lebesgue measure and dν is a singular measure. Then given
a c ∈ C, we are interested in parameterizing solutions to (B.1.1) such that the
absolutely continuous part of the measure (B.1.3a) takes the form

Φ(eiθ) =
P (eiθ)

Q(eiθ)
, p, q ∈ P̄+\{0}, (B.1.3b)

where P̄+ is the closure of the convex cone P+ of the coefficients p ∈ C corresponding
to trigonometric polynomials

P (eiθ) =
∑
k∈Λ

pke
−i(k,θ), p−k = p̄k (B.1.4)

that are positive for all θ ∈ Td.
The reason for referring to this problem as a rational covariance extension problem

is that the numbers (B.1.2) correspond to covariances ck := E{y(t + k)y(t)} of
a discrete-time, zero-mean, and homogeneous1 stochastic process {y(t); t ∈ Zd}.
The corresponding power spectrum, representing the energy distribution across
frequencies, is defined as the nonnegative measure dµ on Td whose Fourier coefficients
are the covariances (B.1.2). A scalar version of this problem (d = 1) was first posed
by Kalman [34] and has been extensively studied and solved in the literature
[24, 12, 6, 21, 48, 13, 41, 7, 61, 47]. It has been generalized to more general scalar

1Homogeneity generalizes stationarity in the case d = 1.
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moment problems [8, 27, 9] and to the multidimensional setting [26, 25, 53, 52, 36].
Also worth mentioning here is work by Lang and McClellan [39, 40, 45, 46, 38, 37]
considering the multidimensional maximum entropy problem, which hence has
certain overlap with the above literature.

The multidimensional RCEP posed above has a solution if and only if c ∈ C+,
where C+ is the open convex cone

C+ :=
{
c | 〈c, p〉 > 0, for all p ∈ P̄+ \ {0}

}
,

where 〈c, p〉 :=
∑

k∈Λ ckp̄k is the inner product in C (Theorem B.2.4). However, the
covariances [ck | k := (k1, . . . , kd) ∈ Λ] are generally determined from statistical
data. Therefore the condition c ∈ C+ may not be satisfied, and testing this condition
is difficult in the multidimensional case. Therefore, we may want to find a positive
measure dµ and a corresponding r ∈ C+, namely

rk =

∫
Td
ei(k,θ)dµ(θ), k ∈ Λ, (B.1.5)

so that r is close to c in some norm, e.g., the Euclidean norm ‖ � ‖2. This is an
ill-posed inverse problem which in general has an infinite number of solutions dµ. As
we already mentioned, we are interested in rational solutions (B.1.3), and to obtain
such solutions we use regularization as in [53]. Hence, we seek a dµ that minimizes

λD(Pdm, dµ) +
1

2
‖r − c‖22

subject to (B.1.5), where λ > 0 is a regularization parameter and

D(Pdm, dµ) :=

∫
Td

(
P log

P

Φ
dm+ dµ− Pdm

)
(B.1.6)

is the nomalized Kullback-Leibler divergence [33, Chp. 4] [15, 61]. As will be
explained in Section B.2, D(Pdm, dµ) is always nonnegative and has the property
D(Pdm,Pdm) = 0.

In this paper we shall consider a more general problem in the spirit of [22]. To
this end, for any Hermitian, positive definite matrix M , we define the weighted
vector norm ‖x‖M := (x∗Mx)1/2, where ∗ denotes the conjugate transpose, and
consider the problem

min
dµ≥0, r

D(Pdm, dµ) +
1

2
‖r − c‖2W−1 (B.1.7)

subject to rk =

∫
Td
ei(k,θ)dµ(θ), k ∈ Λ,

which is the same as the problem above with W = λI. However, since the space
C has a certain symmetry, we will also limit the matrices W−1 in the weighted
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norm to respect this symmetry. In particular, this means that, in addition to being
Hermitian positive definite, we will assume that W−1 maps C into C. The latter
condition corresponds to W−1 being Hermitian centrosymmetric with respect to
the index set Λ, i.e., [W−1]−k,−` = [W−1]k,` for all k, ` ∈ Λ. This will be assumed
throughout the rest of this paper, and we shall refer to such W as a weight matrix.

Using the same principle as in [57], we shall also consider the problem of
minimizing D(Pdm, dµ) subject to (B.1.5) and the hard constraint

‖r − c‖2 ≤ λ . (B.1.8)

Since (B.1.5) are bona fide moments and hence r ∈ C+, while c 6∈ C+ in general,
this problem will not have a solution if the distance from c to C+ is greater than√
λ. Hence the choice of λ must be made with some care. Analogously with the

rational covariance extension with soft constraints in (B.1.7), we shall consider the
more general problem

min
dµ≥0, r

D(Pdm, dµ) (B.1.9)

subject to rk =

∫
Td
ei(k,θ)dµ(θ), k ∈ Λ,

‖r − c‖2W−1 ≤ 1,

which we shall refer to as the rational covariance extension problem with hard
constraints. Again, this problem reduces to the simpler problem by setting W = λI.

As we shall see, the soft-constrained problem (B.1.7) always has a solution, while
the hard-constrained problem (B.1.9) may fail to have a solution for some weight
matrices W . However, in Section B.7 we show that the two problems are in fact
equivalent in the sense that whenever (B.1.9) has a solution there is a corresponding
W in (B.1.7) that gives the same solution, and any solution of (B.1.7) can also
be obtained from (B.1.9) by a suitable choice of W . The reason for considering
both formulations is that one formulation might be more suitable than the other
for the particular application at hand. For example, an absolute error estimate
for the covariances is more naturally incorporated in the formulation with hard
constraints. A possible choice of the weight matrix W in either formulation would
be the covariance matrix of the estimated moments, as suggested in [22]. This
corresponds to the Mahalanobis distance and could be a natural way to incorporate
uncertainty of the covariance estimates in the spectral estimation procedure.

Previous work in this direction can be found in [58, 22, 10, 57, 35], where
[58, 35, 10] consider the problem of selecting an appropriate covariances sequence
to match in a given confidence region. The two approximation problems considered
here are similar to the ones considered in [57] and [22], respectively. (For more
details, also see [3, Chp. B].)

We begin in Section B.2 by reviewing the regular multidimensional RCEP for
exact covariance matching in a broader perspective. In Section B.3 we present our
main results on approximate rational covariance extension with soft constraints,
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and in Section B.4 we show that the dual solution is well-posed. In Section B.5 we
investigate conditions under which there are solutions without a singular part. The
approximate rational covariance extension with hard constraints is considered in
Section B.6, and in Section B.7 we establish a homeomorphism between the weight
matrices in the two problems, showing that the problems are actually equivalent when
solutions exist. We also show that under certain conditions the homeomorphism
can be extended to hold between all sets of parameters, allowing us to carry over
results from the soft-constrained setting to the hard-constrained one. In Section B.8
we discuss the properties of various covariance estimators, in Section B.9 we give a
two-dimensional example from spectral estimation, and in Section B.10 we apply
our theory to system identification and texture reconstruction. Some of the results
of this paper were announced in [54] without proofs.

B.2 Rational covariance extension with exact matching

The trigonometric moment problem of determining a positive measure dµ satisfying
(B.1.1) is an inverse problem that has a solution if and only if c ∈ C̄+ [36, Thm. 2.3],
where C̄+ is the closure of C+, and then in general it has infinitely many solutions.
However, the nature of possible rational solutions (B.1.3) will depend on the location
of c in C̄+. To clarify this point we need the following lemma.

Lemma B.2.1. P̄+ \ {0} ⊂ C+.

Proof. Obviously the inner product 〈q, p〉 :=
∑

k∈Λ qkp̄k can be expressed in the
integral form

〈q, p〉 =

∫
Td
Q(eiθ)P (eiθ)dm(θ), (B.2.1)

and therefore 〈q, p〉 > 0 for all q, p ∈ P̄+ \ {0}, as P and Q can have zeros only on
sets of measure zero. Hence the statement of the lemma follows.

Therefore, under certain particular conditions, the multidimensional RCEP has
a very simple solution with a polynomial spectral density, namely

dµ = P (eiθ)dm(θ), p ∈ P̄+\{0}. (B.2.2)

Proposition B.2.2. The multidimensional RCEP has a unique polynomial solution
(B.2.2) if and only if c ∈ P̄+\{0}, namely P = C, where

C(eiθ) :=
∑
k∈Λ

cke
−i(k,θ).

The proof of Proposition B.2.2 is immediate by noting that any such C is a bona
fide spectral density and noting that ck =

∫
Td e

i(k,θ)C(eiθ)dm(θ).
As seen from the following result presented in [36, Sec. 6], the other extreme

occurs for c ∈ ∂C+ := C̄+ \ C+, when only singular solutions exist.
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Proposition B.2.3. For any c ∈ ∂C+ there is a solution dµ of (B.1.1) with support
in at most |Λ| − 1 points. There is no solution with an absolutely continuous part
Φdm.

However, for any c ∈ C+, there is a rational solution (B.1.3) parametrized by
p ∈ P̄+\{0}, as demonstrated in [53] by considering a primal-dual pair of convex
optimization problems. In that paper the primal problem is a weighted maximum
entropy problem, but as also noted in [53, Sec. 3.2], it is equivalent to

min
dµ≥0

∫
Td
P log

P

Φ
dm(θ) (B.2.3)

subject to ck =

∫
Td
ei(k,θ)dµ(θ), k ∈ Λ,

where Φdm is the absolutely continuous part of dµ. This amounts to minimizing the
(regular) Kullback-Leibler divergence between Pdm and dµ, subject to dµ matching
the given data [27, 53]. In the present case of exact covariance matching, this
problem is equivalent to minimizing (B.1.6) subject to (B.1.1), since P is fixed and
the total mass of dµ is determined by the 0:th moment c0 =

∫
Td dµ. Hence both∫

Td dµ and
∫
Td Pdm are constants in this case. Hence problem (B.1.7) and problem

(B.1.9) are natural extensions of (B.2.3) for the case where the covariance sequence
is not known exactly.

The primal problem (B.2.3) is a problem in infinite dimensions, but with a finite
number of constraints. The dual to this problem will then have a finite number of
variables but an infinite number of constraints and is given by

min
q∈P̄+

〈c, q〉 −
∫
Td
P logQdm(θ). (B.2.4)

In particular, Theorem 2.1 in [53], based on corresponding analysis in [36], reads as
follows.

Theorem B.2.4. Problem (B.2.3) has a solution if and only if c ∈ C+. For every
c ∈ C+ and p ∈ P̄+ \ {0} the functional in (B.2.4) is strictly convex and has a
unique minimizer q̂ ∈ P̄+ \ {0}. Moreover, there exists a unique ĉ ∈ ∂C+ and a (not
necessarily unique) nonnegative singular measure dν̂ with support

supp(dν̂) ⊆ {θ ∈ Td | Q̂(eiθ) = 0} (B.2.5)

such that

ck =

∫
Td
ei(k,θ)

(
P

Q̂
dm+ dν̂

)
, k ∈ Λ, (B.2.6a)

ĉk =

∫
Td
ei(k,θ)dν̂, k ∈ Λ. (B.2.6b)
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For any such dν̂, the measure

dµ̂(θ) =
P (eiθ)

Q̂(eiθ)
dm(θ) + dν̂(θ) (B.2.7)

is an optimal solution to the problem (B.2.3). Moreover, dν̂ can be chosen with
support in at most |Λ| − 1 points, where |Λ| is the cardinality of the index set Λ.

If c ∈ ∂C+, only a singular measure with finite support would match the moment
condition (Proposition B.2.3). In this case, the problem (B.2.3) makes no sense,
since any feasible solution has infinite objective value.

In [36] we also derived the KKT conditions

q̂ ∈ P̄+, ĉ ∈ ∂C+, 〈ĉ, q̂〉 = 0 (B.2.8a)

ck =

∫
Td
ei(k,θ)P

Q̂
dm+ ĉk, k ∈ Λ, (B.2.8b)

which are necessary and sufficient for optimality of the primal and dual problems.
Since (B.2.3) is an inverse problem, we are interested in how the solution depends

on the parameters of the problem. From Propositions 7.3 and 7.4 in [36] we have
the following result.

Proposition B.2.5. Let c, p and q̂ be as in Theorem B.2.4. Then the map (c, p) 7→ q̂
is continuous.

To get a full description of well-posedness of the solution we would like to extend
this continuity result to the map (c, p) 7→ (q̂, ĉ). However, such a generalization
is only possible under certain conditions. The following result is a consequence of
Proposition B.2.5 and [53, Cor. 2.3].

Proposition B.2.6. Let c, p, q̂ and ĉ be as in Theorem B.2.4. Then, for d ≤ 2
and all (c, p) ∈ C+ ×P+, the mapping (c, p)→ (q̂, ĉ) is continuous.

Corollary 2.3 in [53] actually ensures that ĉ = 0 for d ≤ 2 and p ∈ P+. However,
in Section B.4 we present a generalization of Proposition B.2.6 to cases with d ≥ 3,
where then ĉ may be nonzero. (The proof of this generalization can be found in [55].)
Here we shall also consider an example where continuity fails when p belongs to
the boundary ∂P+ := P̄+ \P+, i.e., the corresponding nonnegative trigonometric
polynomial P (eiθ) is zero in at least one point.

B.3 Approximate covariance extension with soft constraints

To handle the case with noisy covariance data, when c may not even belong to C+,
we relax the exact covariance matching constraint (B.1.1) in the primal problem
(B.2.3) to obtain the problem (B.1.7). In this case it is natural to reformulate the
objective function in (B.2.3) to include a term that also accounts for changes in the
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total mass of dµ. Consequently, we have exchanged the objective function in (B.2.3)
by the normalized Kullback-Leibler divergence (B.1.6) plus a term that ensures
approximate data matching.

Using the normalized Kullback-Leibler divergence, as proposed in [33, Chp. 4]
[15, 61], is an advantage in the approximate covariance matching problem since this
divergence is always nonnegative, precisely as is the case for probability densities.
To see this, observe that, in view of the basic inequality x− 1 ≥ log x,

D(Pdm, dµ) =

∫
Td

(
P

(
− log

Φ

P

)
dm+ dµ− Pdm

)
≥
∫
Td

(
P (1− Φ

P
)dm+ Φdm− Pdm

)
+

∫
Td
dν ≥ 0,

since dν is a nonnegative measure. Moreover, D(Pdm,Pdm) = 0, as can be seen by
taking dµ = Pdm in (B.1.6).

The problem under consideration is to find a nonnegative measure dµ = Φdm+dν
minimizing

D(Pdm, dµ) +
1

2
‖r − c‖2W−1

subject to (B.1.5). To derive the dual of this problem we consider the corresponding
maximization problem and form the Lagrangian

L(Φ, dν, r, q) = − D(Pdm, dµ)− 1

2
‖r − c‖2W−1 +

∑
k∈Λ

q̄k

(
rk −

∫
Td
ei(k,θ)dµ(θ)

)
= − D(Pdm, dµ)− 1

2
‖r − c‖2W−1 + 〈r, q〉 −

∫
Td
Qdµ ,

where q := [qk | k := (k1, . . . , kd) ∈ Λ] are Lagrange multipliers and Q is the
corresponding trigonometric polynomial (B.1.4). However,

D(Pdm, dµ) =

∫
Td
P (logP − 1)dm−

∫
Td
P log Φdm+ r0 , (B.3.1)

and therefore

L(Φ, dν, r, q) =

∫
Td
P log Φdm−

∫
Td
QΦdm−

∫
Td
Qdν −

∫
Td
P (logP − 1)dm

+ 〈r, q − e〉 − 1

2
‖r − c‖2W−1 , (B.3.2)

where e := [ek]k∈Λ, e0 = 1 and ek = 0 for k ∈ Λ \ {0}, and hence r0 = 〈r, e〉.
In deriving the dual functional

ϕ(q) = sup
Φ≥0,dν≥0,r

L(Φ, dν, r, q),

124



Multidimensional RCE with approximate covariance matching

to be minimized, we only need to consider q ∈ P̄+ \ {0}, as ϕ will take infinite
values for q 6∈ P̄+. In fact, following along the lines of [53, p. 1957], we note that if
Q(eiθ0) < 0, then (B.3.2) will tend to infinity when ν(θ0) → ∞. Moreover, since
p ∈ P̄+ \ {0}, there is a neighborhood where P (eiθ) > 0; letting Φ tend to infinity
in this neighborhood, (B.3.2) will tend to infinity if Q ≡ 0. We also note that the
nonnegative function Φ can only be zero on a set of measure zero; otherwise, the
first term in (B.3.2) will be −∞.

The directional derivative2 of the Lagrangian (B.3.2) in any feasible direction
δΦ, i.e., any direction δΦ such that Φ + εδΦ ≥ 0 for sufficiently small ε > 0, is easily
seen to be

δL(Φ, dν, r, q; δΦ) =

∫
Td

(
P

Φ
−Q

)
δΦdm.

In particular, the direction δΦ := Φ sign(P − QΦ) is feasible since (1 ± ε)Φ ≥ 0
for 0 < ε < 1. Therefore, any maximizing Φ must satisfy

∫
Td |P −QΦ|dm ≤ 0 and

hence (B.1.3b). Moreover, a maximizing choice of dν will require that∫
Td
Qdν = 0, (B.3.3)

as this nonnegative term can be made zero by the simple choice dν ≡ 0, and
consequently (B.2.5) must hold. Finally, the directional derivative

δL(Φ, dν, r, q; δr) = 〈δr, q − e+W−1(r − c)〉

is zero for all δr ∈ C if

r = c+W (q − e). (B.3.4)

Inserting this together with (B.1.3b) and (B.3.3) into (B.3.2) then yields the dual
functional

ϕ(q) = 〈c, q〉 −
∫
Td
P logQdm+

1

2
‖q − e‖2W − c0.

Consequently, the dual of the (primal) optimization problem (B.1.7) is equivalent to

min
q∈P̄+

〈c, q〉 −
∫
Td
P logQdm+

1

2
‖q − e‖2W . (B.3.5)

Theorem B.3.1. For every p ∈ P̄+ \{0} the functional in (B.3.5) is strictly convex
and has a unique minimizer q̂ ∈ P̄+ \ {0}. Moreover, there exists a unique r̂ ∈ C+,
a unique ĉ ∈ ∂C+ and a (not necessarily unique) nonnegative singular measure dν̂
with support

supp(dν̂) ⊆ {θ ∈ Td | Q̂(eiθ) = 0} (B.3.6)

2Formally, the Gâteaux differential [44].
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such that

r̂k =

∫
Td
ei(k,θ)

(
P

Q̂
dm+ dν̂

)
for all k ∈ Λ, (B.3.7a)

ĉk =

∫
Td
ei(k,θ)dν̂ for all k ∈ Λ , (B.3.7b)

and the measure

dµ̂(θ) =
P (eiθ)

Q̂(eiθ)
dm(θ) + dν̂(θ) (B.3.8)

is an optimal solution to the primal problem (B.1.7). Moreover, dν̂ can be chosen
with support in at most |Λ| − 1 points.

Proof. The objective functional J of the dual problem (B.3.5) can be written as the
sum of two terms, namely

J1(q) = 〈c̃, q〉 −
∫
Td
P log(Q)dm and J2(q) = 〈c− c̃, q〉+

1

2
‖q − e‖2W ,

where c̃ ∈ C+. The functional J1 is strictly convex (Theorem B.2.4), and trivially
the same holds for J2 since it is a positive definite quadratic form. Consequently,
J = J1 + J2 is strictly convex, as claimed. Moreover, J1 is lower semicontinuous
[53, Lem. 3.1] with compact sublevel sets J−1

1 (−∞, ρ] [53, Lem. 3.2]. Likewise, J2 is
continuous with compact sublevel sets. Therefore, J is lower semicontinuous with
compact sublevel sets and therefore has a minimum q̂, which must be unique by
strict convexity.

In view of (B.3.4), the optimal value of r is given by

r̂ = c+W (q̂ − e) (B.3.9)

and is hence unique. Since therefore the linear term c+W (q − e) in the gradient of
J takes the value r̂ at the optimal point, the analysis in [53, Sec. 3.1.5] applies with
obvious modifications, showing that there is a ĉ ∈ C̄+, which then must be unique,
such that

r̂k =

∫
Td
ei(k,θ)P

Q̂
dm+ ĉk.

Moreover, there is a discrete measure dν̂ with support in at most |Λ| − 1 points
such that (B.3.7b) holds; see, e.g., [36, Prop. 2.4]. Then (B.3.7a) holds as well. In
view of (B.3.3),

〈ĉ, q̂〉 =

∫
Td
Q̂dν̂ = 0, (B.3.10)

and consequently ĉ ∈ ∂C+, and the support of dν̂ must satisfy (B.3.6).
Finally, let r be given in terms of dµ by (B.1.5), and let I(dµ) be the corresponding

primal functional in (B.1.7). Then, for any such dµ,

I(dµ) = L(Φ, dν, r, q̂) ≤ L(Φ̂, dν̂, r̂, q̂) = I(dµ̂),

and hence dµ̂ is an optimal solution to the primal problem (B.1.7), as claimed.
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We collect the KKT conditions in the following corollary.

Corollary B.3.2. The conditions

q̂ ∈ P̄+, ĉ ∈ ∂C+, 〈ĉ, q̂〉 = 0 (B.3.11a)

r̂k =

∫
Td
ei(k,θ)P

Q̂
dm+ ĉk, k ∈ Λ (B.3.11b)

r̂ − c = W (q̂ − e). (B.3.11c)

are necessary and sufficient conditions for optimality of the dual pair (B.1.7) and
(B.3.5) of optimization problems.

B.4 On the well-posedness of the soft-constrained problem

In the previous sections we have shown that the primal and dual optimization
problems are well-defined. Next we investigate the well-posedness of the primal
problem as an inverse problem. Thus, we first establish the continuity of the solutions
q̂ in terms of the parameters W , c, and p.

Continuity of q̂ with respect to c, p and W

We start considering the continuity of the optimal solution with respect to the
parameters. The parameter set of interest is

P = {(c, p,W ) | c ∈ C, p ∈ P̄+ \ {0},W > 0}. (B.4.1)

Theorem B.4.1. Let

Jc,p,W (q) = 〈c, q〉 −
∫
Td
P logQdm+

1

2
‖q − e‖2W . (B.4.2)

Then the map (c, p,W ) 7→ q̂ := arg minq∈P̄+
Jc,p,W (q) is continuous on P.

Proof. Following the procedure in [36, Prop. 7.3] we use the continuity of the optimal
value (Lemma B.12.1) to show the continuity of the optimal solution. To this end,
let (c(k), p(k),W (k)) be a sequence of parameters in P converging to (c, p,W ) ∈ P
as k → ∞. Moreover, defining Jk(q) := Jc(k),p(k),W (k)(q) and J(q) := Jc,p,W (q)
for simplicity of notation, let q̂k = arg minq∈P̄+

Jk(q) and q̂ = arg minq∈P̄+
J(q).

By Lemma B.12.1, (q̂k) is bounded, and hence there is a subsequence, which for
simplicity we also call (q̂k), converging to a limit q∞. If we can show that q∞ = q̂,
then the theorem follows. To this end, choosing a q0 ∈ P+, we have

Jk(q̂k) = Jk(q̂k + εq0)− 〈c(k), εq0〉+

∫
Td
P (k) log

(
Q̂k + εQ0

Q̂k

)
dm

+
1

2
‖q̂k − e‖2W (k) −

1

2
‖q̂k + εq0 − e‖2W (k)

≥ Jk(q̂k + εq0)− 〈c(k), εq0〉+
1

2
‖q̂k − e‖2W (k) −

1

2
‖q̂k + εq0 − e‖2W (k) .
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Consequently, by Lemma B.12.1,

J(q̂) = lim
k→∞

Jk(q̂k)≥ lim
k→∞

Jk(q̂k+εq0)−ε〈c(k), q0〉+
1

2
‖q̂k−e‖2W (k)−

1

2
‖q̂k+εq0−e‖2W (k) .

However q̂k + εq0 ∈ P+, and, since (c, p,W, q) 7→ Jc,p,W (q) is continuous in P ×P+,
we obtain

J(q̂) ≥ lim
k→∞

(
Jk(q̂k + εq0)− ε〈c(k), q0〉+

1

2
‖q̂k − e‖2W (k) −

1

2
‖q̂k + εq0 − e‖2W (k)

)
= J(q∞ + εq0)− ε〈c, q0〉+

1

2
‖q∞ − e‖2W −

1

2
‖q∞ + εq0 − e‖2W . (B.4.3)

Letting ε→ 0 in (B.4.3), we obtain the inequality J(q̂) ≥ J(q∞). By strict convexity
of J the optimal solution is unique, and hence q̂ = q∞.

Continuity of ĉ with respect to q̂

We have now established the continuity from (c, p,W ) to q̂. In the same way as in
Proposition B.2.6 we are also interested in the continuity of the map (c, p,W ) 7→ (q̂, ĉ).
This would follow if we could show that the map from q̂ to ĉ is continuous. From
the KKT condition (B.3.11c), it is seen that r̂ is continuous in c, W , and q̂. In view
of (B.3.11b), i.e.,

r̂k =

∫
Td
ei(k,θ)P

Q̂
dm+ ĉk, k ∈ Λ

the continuity of ĉ would follow if
∫
Td PQ̂

−1dm is continuous in (p, q̂) whenever it

is finite. If p ∈ P+, this follows from the continuity of the map q̂ 7→ Q̂−1 in L1(Td).
For the case d ≤ 2, this is trivial since if

∫
Td Q̂

−1dm is finite, then q̂ ∈ P+ and Q̂ is
bounded away from zero (cf. Proposition B.2.6). However, for the case d > 2 the
optimal q̂ may belong to the boundary ∂P+, i.e., Q̂ might be zero in some point.
The following proposition shows the L1 continuity of q̂ 7→ Q̂−1 for certain cases.

Proposition B.4.2. For d ≥ 3, let q̂ ∈ P̄+ and suppose that the Hessian ∇θθ Q̂ is
positive definite in each point where Q̂ is zero. Then Q̂−1 ∈ L1(Td) and the mapping
from the coefficient vector q ∈ P̄+ to Q−1 is L1 continuous in the point q̂.

The proof of this proposition is given in [55]. From Propositions B.4.2 and B.2.6
the following continuity result follows directly.

Corollary B.4.3. For all c ∈ C, p ∈ P+,W > 0, the mapping (c, p,W )→ (q̂, ĉ) is
continuous in any point (c, p,W ) for which the Hessian ∇θθ Q̂ is positive definite in
each point where Q̂ is zero.

The condition p ∈ P+ is needed since we may have pole-zero cancellations in
P/Q̂ when p ∈ ∂P+, and then

∫
Td P/Q̂dm may be finite even if Q̂−1 6∈ L1(Td). The

following example shows that this may lead to discontinuities in the map p 7→ ĉ
(cf. Example 3.8 in [36]).
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Example B.4.4. Let

c =

1
3
1

 =

0
2
0

+

1
1
1

 =

∫ π

−π

e−iθ1
eiθ

 (2dm+ dν0) ,

where dm = dθ/2π and dν0 is the singular measure δ0(θ)dθ with support in θ = 0.
Since dµ := 2dm+ dν0 is positive, c ∈ C̄+. Moreover, since

Tc =

[
3 1
1 3

]
> 0

we have that c ∈ C+ (see, e.g., [41, p. 2853]). Thus we know [53, Cor. 2.3] that
for each p ∈ P+ we have a unique q̂ ∈ P+ such that P/Q̂ matches c, and hence
ĉ = 0. However, for p = 2(−1, 2,−1)′ we have that q̂ = (−1, 2,−1)′ and ĉ = (1, 1, 1)′

(Theorem B.2.4). Then, for the sequence (pk), where pk = 2(−1, 2 + 1/k,−1) ∈ P+,
we have ĉk = 0, so

lim
k→∞

ĉk = lim
k→∞

0
0
0

 6=
1

1
1

 ,
which shows that the mapping p→ ĉ is not continuous.

B.5 Tuning to avoid a singular part

In many situations we prefer solutions where there is no singular measure dν in the
optimal solution. An interesting question is therefore for what prior P and weight
W do we obtain dν̂ = 0? The following result provides a sufficient condition.

Proposition B.5.1. Let c ∈ C and let p be the Fourier coefficients of the prior P .
If the weight satisfies3

‖W−1/2‖2,1 < ‖c− p‖−1
W−1 , (B.5.1)

then the optimal solution of (B.1.7) is of the form

dµ̂ = (P/Q̂)dm,

i.e., the singular part dν̂ vanishes.

Remark B.5.2. Note that for a scalar weight, W = λI, the bound (B.5.1) simplifies
to

λ > |Λ|1/2‖c− p‖2, (B.5.2)

where |Λ| is the cardinality of index set Λ.

For the proof of Proposition B.5.1 we need the following lemma.

3Here ‖A‖2,1 = maxc6=0 ‖Ac‖1/‖c‖2 denotes the subordinate (induced) matrix norm.
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Lemma B.5.3. Condition (B.5.1) implies

‖W−1(r̂ − c)‖1 < 1, (B.5.3)

where r̂ is the optimal value of r in problem (B.1.7).

Proof. Let

I(dµ, r) := D(Pdm, dµ) +
1

2
‖r − c‖2W−1 (B.5.4)

be the cost function of problem (B.1.7), and let (dµ̂, r̂) be the optimal solution.
Clearly, I(Pdm, p) ≥ I(dµ̂, r̂), and consequently

‖r̂ − c‖W−1 ≤ ‖p− c‖W−1 ,

since D(Pdm, dµ̂) ≥ 0 and D(Pdm,Pdm) = 0. Therefore,

‖W−1(r̂ − c)‖1 ≤ ‖W−1/2‖2,1‖W−1/2(r̂ − c)‖2
= ‖W−1/2‖2,1‖r̂ − c‖W−1

≤ ‖W−1/2‖2,1‖p− c‖W−1 ,

which is less than one by (B.5.1). Hence (B.5.1) implies (B.5.3).

Proof of Proposition B.5.1. Suppose the optimal solution has a nonzero singular
part dν̂, and form the directional derivative of (B.5.4) at (dµ̂, r̂) in the direction
−dν̂. Then Φ in (B.1.3a) does not vary, and

δI(dµ̂, r̂;−dν̂, δr) = −
∫
Td
dν̂ + δr∗W−1(r̂ − c),

where

δrk = −
∫
Td
ei(k,θ)dν̂.

Then |δrk| ≤
∫
dν̂ for all k ∈ Λ, and hence

|δr∗W−1(r̂ − c)| ≤ ‖W−1(r̂ − c)‖1
∫
Td
dν̂ <

∫
Td
dν̂,

by (B.5.3) (Lemma B.5.3). Consequently,

δI(dµ̂, r̂;−dν̂, δr) < 0

whenever dν̂ 6= 0, which contradicts optimality. Hence dν̂ must be zero.

The condition of Proposition B.5.1 is just sufficient and is in general conservative.
To illustrate this, we consider a simple one-dimensional example (d = 1).
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Example B.5.4. Consider a covariance sequence (1, c1), where c1 6= 0, and a prior
P (eiθ) = 1− cos θ, and set W = λI. Then, since

c =

c11
c1

 and p =

−1/2
1
−1/2

 ,

the sufficient condition (B.5.2) for an absolutely continuous solution is

λ >
√

3
2 |1 + 2c1|. (B.5.5)

We want to investigate how restrictive this condition is.
Clearly we will have a singular part if and only if Q̂ = q0P , in which case we

have

q̂ = q0

−1/2
1
−1/2

 and ĉ = β

1
1
1


for some β > 0. In fact, it follows from 〈ĉ, q̂〉 = 0 in (B.3.11a) that ĉ1 = ĉ0. Moreover,
(B.3.11b) and (B.3.11c) yield

r̂ =

∫
P

Q̂

 eiθ

1
e−iθ

 dm+ ĉ =

 β
β + 1/q0

β

 ,

c = r̂ − λ(q̂ − e) =

 β + λq0/2,
β + 1/q0 − λq0 + λ

β + λq0/2

 .

By eliminating β, we get

c1 = 1− 1

q0
+

3

2
q0λ− λ,

and solving for q0 yields

q0 =
λ+ c1 − 1 + (6λ+ (λ+ c1 − 1)2)1/2

3λ

(note that λ > 0 and q0 > 0). Again, using (B.3.11c) we have

β = c1 − λq0/2

= c1 −
1

6

(
λ+ c1 − 1 + (6λ+ (λ+ c1 − 1)2)1/2

)
.

We are interested in λ for which β > 0, i.e.,

6c1 − (λ+ c1 − 1) > (6λ+ (λ+ c1 − 1)2)1/2, (B.5.6)
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which is equivalent to the two conditions

1 + 5c1 > λ (B.5.7a)

2c1(1 + 2c1) > λ(1 + 2c1), (B.5.7b)

which could be seen by noting that the left member of (B.5.6) must be positive and
then squaring both sides. To find out whether this has a solution we consider three
cases, namely c1 < −1/2, −1/2 < c1 < 0, and c1 > 0. For c1 < −1/2, condition
(B.5.7) becomes 2c1 < λ < 1 + 5c1, which is impossible since 1 + 5c1 < 2c1 in this
region. Condition (B.5.7) cannot be satisfied when −1/2 < c1 < 0 because then
λ would be negative, which contradicts λ > 0. When c1 > 0, condition (B.5.7) is
satisfied if and only if λ < 2c1.

Consequently, there is no singular part if either c1 is negative or

λ ≥ 2c1.

This shows that the condition (B.5.5) is not tight.

B.6 Covariance extension with hard constraints

The alternative optimization problem (B.1.9) amounts to minimizing D(Pdm, dµ)
subject to the hard constraint ‖r − c‖2W−1 ≤ 1, where rk =

∫
Td e

i(k,θ)dµ. Hard
constraints of this type were used in [57] in the context of entropy maximization. In
general the data c 6∈ C̄+, whereas, by definition, r ∈ C̄+. Consequently, a necessary
condition for the existence of a solution is that C̄+ and the strictly convex set

SW = {r | ‖r − c‖2W−1 ≤ 1} (B.6.1)

have a nonempty intersection. In the case that SW ∩ C̄+ ⊂ ∂C+, this intersection
only contains one point [44, Sec. 3.12]. In this case, any solution to the moment
problem contains only a singular part (Proposition B.2.3), and then the primal
problem (B.1.9) has a unique feasible point r, but the objective function is infinite.
Moreover, D(Pdm, dµ) ≥ 0 is strictly convex with D(Pdm,Pdm) = 0, so if p ∈ SW ,
then (B.1.9) has the trivial unique optimal solution dµ̂ = Pdm, and r̂ = p. The
remaining case, p 6∈ SW ∩ C+ 6= ∅, needs further analysis.

To this end, setting dµ = Φdm+ dν, we consider the Lagrangian

L(Φ, dν, r, q, γ) = − D(Pdm, dµ) +
∑
k∈Λ

q̄k

(
rk −

∫
Td
ei(k,θ)dµ(θ)

)
+ γ

(
1− ‖r − c‖2W−1

)
= − D(Pdm, dµ) + 〈r, q〉 −

∫
Td
Qdµ+ γ

(
1− ‖r − c‖2W−1

)
,
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where γ ≥ 0. Therefore, in view of (B.3.1),

L(Φ, dν, r, q, γ) =

∫
Td
P log Φdm−

∫
Td
QΦdm−

∫
Td
Qdν −

∫
Td
P (logP − 1)dm

+ 〈r, q − e〉+ γ
(
1− ‖r − c‖2W−1

)
, (B.6.2)

where, as before, e := [ek]k∈Λ, e0 = 1 and ek = 0 for k ∈ Λ \ {0}, and hence
r0 = 〈r, e〉. This Lagrangian differs from that in (B.3.2) only in the last term, which
does not depend on Φ. Therefore, in deriving the dual functional

ϕ(q, γ) = sup
Φ≥0,dν≥0,r

L(Φ, dν, r, q, γ),

we only need to consider q ∈ P̄+ \ {0}, and a first variation in Φ yields (B.1.3b) and
(B.3.3). The directional derivative

δL(Φ, dν, r, q, γ; δr) = q − e+ 2γW−1(r − c)

is zero for

r = c+
1

2γ
W (q − e). (B.6.3)

Thus inserting (B.1.3b) and (B.3.3) and (B.6.3) into (B.6.2) yields the dual functional

ϕ(q, γ) = 〈c, q〉 −
∫
Td
P logQdm+

1

4γ
‖q − e‖2W + γ − c0 (B.6.4)

to be minimized over all q ∈ P̄+ \ {0} and γ ≥ 0. Since dϕ
dγ = − 1

4γ2 ‖q − e‖2W + 1,
there is a stationary point

γ =
1

2
‖q − e‖W (B.6.5)

that is nonnegative as required.
For γ = 0, considering (B.6.2) we see that the supremum defining ϕ(q, 0) is

∞ if q 6= e. However, for γ = 0 and q = e, then what remains in (B.6.2) is only
−D(Pdm, dµ), and the supremum is thus 0 and attained for dµ = Pdm. This shows
that (B.6.5) is optimal to (B.6.4) for all γ ≥ 0, and inserting (B.6.5) into (B.6.4)
and removing the constant term −c0 we obtain the modified dual functional

J(q) = 〈c, q〉 −
∫
Td
P logQdm+ ‖q − e‖W . (B.6.6)

Moreover, combining (B.6.3) and (B.6.5), we obtain

‖r − c‖W−1 = 1 , (B.6.7)

which also follows from strict convexity of D(Pdm, dµ) and that p 6∈ SW .
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Theorem B.6.1. Suppose that p ∈ P̄+ \ {0}, p 6∈ SW , and SW ∩ C+ 6= ∅. Then
the modified dual problem

min
q∈P̄+

J(q) (B.6.8)

has a unique solution q̂ ∈ P̄+ \ {0}. Moreover, there exists a unique r̂ ∈ C+, a
unique ĉ ∈ ∂C+, and a (not necessarily unique) nonnegative singular measure dν̂
with support

supp(dν̂) ⊆ {θ ∈ Td | Q̂(eiθ) = 0} (B.6.9)

such that

r̂k =

∫
Td
ei(k,θ)

(
P

Q̂
dm+ dν̂

)
for all k ∈ Λ, (B.6.10a)

ĉk =

∫
Td
ei(k,θ)dν̂ for all k ∈ Λ , (B.6.10b)

and the measure

dµ̂(θ) =
P (eiθ)

Q̂(eiθ)
dm(θ) + dν̂(θ) (B.6.11)

is an optimal solution to the primal problem (B.1.9). Moreover,

‖r̂ − c‖W−1 = 1 , (B.6.12)

and dν̂ can be chosen with support in at most |Λ| − 1 points.
If p ∈ SW , the unique optimal solution is dµ̂ = Pdm, and then r̂ = p. If

SW ∩ C̄+ ⊂ ∂C+, any solution to the moment problem will have only a singular
part. Finally, if SW ∩ C̄+ = ∅, then the problem (B.1.9) will have no solution.

Proof. We begin by showing that the functional J has a minimum under the stated
conditions. To this end, we first establish that the functional J has compact sublevel
sets J−1(−∞, ρ], i.e., ‖q‖∞ is bounded for all q such that J(q) ≤ ρ, where ρ is
sufficiently large for the sublevel set to be nonempty. To this end, the functional
(B.6.8) can be decomposed as

J(q) = h(q) + h̃(q)−
∫
Td
P logQdm,

where h(q) := 〈c, q〉+ ‖q‖W and h̃(q) := ‖q − e‖W − ‖q‖W . By the reverse triangle
inequality, |h̃(q)| ≤ ‖q − e− q‖W = ‖e‖W , and thus h̃(q) is bounded for all q ∈ P̄+.
The integral term will tend to −∞ as ‖q‖∞ → ∞. Therefore, we need to have
the term h(q) to tend to +∞ as ‖q‖∞ → ∞, in which case we can appeal to the
fact that linear growth is faster than logarithmic growth. However, if c 6∈ C̄+, as is
generally assumed, there is a q ∈ P̄+ such that 〈c, q〉 < 0, so we need to ensure that
the positive term ‖q‖W dominates.
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Let r̃ ∈ SW ∩ C+ 6= ∅. Then, by Theorem B.2.4, there is a positive measure
dµ̃ = Φ̃dm+ dν̃ with a nonzero Φ̃ such that

r̃ =

∫
Td
ei(k,θ)dµ̃ ,

and r̃ satisfies the constraints in the primal problem (B.1.9). Consequently,

ϕ(q, γ) ≥ L(Φ̃, dν̃, r̃, q, γ) ≥ −D(Pdm, dµ̃)

for all q ∈ P̄+ and γ ≥ 0, which in particular implies that

J(q) ≥ −D(Pdm, dµ̃) for all q ∈ P̄+. (B.6.13)

Now, if there is a q ∈ P̄+ \ {0} such that h(q) ≤ 0, then J(λq)→ −∞ as λ→∞,
which contradicts (B.6.13). Therefore, h(q) > 0 for all q ∈ P̄+\{0}. Then, since h is
continuous, it has a minimum ε > 0 on the compact set K := {q ∈ P̄+ | ‖q‖∞ = 1}.
Therefore,

h(q) =

(〈
c,

q

‖q‖∞

〉
+

∥∥∥∥ q

‖q‖∞

∥∥∥∥
W

)
‖q‖∞ ≥ ε‖q‖∞ ≥

ε

|Λ|
‖Q‖∞,

since ‖Q‖∞ ≤ |Λ|‖q‖∞ [53, Lem. A.1]. Likewise,∫
Td
P logQdm =

∫
Td
P log

[
Q

‖Q‖∞

]
dm+

∫
Td
P log ‖Q‖∞dm

≤
∫
Td
P log ‖Q‖∞dm ,

since Q/‖Q‖∞ ≤ 1. Hence

ρ ≥ J(q) ≥ ε

|Λ|
‖Q‖∞ −

∫
Td
P log ‖Q‖∞dm− ‖e‖W . (B.6.14)

Comparing linear and logarithmic growth we see that the sublevel set is bounded
from above and below. Moreover, a trivial modification of [53, Lem. 3.1] shows that
J is lower semi-continuous, and hence J−1(−∞, ρ] is compact. Consequently, the
problem (B.6.8) has an optimal solution q̂.

We now want to show that q̂ 6= e since, in view of (B.6.5), this also means that
γ̂ > 0, i.e., we have strict complementarity between the Lagrangian multiplier γ and
the constraint ‖r − c‖2W−1 ≤ 1. To this end, we first note that by the assumption
p 6∈ SW , we have that ‖c− p‖2W−1 > 1, and thus also that

‖c− p‖2W−1 > ‖c− p‖W−1 . (B.6.15)

Now, consider the point q̃ = e + εW−1(c − p), i.e., a small perturbation around
q = e. For |ε| small enough, we also have that q̃ ∈ P+. Moreover, in this point the
unmodified dual functional J(q)− c0 takes the value

J(q̃)− c0 = ε〈c,W−1(c− p)〉 −
∫
Td
P log Q̃dm+ |ε|‖(c− p)‖W−1 .
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Analyzing the middle term further, if we let the vector of basis functions [ei(k,θ)]k∈Λ

be ordered in the same way as elements in C, then any trigonometric polynomial
Q can be written as Q(eiθ) = 〈[ei(k,θ)]k∈Λ, q〉. Now, by a series expansion of the
logarithm we get that∫

Td
P log Q̃dm =

∫
Td
P
(
ε
〈

[ei(k,θ)]k∈Λ,W
−1(c− p)

〉
−O(|ε|2)

)
dm

= ε〈p,W−1(c− p)〉 − O(|ε|2),

since P has finite total mass, and by moving the integration into each component of
[ei(k,θ)]k∈Λ and using that the complex exponentials are orthogonal. This gives

J(q̃)− c0 = ε〈c,W−1(c− p)〉 − ε〈p,W−1(c− p)〉+O(|ε|2) + ‖c− p‖W−1

= ε‖c− p‖2W−1 + |ε|‖c− p‖W−1 +O(|ε|2)

= ε
(
‖c− p‖2W−1 + sign(ε)‖c− p‖W−1

)
+O(|ε|2)

≤ δε+O(|ε|2)

for some δ > 0, where the last inequality follows from (B.6.15). Thus, for ε < 0 with
|ε| sufficiently small, we have that J(q̃) − c0 < 0. Since J(e) − c0 = 0, this shows
that q = e is not optimal to (B.6.8).

Next we show that q̂ is unique. For this we return to the original dual problem
to find a minimum of (B.6.4). The solution q̂ is a minimizer of ϕ(q, γ̂), where

γ̂ =
1

2
‖q̂ − e‖W ,

and J(q̂) = ϕ(q̂, γ̂) + c0. To show that ϕ is strictly convex, we form the Hessian

H =

[∫
Td P/Q

2dm 0
0 0

]
+

1

2γ3

[
γ2W −γ(q − e)∗W

−γW (q − e) (q − e)∗W (q − e)

]
and the quadratic form[

x
ξ

]∗
H

[
x
ξ

]
= x∗

(∫
Td
P/Q2dm

)
x+

1

2γ3
[γx− ξ(q − e)]∗W [γx− ξ(q − e)],

which is positive for all nonzero (x, ξ), since (q− e) 6= 0 and γ > 0. Consequently, ϕ
has a unique minimizer (q̂, γ̂), where q̂ is the unique minimizer of J.

It follows from (B.6.3) and (B.6.5) that

r̂ = c+
W (q̂ − e)
‖q̂ − e‖W

, (B.6.16)

which consequently is unique. Moreover, h(q̂) = 〈r̂, q̂〉 − r̂0, and hence we can follow
along the same lines as the proof of Theorem B.3.1 to show that there is a unique

136



Multidimensional RCE with approximate covariance matching

ĉ ∈ ∂C+ such that 〈ĉ, q̂〉 = 0 and a positive discrete measure dν̂ with support in
|Λ| − 1 points so that (B.6.9) and (B.6.10) hold. Next, let I(dµ) = −D(Pdm, dµ)
be the primal functional in (B.1.9), where dµ is restricted to the set of positive
measures dµ := Φdm + dν such that r, given by (B.1.5), satisfies the constraint
‖r − c‖W ≤ 1. In view of (B.6.12),

I(dµ) = L(Φ, dν, r, q̂, γ̂) ≤ L(Φ̂, dν̂, r̂, q̂, γ̂) = I(dµ̂)

for any such dµ, and hence dµ̂ is an optimal solution to the primal problem (B.1.9).
Finally, the cases p ∈ SW , SW ∩ C̄+ ⊂ ∂C+, and SW ∩ C̄+ = ∅ have already been
discussed above.

Corollary B.6.2. Suppose that p ∈ P̄+ \ {0} and SW ∩ C+ 6= ∅. The KKT
conditions

q̂ ∈ P̄+, ĉ ∈ ∂C+, 〈ĉ, q̂〉 = 0 (B.6.17a)

r̂k =

∫
Td
ei(k,θ)P

Q̂
dm+ ĉk, k ∈ Λ (B.6.17b)

(r̂ − c)‖q̂ − e‖W = W (q̂ − e), r̂ ∈ SW (B.6.17c)

are necessary and sufficient conditions for optimality of the dual pair (B.1.9) and
(B.6.8) of optimization problems.

The corollary follows by noting that if p ∈ SW , then we obtain the trivial
solution q̂ = e, which corresponds to the primal optimal solution dµ̂ = Pdm.

Proposition B.6.3. The condition

W > cc∗ (B.6.18)

is sufficient for the pair (B.1.9) and (B.6.8) of dual problems to have optimal
solutions.

Proof. If W > cc∗, then (q − e)∗W (q − e) ≥ 〈c, q − e〉2 with equality only for q = e.
Hence, if q 6= e, then ‖q − e‖W > |〈c, q − e〉|, i.e.,

h(q) + h̃(q)− c0 = 〈c, q − e〉+ ‖q − e‖W > 0

for all q ∈ P̄+ except q = e. Considering J(q) = h(q)+h̃(q)−c0−
∫
Td P logQdm+c0,

we then proceed as in the proof of Theorem B.6.1.

Remark B.6.4. Condition (B.6.18) guarantees that 0 ∈ int(SW ) and hence in
particular that SW ∩ C+ 6= ∅ as required in Theorem B.6.1. To see this, note
that 0 ∈ C̄+ and that r = 0 satisfies the hard constraint in (B.1.9) if c∗W−1c ≤ 0.
However, since W > cc∗, there is a W0 > 0 such that W = W0 + cc∗. Then the
well-known matrix inversion lemma (see, e.g., [42, p. 746]) yields

(W0 + cc∗)−1 = W−1
0 −W−1

0 c(1 + c∗W−1
0 c)−1c∗W−1

0 ,
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and therefore

c∗W−1c = c∗W−1
0 c− c∗W−1

0 c(1 + c∗W−1
0 c)−1c∗W−1

0 c =
c∗W−1

0 c

1 + c∗W−1
0 c

< 1,

which establishes that 0 ∈ int(SW ). However, for SW ∩ C+ to be nonempty, r = 0
need not be contained in this set. Hence, condition (B.6.18) is not necessary, although
it is easily testable. In fact, this provides an alternative proof of Proposition B.6.3.

B.7 On the equivalence between the two problems

Clearly SW ∩ C+ is always nonempty if c ∈ C+. Then both the problem (B.1.7)
with soft constraints and the problem (B.1.9) with hard constraints have a solution
for any choice of W . On the other hand, if c 6∈ C+, the problem with soft constraints
will always have a solution, while the problem with hard constraints may fail to have
one for certain choices of W . However, if the weight matrix in the hard-constrained
problem – let us denote it Whard – is chosen in the set W := {W > 0 | SW ∩ C+ 6=
∅, p 6∈ SW }, then it can be seen from Corollaries B.3.2 and B.6.2 that we obtain
exactly the same solution q̂ in the soft-constrained problem by choosing

Wsoft = Whard/‖q̂ − e‖Whard
. (B.7.1)

We note that (B.7.1) can be written as Whard = αWsoft, where α := ‖q̂ − e‖Whard
.

Therefore, substituting Whard in (B.7.1), we obtain

Wsoft =
αWsoft

‖q̂ − e‖αWsoft

= α1/2 Wsoft

‖q̂ − e‖Wsoft

,

which yields α = ‖q̂ − e‖2Wsoft
. Hence the inverse of (B.7.1) is given by

Whard = Wsoft‖q̂ − e‖2Wsoft
. (B.7.2)

By Theorem B.4.1 q̂ is continuous in Wsoft, and hence, by (B.7.2), the corresponding
Whard varies continuously with Wsoft. In fact, this can be strengthened to a
homeomorphism between the two weight matrices.

Theorem B.7.1. The map (B.7.1) is a homeomorphism between W and the space
of all (Hermitian positive definite) weight matrices, and the inverse is given by
(B.7.2).

Proof. By [11, Lem. 2.3], a continuous map between two spaces of the same dimension
is a homeomorphism if and only if it is injective and proper, i.e., the preimage
of any compact set is compact. To see that W is open, we observe that SW is
continuous in W and that C+ is an open set. As noted above, the map (B.7.2) – let
us call it f – is continuous and also injective, as it can be inverted. Hence it only
remains to show that f is proper. To this end, we take a compact set K ⊂ W and
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show that f−1(K) is also compact. There are two ways this could fail. First, the
preimage could contain a singular semi-definite matrix. However, this is impossible
by (B.7.2), since ‖q̂‖∞ is bounded for Whard ∈ K (Lemma B.12.2) and a nonzero
scaling of a singular matrix cannot be nonsingular. Second, ‖Wsoft‖F could tend to
infinity. However, this is also impossible. To see this, we first show that there is
a κ > 0 such that ‖p− r‖W−1

hard
≥ κ for all r ∈ SWhard

and all Whard ∈ K. To this

end, we observe that the minimum of ‖p− r‖W−1 over all W ∈ K and r satisfying
the constraint ‖r − c‖W−1 ≤ 1 is bounded by

κ := min
W∈K

‖p− c‖W−1 − 1

by the triangle inequality ‖p− r‖W−1 ≥ ‖p− c‖W−1 −‖c− r‖W−1 ≥ ‖p− c‖W−1 − 1.
The minimum is attained since K is compact, and positive since p 6∈

⋃
W∈K SW .

Now, from Corollary B.6.2 we see that q̂ = e if and only if r̂ = p. The map from
q̂ 7→ r̂ is continuous in q = e. In fact, Q̂ is uniformly positive in a neighborhood
of e and hence the corresponding ĉ = 0. Due to this continuity, if q̂ → e, then
r̂ → p, which cannot happen since ‖p − r‖W−1 ≥ κ for all W ∈ K. Thus, since
‖q̂−e‖W is bounded away from zero, the preimage f−1(K) of K is bounded. Finally,
consider a convergent sequence (Wk) in f−1(K) converging to a limit W∞. Since
the sequence is bounded and cannot converge to a singular matrix, we must have
W∞ > 0, i.e., W∞ ∈ f−1(W). By continuity, f(Wk) tends to the limit f(W∞),
which must belong to K since it is compact. Hence the preimage W∞ must belong
to f−1(K). Therefore, f−1(K) is compact as claimed.

It is illustrative to consider the simple case when W = λI. Then the two maps
(B.7.1) and (B.7.2) become

λsoft =

√
λhard

‖q̂ − e‖2
,

λhard = λ2
soft‖q̂ − e‖22.

(B.7.3)

Whereas the range of λsoft is the semi-infinite interval (0,∞), for the homeomorphism
to hold λhard is confined to

λmin < λ < λmax,

where λmin is the distance from c to the cone C̄+ and λmax = ‖c − p‖. When
λsoft → ∞, λhard → λmax and q̂ → e. If λhard ≥ λmax, then the corresponding
problem has the trivial unique solution q̂ = e, corresponding to the primal solution
dµ̂ = Pdm.

Note that Theorem B.7.1 implies that some continuity results in one of the
problems can be automatically transferred to the other problem. In particular, we
have the following result.

Theorem B.7.2. Let

JW (q) = 〈c, q〉 −
∫
Td
P logQdm+ ‖q − e‖W . (B.7.4)
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Then the map W 7→ q̂ := arg minq∈P̄+
JW (q) is continuous.

Proof. The theorem follows by noting that W 7→ q̂ := arg minq∈P̄+
JW (q) can be

seen as a composition of two continuous maps, namely the one in Theorem B.4.1
and the one in Theorem B.7.1.

Next we shall also vary c and p, and to this end we introduce a more explicit
notation for SW and W, namely Sc,W = SW in (B.6.1) and

Wc,p := {W > 0 | Sc,W ∩ C+ 6= ∅, p 6∈ Sc,W }.

Then the corresponding set of parameters (B.4.1) for the problem with hard con-
straints is given by

Phard = {(c, p,W ) | c ∈ C, p ∈ P̄+ \ {0},W ∈ Wc,p}, (B.7.5)

the interior of which is

int(Phard) = {(c, p,W ) | c ∈ C, p ∈ P+,W ∈ Wc,p}.

Theorem B.7.1 can now be modified accordingly to yield the following theorem, the
proof of which is deferred to the appendix.

Theorem B.7.3. Let the map (c, p,Whard) 7→Wsoft be given by (B.7.1) and the map
(c, p,Wsoft) 7→Whard by (B.7.2). Then the map that sends (c, p,Whard) ∈ int(Phard)
to (c, p,Wsoft) ∈ int(P) is a homeomorphism.

Note that this theorem is not a strict amplification of Theorem B.7.1 as we have
given up the possibility for p to be on the boundary ∂P+. The same is true for the
following modification of Theorem B.7.2.

Theorem B.7.4. Let Jc,p,W (q) be as in (B.7.4). Then the map (c, p,W ) 7→ q̂ :=
arg minq∈P̄+

Jc,p,W (q) is continuous on int(Phard).

Proof. The theorem follows immediately by noting that (c, p,W hard) 7→ q̂ can be
seen as a composition of two continuous maps, namely (c, p,W hard) 7→ (c, p,W soft)
of Theorem B.7.3 and (c, p,W soft) 7→ q̂ of Theorem B.4.1.

Theorem B.7.4 is a counterpart of Theorem B.4.1 for the problem with hard
constraints, except that p is restricted to the interior P+. It should be possible to
extend the result to hold for all p ∈ P̄+ \ {0} via a direct proof along the lines of
the proof of Theorem B.4.1.
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B.8 Estimating covariances from data

For a scalar stationary stochastic process {y(t); t ∈ Z}, it is well-known that the
biased covariance estimate

ck =
1

N

N−k−1∑
t=0

ytȳt+k,

based on an observation record {yt}N−1
t=0 , yields a positive definite Toeplitz matrix,

which is equivalent to c ∈ C+ [2, pp. 13-14]. In fact, these estimates correspond to
the ones obtained from the periodogram estimate of the spectrum (see, e.g., [59,
Sec. 2.2]). On the other hand, the Toeplitz matrix of the unbiased estimate

ck =
1

N − k

N−k−1∑
t=0

ytȳt+k

is in general not positive definite.
The same holds in higher dimensions (d > 1) where the observation record is

{yt}t∈ZdN with

ZdN = {(`1, . . . , `d) | 0 ≤ `j ≤ Nj − 1, j = 1, . . . , d}.

The unbiased estimate is then given by

ck =
1∏d

j=1(Nj − |kj |)

∑
t∈ZdN

ytȳt+k, (B.8.1)

and the biased estimate by

ck =
1∏d

j=1Nj

∑
t∈ZdN

ytȳt+k, (B.8.2)

where we define yt = 0 for t /∈ ZdN . The sequence of unbiased covariance estimates
does not in general belong to C+, but the biased covariance estimates yields c ∈ C+

also in the multidimensional setting. In fact, this can be seen by noting that
the biased estimate corresponds to the Fourier coefficients of the periodogram [18,
Sec. 6.5.1], i.e., if the estimates ck are given by (B.8.2), then

Φperiodogram(θ) :=
1∏d

j=1Nj

∣∣∣ ∑
t∈ZdN

yte
i(t,θ)

∣∣∣2 =
∑

k∈ZdN−ZdN

cke
−i(k,θ), (B.8.3)

where ZdN − ZdN denotes the Minkowski set difference. This leads to the following
lemma.
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Lemma B.8.1. Given the observed data {yt}t∈ZdN , let {ck}k∈Λ be given by (B.8.2).
Then c ∈ C+.

Proof. Given {yt}t∈ZdN , let c = {ck}k∈ZdN , where ck be given by (B.8.2). In view of

(B.2.1) and (B.8.3) we have

〈c, p〉 =

∫
Td

1∏d
j=1Nj

∣∣∣ ∑
t∈ZdN

yte
i(t,θ)

∣∣∣2P (eiθ)dm(θ),

which is positive for all p ∈ P̄+ \ {0}. Consequently, c ∈ C+.

An advantage of the approximate procedures to the RCEP is that they can
also be used for cases where the biased estimate is not available, e.g., where the
covariance is estimated from snapshots.

B.9 Application to spectral estimation

As long as we use the biased estimate (B.8.2), we may apply exact covariance
matching as outlined in Section B.2, whereas in general approximate covariance
matching will be required for unbiased covariance estimates. However, as will be
seen in the following example, approximate covariance matching may sometimes be
better even if c ∈ C+.

In this application it is easy to determine a bound on the acceptable error in
the covariance matching, so we use the procedure with hard constraints. Given
data generated from a two-dimensional stochastic system, we test three different
procedures, namely (i) using the biased estimate and exact matching, (ii) using the
biased estimate and the approximate matching (B.1.9), and (iii) using the unbiased
estimate and the approximate matching (B.1.9). The procedures are then evaluated
by checking the size of the error between the matched covariances and the true ones
from the dynamical system.

An example

Let y(t1,t2) be the steady-state output of a two-dimensional recursive filter driven
by a white noise input u(t1,t2). Let the transfer function of the recursive filter be

b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)
=

∑
k∈Λ+

bke
−i(k,θ)∑

k∈Λ+
ake−i(k,θ)

,

where Λ+ = {(k1, k2) ∈ Z2 | 0 ≤ k1 ≤ 2, 0 ≤ k2 ≤ 2} and the coefficients are given
by b(k1,k2) = Bk1+1,k2+1 and a(k1,k2) = Ak1+1,k2+1, where

B =


0.9 −0.2 0.05
0.2 0.3 0.05
−0.05 −0.05 0.1

, A =


1 0.1 0.1
−0.2 0.2 −0.1

0.4 −0.1 −0.2

.
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Figure B.1: Log-plot of the original spectrum.

The spectral density Φ of y(t1,t2), which is shown in Figure B.1 and is similar to the
one considered in [53, Sec. 7], is given by

Φ(eiθ1 , eiθ2) =
P (eiθ1 , eiθ2)

Q(eiθ1 , eiθ2)
=

∣∣∣∣ b(eiθ1 , eiθ2)

a(eiθ1 , eiθ2)

∣∣∣∣2 ,
and hence the index set Λ of the coefficients of the trigonometric polynomials P
and Q is given by Λ = Λ+ − Λ+ = {(k1, k2) ∈ Z2 | |k1| ≤ 2, |k2| ≤ 2}. Using this
example, we perform two different simulation studies.

First simulation study

The system was simulated for 500 time steps along each dimension, starting from
y(t1,t2) = u(t1,t2) = 0 whenever either t1 < 0 or t2 < 0. Then covariances were
estimated from the 9 × 9 last samples, using both the biased and the unbiased
estimators. With this covariance data we investigate the three procedures (i), (ii),
and (iii) described above. In each case, both the maximum entropy (ME) solutions
and solutions with the true numerator are computed.4 The weighting matrix is
taken to be W = λI, where λ is λbiased := ‖ctrue − cbiased‖22 in procedure (ii) and
λunbiased := ‖ctrue − cunbiased‖22 in procedure (iii).5 The norm of the error6 between
the matched covariances and the true ones, ‖r̂− ctrue‖2, is shown in Table. B.1. The
means and standard deviations are computed over the 100 runs.

The biased covariance estimates belong to the cone C+ (Lemma B.8.1), and
therefore procedure (i) can be used. The corresponding error in Table B.1 is the
statistical error in estimating the covariance. This error is quite large because of a

4ME: P ≡ 1. True numerator: P = Ptrue.
5Note that this is the smallest λ for which the true covariance sequence belongs to the

uncertainty set {r | ‖r − c‖22 ≤ λ}.
6Here we use the norm of the covariance estimation error as the measure of fit. However, note

that this is not the only way to compare accuracy of the different methods. The reason for this
choice is that comparing the accuracy of the spectral estimates is not straightforward since it
depends on the selected metric or distortion measure.
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Table B.1: Norm differences ‖r̂− ctrue‖2 for different solutions in the first simulation
setup.

Mean Std.

Biased, exact matching 3.2374 1.7944
Biased, approximate matching, ME-solution 3.7886 1.3274
Biased, approximate matching, using true P 3.8152 1.6509
Unbiased, approximate matching, ME-solution 3.2575 1.4721
Unbiased, approximate matching, using true P 3.2811 1.7787

short data record. Using approximate covariance matching in this case seems to
give a worse match. However, approximate matching of the unbiased covariances
gives as good a fit as exact matching of the biased ones.

Second simulation study

In this simulation, the setup is the same as the previous one, except that the
simulation data has been discarded if the unbiased estimate belongs to C̄+. To
obtain 100 such data sets, 414 simulations of the system were needed. (As a
comparison, in the previous experiment 23 out of the 100 runs resulted in an
unbiased estimate outside C̄+.) Again, the norm of the error between matched
covariances and the true ones is shown in Table B.2, and the means and standard
deviations are computed over the 100 runs.

As before, the biased covariance estimates belong to the cone C+, and therefore
procedure (i) can be used. Comparing this with the results from procedure (ii)
suggests that there may be an advantage not to enforce exact matching, although
we know that the data belongs to the cone. Regarding procedure (iii), we know that
the unbiased covariance estimates do not belong to the cone C̄+, and hence we need
to use approximate covariance matching. In this example, this procedure turns out
to give the smallest estimation error.

B.10 Application to system identification and texture
reconstruction

Next we apply the theory of this paper to texture generation via Wiener system
identification. Wiener systems form a class of nonlinear dynamical systems consisting
of a linear dynamic part composed with a static nonlinearity as illustrated in Figure
B.2. This is a subclass of so-called block-oriented systems [4], and Wiener system
identification is a well-researched area (see, e.g., [32] and references therein) that
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Table B.2: Norm differences ‖r̂ − ctrue‖2 for different solutions in the second setup,
where all unbiased estimate are outside C̄+.

Mean Std.

Biased, exact matching 2.9245 2.2528
Biased, approximate matching, ME-solution 1.9087 1.1324
Biased, approximate matching, using true P 1.8532 1.1904
Unbiased, approximate matching, ME-solution 1.5018 0.6601
Unbiased, approximate matching, using true P 1.4451 0.7296

Linear system Static nonlinearity
ut xt yt

Figure B.2: A Wiener system with thresholding as static nonlinearity.

is still very active [43, 60, 1]. Here, we use Wiener systems to model and generate
textures.

Using dynamical systems for modeling images and textures is not new and has
been considered in, e.g., [14, 50]. The setup presented here is motivated by [23],
where thresholded Gaussian random fields are used to model porous materials for
design of surface structures in pharmaceutical film coatings. Hence we let the static
nonlinearity, call it f , be a thresholding with unknown thresholding parameter τ .
In our previous work [55] we applied exact covariance matching to such a problem.
However, in general there is no guarantee that the estimated covariance sequence c
belongs to the cone C+. Consequently, here we shall use approximate covariance
matching instead.

The Wiener system identification can be separated into two parts. We start by
identifying the nonlinear part. Using the notation of Figure B.2, let {ut; t ∈ Zd} be a
zero-mean Gaussian white noise input, and let {xt; t ∈ Zd} be the stationary output
of the linear system, which we assume to be normalized so that c0 := E[x2

t ] = 1.
Moreover, let yt = f(xt), where f is the static nonlinearity

f(x) =

{
1 x > τ

0 otherwise
(B.10.1)

with unknown thresholding parameter τ . Since E[yt] = 1 − φ(τ), where φ(τ)
is the Gaussian cumulative distribution function, an estimate of τ is given by
τest = φ−1(1− E[yt]).

Now, let cxk := E[xt+kxt] be the covariances of xt, and let cyk := E[yt+kyt] −
E[yt+k]E[yt] be the covariances of yt. As was explained in [55], by using results
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from [51] one can obtain a relation between cyk and cxk, given by

cyk =

∫ cxk

0

1

2π
√

1− s2
exp

(
− τ2

1 + s

)
ds. (B.10.2)

This is an invertible map, which we compute numerically, and given τest we can thus
get estimates of the covariances cxk from estimates of the covariances cyk. However,
even if cy is a biased estimate so that cy ∈ C+, cx may not be a bona fide covariance
sequence.

Identifying the linear system

Solving (B.1.7) or (B.1.9) for a given sequence of covariance estimates c, we obtain
an estimate of the absolutely continuous part of the power spectrum Φ of that
process. In the case d = 1, Φ = P/Q can be factorized as

Φ(eiθ) =
P (eiθ)

Q(eiθ)
=
|b(eiθ)|2

|a(eiθ)|2
,

which provides a transfer function of a corresponding linear system, which fed by a
white noise input will produce an autoregressive-moving-average (ARMA) process
with an output signal with precisely the power distribution Φ in steady state. For
d ≥ 2, a spectral factorization of this kind is not possible in general [19], but instead
there is always a factorization as a sum-of-several-squares [17, 29],

Φ(eiθ) =
P (eiθ)

Q(eiθ)
=

∑`
k=1 |bk(eiθ)|2∑m
k=1 |ak(eiθ)|2

,

the interpretation of which in terms of a dynamical system is unclear when m, ` > 1.
Therefore we resort to a heuristic and apply the factorization procedure in [28,
Thm. 1.1.1], although some of the conditions required to ensure the existence of a
spectral factor may not be met. (See [53, Sec. 7] for a more detailed discussion.)

Simulation results

The method, which is summarized in Algorithm B.1, is tested on some textures
from the Outex database [49] (available online from http://www.outex.oulu.fi/).
These textures are color images and have thus been converted to binary textures by
first converting them to black-and-white and then thresholding them.7 Three such
textures are shown in Figure B.3a through B.3c.

7The algorithm has been implemented and tested in Matlab, version R2015b. The textures
have been normalized to account for light inhomogeneities using a reference image available in
the database. The conversion from color images to black-and-white images was done with the
built-in function rgb2gray, and the threshold level was set to the mean value of the maximum and
minimum pixel values in the black-and-white image.
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Algorithm B.1

Input: (yt)
1: Estimate threshold parameter: τest = φ−1(1− E[yt])
2: Estimate covariances: cyk := E[yt+kyt]− E[yt+k]E[yt]
3: Compute covariances cxk := E[xt+kxt] by using (B.10.2)
4: Estimate a rational spectrum using Theorem B.3.1 or B.6.1
5: Apply the factorization procedure in [28, Thm. 1.1.1]

Output: τest, coefficients for the linear dynamical system

In this example there is no natural bound on the error, so we use the problem
with soft constraints, for which we choose the weight W = λI with λ = 0.01 for
all data sets. Moreover, we do maximum-entropy reconstructions, i.e., we set the
prior to P ≡ 1. The optimization problems are then solved by first discretizing
the grid T2, in this case in 50 × 50 points (cf. [53, Thm. 2.6]), and solving the
corresponding problems using the CVX toolbox [31, 30]. The reconstructions are
shown in Figures B.3d - B.3f. Each reconstruction seems to provide a reasonable
visual representation of the structure of the corresponding original. This is especially
the case for the second texture.

B.11 Conclusions

In this work we extend the results of our previous paper [53] on the multidimensional
RCEP to allow for approximate covariance matching. We have provided two
formulations to this problem, and we have shown that they are connected via a
homeomorphism. In both formulations we have used weighted 2-norms to quantify
the mismatch of the estimated covariances. However, we expect that by suitable
modifications of the proofs similar results can be derived for other norms since all
norms have directional derivatives in each point [16, p. 49].

These results provide a procedure for multidimensional spectral estimation, but
in order to obtain a complete theory for multidimensional system identification and
realization theory there are still some open problems, such as spectral factorization
and interpretations in terms of multidimensional stochastic systems, as briefly
discussed in Section B.10.

B.12 Appendix

Let Bρ(x
(0)) denote the closed ball {x ∈ X | ‖x− x(0)‖X ≤ ρ}, where X is either a

set of vectors or a set of matrices, depending on the context. The norm ‖ · ‖X is the
Euclidean norm for vectors and the Frobenius norm for matrices.

Lemma B.12.1. Let P be given by (B.4.1) and Jc,p,W by (B.4.2). Furthermore,
let q̂ := minq∈P̄+

Jc,p,W (q). Then the map (c, p,W ) 7→ Jc,p,W (q̂) is continuous for
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(a) First texture. (b) Second texture. (c) Third texture.

(d) Reconstruction of B.3a. (e) Reconstruction of B.3b. (f) Reconstruction of B.3c.

(g) Close-up of B.3a. (h) Close-up of B.3b. (i) Close-up of B.3c.

(j) Close-up of B.3d. (k) Close-up of B.3e. (l) Close-up of B.3f.

Figure B.3: In Figures B.3a - B.3c three different binary textures, of size 1200×
900 pixels, are shown. These are obtained from the textures granite001-inca-
100dpi-00, paper010-inca-100dpi-00, and plastic008-inca-100dpi-00 in the Outex
database, respectively. The textures in Figures B.3a - B.3c are used as input (yt) to
Algorithm B.1 and in Figures B.3d - B.3f the corresponding reconstructed textures of
size 500×500 are shown. In Figures B.3g - B.3l close-ups of size 100×100 are shown
of the original and reconstructed textures (areas marked in Figures B.3a - B.3f).
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(c, p,W ) ∈ P. Moreover, for any compact K ⊂ P the corresponding set of optimal
solutions q̂ is bounded.

Proof. The proof follows along the lines of Lemma 7.2 and Proposition 7.4 in [36].
Let (c(0), p(0),W (0)) ∈ P be arbitrary and let

B̃ρ(c
(0), p(0),W (0)) := Bρ(c

(0))×
(
Bρ(p

(0)) ∩ P̄+

)
×Bρ(W (0)),

where ρ > 0 is chosen so that B̃ρ(c
(0), p(0),W (0)) ⊂ P, i.e., ρ < ‖p(0)‖2 and W > 0

for all ‖W −W (0)‖F ≤ ρ. First we will show that the minimizer q̂c,p,W of Jc,p,W is

bounded for all (c, p,W ) ∈ B̃ρ(c(0), p(0),W (0)). To this end, note that by optimality

Jc,p,W (q̂c,p,W ) ≤ Jc,p,W (e) = 〈c, e〉 −
∫
Td
P log 1 dm+

1

2
‖e− e‖2W = c0,

and hence Jc,p,W (p) is bounded from above on the compact set B̃ρ(c
(0), p(0),W (0)).

Consequently, by using the same inequality as in the proof of [36, Lem. 7.1], we see
that

c0 ≥ Jc,p,W (q̂c,p,W ) ≥ 〈c, q̂c,p,W 〉 − ‖P‖1 log ‖Q̂c,p,W ‖∞ +
1

2
‖q̂c,p,W − e‖2W .

Due to norm equivalence between ‖Q‖∞ and ‖q‖W , and since the quadratic term is
dominating, the norm of q̂c,p,W is bounded in the set B̃ρ(c

(0), p(0),W (0)).
Now, let K ⊂ P be compact. We want to show that q̂ is bounded on K. Assume

it is not. Then let (c(k), p(k),W (k)) ∈ K be a sequence with ‖q̂k‖ → ∞. Since K
is compact, there is a converging subsequence (c(k), p(k),W (k)) → (c, p,W ) ∈ K
with ‖q̂k‖ → ∞. Since (c, p,W ) ∈ K, there is a ρ > 0 such that B̃ρ(c, p,W ) ⊂ P.

However, all but finitely many points (c(k), p(k),W (k)) belong to B̃ρ(c, p,W ), and

since q̂k is bounded for all (c(k), p(k),W (k)) ∈ B̃ρ(c, p,W ), we cannot have ‖q̂k‖ → ∞.

Next, let (c(1), p(1),W (1)), (c(2), p(2),W (2)) ∈ B̃ρ(c(0), p(0),W (0)) and let q̂1, q̂2 ∈
P̄+ be the unique minimizers of Jc(1),p(1),W (1) and Jc(2),p(2),W (2) , respectively. Choose
a q0 ∈ P+, and note that Q0 is strictly positive and bounded. By optimality,

Jc(1),p(1),W (1)(q̂1) ≤ Jc(1),p(1),W (1)(q̂2 + εq0) (B.12.1a)

Jc(2),p(2),W (2)(q̂2) ≤ Jc(2),p(2),W (2)(q̂1 + εq0) (B.12.1b)

for all ε > 0. Hence, if we can show that, for any δ > 0, there are an ε > 0 and a
ρ̃ > 0 such that

|Jc(2),p(2),W (2)(q̂1 + εq0)− Jc(1),p(1),W (1)(q̂1)| ≤ δ (B.12.2a)

|Jc(1),p(1),W (1)(q̂2 + εq0)− Jc(2),p(2),W (2)(q̂2)| ≤ δ (B.12.2b)

hold whenever ‖c(1) − c(2)‖2 ≤ ρ̃, ‖p(1) − p(2)‖2 ≤ ρ̃ and ‖W (1) −W (2)‖F ≤ ρ̃, then
this would imply that

Jc(2),p(2),W (2)(q̂2)− δ ≤ Jc(1),p(1),W (1)(q̂1) ≤ Jc(2),p(2),W (2)(q̂2) + δ,
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showing that the optimal value is continuous in c(1), p(1),W (1). The lower bound is
obtained by using (B.12.2a) and (B.12.1b), and the upper bound is obtained from
(B.12.1a) and (B.12.2b). To prove (B.12.2a), we note that

|Jc(2),p(2),W (2)(q̂1 + εq0)− Jc(1),p(1),W (1)(q̂1)|

=

∣∣∣∣〈c(2) − c(1), q̂1〉+ 〈c(2), εq0〉 −
∫
Td
P (1) log

(
1 +

εQ0

Q̂1

)
dm

−
∫
Td

(P (2) − P (1)) log
(
Q̂1 + εQ0

)
dm+ 1

2‖q̂1 + εq0− e‖2W (2) − 1
2‖q̂1− e‖2W (1)

∣∣∣∣
≤ ‖c(2) − c(1)‖2‖q̂1‖2 + ε

(
〈c(2), q0〉+

∫
Td
P (1)Q0

Q̂1

dm

)
+ ‖P (2) − P (1)‖∞‖ log(Q̂1 + εQ0)‖1 + 1

2

∣∣ ‖q̂1 + εq0 − e‖2W (2) − ‖q̂1 − e‖2W (2)

∣∣
+ 1

2

∣∣ ‖q̂1 − e‖2W (2) − ‖q̂1 − e‖2W (1)

∣∣ . (B.12.3)

Next we observe that

0 ≤
∫
Td
P (1)Q0

Q̂1

dm = 〈r̂1 − ĉ1, q0〉 ≤ 〈c1 +W (1)(q̂1 − e), q0〉

by the KKT conditions (B.3.11) and the fact that q0 ∈ P+, ĉ1 ∈ C̄+. Hence ε
can be selected small enough for the second and fourth terms in (B.12.3) each to
be bounded by δ/5 for any (c(1), p(1),W (1)), (c(2), p(2),W (2)) ∈ Bρ(c(0), p(0),W (0)).
Each of the remaining terms can now be bounded by δ/5 by selecting ρ̃ sufficiently
small. Hence (B.12.2a) follows. This also proves (B.12.2b).

Lemma B.12.2. Let Phard be given by (B.7.5) and Jc,p,W by (B.6.6). Furthermore,
let q̂ := minq∈P̄+

Jc,p,W (q). Then, for any compact K ⊂ Phard, the corresponding
set of optimal solutions q̂ is bounded.

Proof. The proof follows closely thatof the corresponding part of Lemma B.12.1.
Let (c(0), p(0),W (0)) ∈ Phard be arbitrary, and let

B̃ρ(c
(0), p(0),W (0)) := Bρ(c

(0))×
(
Bρ(p

(0)) ∩ P̄+

)
×Bρ(W (0)),

where ρ > 0 is chosen so that B̃ρ(c
(0), p(0),W (0)) ⊂ Phard. To see that the minimizer

q̂c,p,W of Jc,p,W is bounded for all (c, p,W ) ∈ B̃ρ(c(0), p(0),W (0)), first note that by
optimality

Jc,p,W (q̂c,p,W ) ≤ Jc,p,W (e) = 〈c, e〉 −
∫
Td
P log 1 dm+ ‖e− e‖W = c0,

and hence Jc,p,W (p) is bounded from above on the compact set B̃ρ(c
(0), p(0),W (0)).

Now let h(q) := 〈c, q〉+ ‖q‖W , as in the proof of Theorem B.6.1. Following the
same line of argument as in that proof, we see that h(q) > 0 for all q ∈ P̄+ and
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(c, p,W ) ∈ B̃ρ(c(0), p(0),W (0)). Since h is continuous in the arguments (q, c, p,W ),
it has a minimum ε > 0 on the compact set of tuples (q, c, p,W ) such that q ∈
P̄+ \ {0}, ‖q‖∞ = 1, and (c, p,W ) ∈ B̃ρ(c(0), p(0),W (0)) hold. Thus the second half
of inequality (B.6.14) still holds, i.e.,

Jc,p,W (q) ≥ ε

|Λ|
‖Q‖∞ −

∫
Td
P log ‖Q‖∞dm− κ‖e‖∞ (B.12.4)

for all q, where κ > 0 is a constant that follows from norm equivalence. This is true
in particular for q̂c,p,W , and thus

c0 ≥ Jc,p,W (q̂c,p,W ) ≥ ε

|Λ|
‖Q̂c,p,W ‖∞ −

∫
Td
P log ‖Q̂c,p,W ‖∞dm− ε‖e‖∞.

Since the linear growth dominates the logarithmic growth, the norm of q̂c,p,W is

bounded on the set B̃ρ(c
(0), p(0),W (0)). The proof now follows verbatim from the

argument in the second paragraph in the proof of Lemma B.12.1.

Proof of Theorem B.7.3. This is a modification of the proof of Theorem B.7.1,
again utilizing [11, Lem. 2.3], where we replace the map f defined by W 3Whard 7→
Wsoft ∈ {W | W > 0} and redefine it with the map int(Phard) 3 (c, p,Whard) 7→
(c, p,Wsoft) ∈ int(P). To show that f is a homeomorphism we need to show that
the map is proper. To this end, we take a compact set K ⊂ int(Phard) and show
that f−1(K) is also compact. Again, there are two ways this could fail. First, the
preimage could contain a singular semidefinite matrix. However, this is impossible by
(B.7.2) since ‖q̂‖∞ is bounded for (c, p,Whard) ∈ K (Lemma B.12.2) and a nonzero
scaling of a singular matrix cannot be nonsingular. Second, ‖Wsoft‖F could tend
to infinity. However, this is also impossible. To see this, we first show that there
is a κ > 0 such that ‖p− r‖W−1

hard
≥ κ for all r ∈ Sc,Whard

and all (c, p,Whard) ∈ K.

Again, using the triangle inequality ‖p− r‖W−1
hard
≥ ‖p− c‖W−1

hard
− ‖c− r‖W−1

hard
, we

observe that the minimum of ‖p− r‖W−1
hard

over all (c, p,Whard) ∈ K and r satisfying

the constraint ‖r − c‖W−1
hard
≤ 1 is bounded by

κ := min
(c,p,Whard)∈K

‖p− c‖W−1
hard
− 1.

Note that the minimum is attained since K is compact, and positive since p 6∈⋃
(c,Whard)∈K Sc,W . The remaining part of the proof now follows with minor modifi-

cations from the proof of Theorem B.7.1 by noting that q̂ is bounded away from e,
and hence the preimage f−1(K) is bounded. Therefore, the limit of a sequence in
the preimage must belong to f−1(K), and hence f−1(K) is compact as claimed.
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Axel Ringh, Johan Karlsson, and Anders Lindquist

Abstract

We study the delay margin problem in the context of recent works by
T. Qi, J. Zhu, and J. Chen, where a sufficient condition for the maximal
delay margin is formulated in terms of an interpolation problem obtained after
introducing a rational approximation. Instead we omit the approximation step
and solve the same problem directly using techniques from function theory
and analytic interpolation. Furthermore, we introduce a constant shift in the
domain of the interpolation problem. In this way we are able to improve on
their lower bound for the maximum delay margin.

Keywords: delay systems, robust control, Nevanlinna-Pick interpolation, stability
of linear dynamical systems

C.1 Introduction

Time delays are ubiquitous in linear time invariant (LTI) systems, especially in
networks, and may occur through communication delay, computational delay or
physical transport delay. Consequently, systems with delay have been the subject of
much study in systems and control; see, e.g., [11, 22, 8] and references therein.

This paper is devoted to the achievable delay margin in unstable control systems
with time delay, a topic that has been studied in various contexts in, e.g., [26, 4,
14, 17, 23, 1, 24, 25, 15, 16]. This problem is related to the gain margin and phase
margin problems in robust control [5], [20], but the delay margin problem is more
complicated, and many unsolved problems remain. Loosely speaking, we are looking
for the largest time delay τmax such that there exists an LTI controller that stabilizes
the time delay system for each delay in the interval [0, τmax). In general this is an
unsolved problem, and results have been confined to obtaining upper and lower
bounds for τmax. In [23] upper bounds for some simple systems are presented, but
in general they are not tight. Methods for finding lower bounds based on different
methods have been proposed, e.g, using robust control [26, 14], integral quadratic
constrains [17] (see also [21]), and analytic interpolation [24, 25].

Our present paper builds on the approach in [24], [25], which formulates a
sufficient condition for the maximum delay margin in terms of an interpolation
problem with a real weight and obtains a lower bound using a rational approximation
of the weight. In the present paper we instead reformulate the interpolation problem
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as an infinite dimensional analytic interpolation problem and solve it directly using
techniques from function theory and complex analysis. This is related to work on
discrete time systems in [18, 19]; methods that can also be used for control design
and implementation. In addition, by introducing a constant shift, we show that the
lower bound can be further improved. In this short paper we concentrate on the
delay margin itself and leave a deeper study of control implementation to a future
paper.

The outline of the paper is as follows. In Section C.2 we define the delay margin
problem and describe the results in [23], [24], [25]. In Section C.3 we modify the
approach of [24], [25] to obtain better lower bounds and provide an algorithm for this.
This method is then improved in Section C.4 by a simple shift of the corresponding
complementary sensitivity function. Section C.5 is devoted to some numerical
simulations. To facilitate comparison with the results in [25] we use some of the
same systems as there. In Section C.6 we provide a succinct discussion of control
implementation, and in Section C.7 we discuss some possible future directions of
research.

C.2 The delay margin problem

Let P (s) be the transfer function of a continuous-time, finite-dimensional, single-
input-single-output LTI system, and consider the feedback control system depicted
in Figure C.1. Here e−τs is a delay, and K(s) is a feedback controller in the class

F(H∞) :=

{
N(s)

D(s)

∣∣∣ N,D ∈ H∞(C+) and D(s) 6≡ 0

}
,

where C+ denotes the open right half plane, and H∞(C+) denote the Hardy space
of bounded analytic functions on C+; see, e.g., [7]. The basic problem in control
theory is to find a K(s) in this quotient field that stabilizes the closed loop system
for a class of systems.

Let us first consider the standard problem without delay (τ = 0). The closed
loop system is stable if

1 + P (s)K(s) 6= 0 for all s ∈ C̄+, (C.2.1)

where C̄+ is the closed right half plane. This is equivalent to that the sensitivity
function

S(s) := (1 + P (s)K(s))−1

belongs to H∞, which in turn is equivalent to T ∈ H∞, where

T (s) := 1− S(s) = P (s)K(s)
(
1 + P (s)K(s)

)−1

is the complementary sensitivity function [5]. The feedback system is internally
stable if, in addition, there is no pole-zero cancellation between P and K in C̄+ [5,
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K(s) P (s)
u

e−τs

r e y

−

yτ

Figure C.1: Block diagram representation of an LTI system with time delay.

pp. 35-36]. Assuming for simplicity that the poles and zeros are distinct, this is
equivalent to the interpolation conditions1

T (pj) = 1, j = 1, . . . , n, (C.2.2a)

T (zj) = 0, j = 1, . . . ,m, (C.2.2b)

where p1, . . . , pn are the unstable poles and z1, . . . , zm the nonminimum phase zeros
of P , respectively; see, e.g., [27], [12, Chapters 2 and 7]. In the sequel we shall
simply say that K stabilizes P when all these conditions are satisfied.

If K stabilizes P , by continuity it also stabilizes Pe−τs for sufficiently small τ > 0.
The question is how large τ can be while retaining internal stability. Following [23]
we define the delay margin for a given controller K as

DM(P,K) := sup
τ≥0

τ

such that K stabilizes Pe−ts for t ∈ [0, τ ],

and the maximum delay margin for a plant P as

τmax = DM(P ) := sup
K∈F(H∞)

DM(P,K).

This means that τmax is the largest value such that for any τ̄ < τmax there exists a
controller K that stabilizes the plant P for all τ in the interval [0, τ̄ ]. If the plant P
is stable we trivially have τmax = ∞, since K ≡ 0 stabilizes it, and thus we shall
only consider unstable plants.

To determine τmax is in general a hitherto unsolved problem, but work has been
done to obtain lower and upper bounds.

Upper bounds for maximum delay margin

In [23] it was shown that for any strictly proper real-rational plant P with unstable
poles in re±iθ, r > 0 and θ ∈ [0, π/2], there is an upper bound τ̄ for τmax given by

τ̄ =
1

r

(
π sin(θ) + 2 max {cos(θ), θ sin(θ)}

)
(C.2.3)

1If the poles and zeros are not distinct the interpolation conditions need to be imposed with
multiplicity [27].
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[23, Thm. 7, 9 and 11]. Moreover, this upper bound is in fact shown to be tight in
the special cases of either exactly one real unstable pole or exactly two conjugate
unstable poles. These results are the first that show that there is an upper bound on
the achievable delay margin when using LTI controllers, and they describe a region
for the delay where stabilization is not possible. However, the provided bounds
of the maximum delay margin are in general not tight, and have lately also been
improved upon in [15, 16].

Lower bounds for maximum delay margin

To ensure stability we are in general more interested in a lower bound τ̄ ≤ τmax.
This problem is considered in the recent papers [24, 25], where an approach based
on analytic interpolation and rational approximations is taken. The starting point
is that (C.2.1) can be written

1 + T (s)(e−τs − 1) 6= 0 for s ∈ C̄+, (C.2.4)

where T is the complementary sensitivity function. A sufficient condition for (C.2.4)
to hold for all τ on an interval [0, τ̄ ] is that

sup
τ∈[0,τ̄ ]

inf
T∈H∞

subject to (C.2.2)

‖T (s)(e−τs − 1)‖H∞ < 1. (C.2.5)

Now, since sup inf ≤ inf sup, this condition holds whenever

inf
T∈H∞

subject to (C.2.2)

‖T (iω)φτ̄ (ω)‖L∞ < 1, (C.2.6)

where

φτ̄ (ω) = sup
τ∈[0,τ̄ ]

|e−iτω − 1|

=

{
2
∣∣sin( τ̄ω2 )

∣∣ for |ωτ̄ | ≤ π
2 for |ωτ̄ | > π.

(C.2.7)

In [25] the function φτ̄ is approximated by the magnitude of a rational function wτ̄
such that φτ̄ (ω) ≤ |wτ̄ (iω)| for all ω. Using this approximation and the interpolation
conditions on T for internal stability the authors derive an algorithm for computing
the largest τ̄ for which (C.2.6) holds. This thus gives a lower bound for the maximum
delay margin.

C.3 Formulating and solving (C.2.6) using analytic
interpolation

In this section we will solve the problem (C.2.6) directly using analytic interpolation
without resorting to approximation of φτ̄ (ω) via rational functions. Continuing in
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the manner of [25] we note that (C.2.6), the sufficient condition for the closed loop
system to be internally stable for all τ ∈ [0, τ̄ ], holds if there exists a T (s) ∈ H∞(C+)
such that

‖T (iω)φτ̄ (ω)‖L∞< 1 and

{
T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m.
(C.3.1)

Next, we may replace φτ̄ by the outer function Wτ̄ ∈ H∞(C+) with the same
magnitude as φτ̄ on iR [13, p. 133], and we arrive at the equivalent problem

‖TWτ̄‖H∞ < 1 and

{
T (pj) = 1, j = 1, . . . , n,

T (zj) = 0, j = 1, . . . ,m,
(C.3.2)

where

Wτ̄ (s) = exp

[
1

π

∫ ∞
−∞

log
(
φτ̄ (ω)

)ωs+ i

ω + is

1

1 + ω2
dω

]
. (C.3.3)

Observing that Wτ̄ is outer, and setting T̃ := TWτ̄ , (C.3.2) is seen to be equivalent
to

‖T̃‖H∞< 1 and

{
T̃ (pj) = Wτ̄ (pj), j = 1, . . . , n,

T̃ (zj) = 0, j = 1, . . . ,m,
(C.3.4)

and thus the only way the weight enters is through the values of the outer function
Wτ̄ at the pole locations pj [18, Section 4.C] (cf. [19]). Since Wτ̄ is outer, no
unstable poles or nonminimum-phase zeros have been added in C+.

Hence we have reduced the problem to determining whether there exists a
T̃ ∈ H∞ such that (C.3.4) holds. The values Wτ̄ (pj), j = 1, . . . , n, can be computed
from (C.3.3) by numerical integration. Then setting

v := [p1, . . . , pn, z1, . . . , zm] (C.3.5a)

w := [Wτ̄ (p1), . . . ,Wτ̄ (pn), 0, . . . , 0], (C.3.5b)

the interpolation problem (C.3.4) is solvable if and only if the corresponding Pick
matrix

Pick(v, w) :=
[

1−wjw̄k
vj+v̄k

]n+m

j,k=1
(C.3.6)

is positive definite; see, e.g., [5, pp. 151-152]. In case the poles and zeros are not
distinct, (C.3.6) needs to be replaced by a more general criterion, e.g., using the
input-to-state framework [3, 10] as in [2].

We have thus shown that for a given τ̄ , the problem (C.2.6) has a solution if and
only if the Pick matrix (C.3.6) with interpolation values (C.3.5) is positive definite.
Moreover, if (C.2.6) has a solution for some τ̄ then clearly it has a solution for any
smaller value, since φτ̄ (ω) is point-wise nondecreasing in τ̄ . Therefore the optimal
τ̄ can be computed using the bisection algorithm, iteratively testing feasibility of
(C.2.6). The method is summarized in Algorithm C.1. Note that by (C.2.3) we have
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Algorithm C.1 Lower bound on maximum delay margin

Input: Unstable poles pj , j = 1, . . . , n, and nonminimum phase zeros zj , j =
1, . . . ,m, of the plant P .

1: τ− = 0.
2: τ+ = 2π/maxj(|pj |),
3: while τ+ − τ− > tol do
4: τmid = (τ+ + τ−)/2
5: Compute new interpolation values Wτmid

(pj)
6: if Pick matrix (C.3.6) with values (C.3.5) is positive definite then
7: τ− = τmid

8: else
9: τ+ = τmid

10: end if
11: end while
12: τ̄ = τ−
Output: τ̄ , lower bound on maximum delay margin

2π/maxj(|pj |) ≥ τmax, which gives a valid choice for the initial upper bound in the
bisection algorithm.

The improvement of this method over that in [25] depends on how well the
magnitude of the fifth-order approximation w6τ (iω) used in [25] fits φτ̄ (ω) for ω ∈ R.
To illustrate this, the relative error for τ̄ = 1 is shown in Figure C.2. In this
particular case only a minor improvement in the lower bound is expected.

However, our formulation of the problem allows for adding further constraints to
the interpolation problem. This can be done in order to shape the sensitivity function,
similarly to what has been done for discrete time systems in [18]. In the current
setting this can be achieved by letting φdesign be the modulus on the imaginary
axis of the designed weight function and by considering ‖T (iω)φmax(ω)‖L∞ < 1 in
(C.3.1) instead, where φmax(ω) = max{φτ̄ (ω), φdesign(ω)}.

C.4 Improving the lower bound using a constant shift

Consider the constraint ‖T (iω)φτ̄ (ω)‖L∞ < 1 in (C.3.1). For each ω the image of
the complementary sensitivity function, T (iω), is confined to a ball centered at the
origin and with radius |φτ̄ (ω)−1|. However, choosing the center of the ball at the
origin is quite arbitrary, and by instead carefully selecting the center elsewhere, we
may improve the estimate of the lower bound. To this end, let T = T̂ + w0 where
w0 ∈ C. The condition (C.2.4) can then be written

T̂ (s)
(
e−τs − 1

)
6= −1 + w0 − w0e

−τs. (C.4.1)

Here the right hand side is an H∞ function, and it is nonzero in all of C̄+ if and only
if <(w0) < 1/2, as can be seen from Lemma C.8.1 in the appendix. Consequently,
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Figure C.2: Relative error between φτ̄ and the magnitude of fifth-order ap-
proximation w6τ in [25], for τ̄ = 1. The relative error is given point-wise by(
|w6τ (iω)| − φτ̄ (ω)

)
/φτ̄ (ω).

for <(w0) < 1/2, the inverse is an H∞ function and thus (C.4.1) can be written as

T̂ (s)
e−τs − 1

1− w0 + w0e−τs
6= −1. (C.4.2)

Hence we need modify the function φτ̄ in Section C.3 to read

φτ̄ (ω) := sup
τ∈[0,τ̄ ]

∣∣∣∣ e−τiω − 1

1− w0 + w0e−τiω

∣∣∣∣ ,
which reduces to (C.2.7) when w0 = 0. Then using the same argument as before,
we see that

‖T̂ (iω)φτ̄ (ω)‖L∞ < 1

is a sufficient condition for (C.4.2) to hold.
As shown in the appendix, φτ̄ (ω) can be determined in closed form, i.e.,

φτ̄ (ω)−1 =


0.5−<(w0), ω ≥ ω̄+,

|0.5− i0.5 cot(ωτ̄/2)− w0| , ω̄+>ω>ω̄−,

0.5−<(w0), ω ≤ ω̄−,
(C.4.3)

where ω̄+ and ω̄− are defined as follows: first define

ω̄ :=
2

τ̄
cot−1(−2 · =(w0)),

where we set cot−1(0) = π/2. Moreover, note that ω̄ 6= 0 for any finite w0. Next,
define ω̄+ and ω̄− by first setting ω̄+ = ω̄ if ω̄ > 0 or ω̄− = ω̄ if ω̄ < 0 and then
defining the remaining variable via

ω̄+ = ω̄− + 2π/τ̄ .
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Following the procedure in Section C.3 we define, via the representation (C.3.3),
an outer function Wτ̄ (s) with the property |Wτ̄ (iω)| = φτ̄ (ω) for all points on the
imaginary axis. Consequently, we are left with the problem to find a T̂ such that

‖T̂Wτ̄‖H∞ < 1 and

{
T̂ (pj) = 1− w0, j = 1, . . . , n,

T̂ (zj) = −w0, j = 1, . . . ,m,

which, in turn, is equivalent to

‖T̃‖H∞< 1 and

{
T̃ (pj) = (1− w0)Wτ̄ (pj), j = 1, . . . , n,

T̃ (zj) = −w0Wτ̄ (zj), j = 1, . . . ,m.

In the same manner as in Section C.3 we can then determine feasibility by checking
whether the corresponding Pick matrix (C.3.6) is positive definite. A refined
algorithm for computing a lower bound for the maximum delay margin is thus
obtained by suitable changes in Algorithm C.1.

C.5 Numerical example

In this section we investigate the performance of the method proposed in Section C.4
on some examples. To facilitate comparison with the results of [25] we consider the
various SISO-systems given in [25, Ex.1].

Systems with one unstable pole and one nonminimum phase zero

We begin with the system [25, Eq. (41)], i.e.,

P (s) =
s− z
s− p

, (C.5.1)

where z, p > 0. As in [25] we set z = 2 and compute an estimate for the delay margin
for different values of p in the interval [0.3, 4]. Results are shown in Figure C.3.
From this we can see that with w0 = −10 we get a considerable improvement over
the bound in [25] in the region p < z = 2, and in this case we get close to the
theoretical bound from [23] (which is tight in this region). However, with w0 = −10
our method seems to perform worse than [25] in the region p > z = 2. On the other
hand, in this region the value w0 = 0.35 achieves some improvement. Note that the
true stability margin is, to the best of our knowledge, still unknown in this region.

The system [25, Eq. (42)], given by

P (s) = 0.1
(0.1s− 1)(s+ 0.1659)

(s− 0.1081)(s2 + 0.2981s+ 0.06281)
, (C.5.2)

has similar characteristics as the previous example, with one unstable pole (p =
0.1081) and nonminimim phase zero (z = 10). Also in this case our method
gives a considerable improvement over [25] when w0 is selected to be negative,
and as w0 tends to −∞ our bound seems to approach the theoretical bound
2/0.1081− 2/10 ≈ 18.3 from [23]; see Figure C.4.
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Figure C.3: Results for the example in (C.5.1).

Figure C.4: Results for the example in (C.5.2), with w0 real. When w0 goes to −∞
we seem to get arbitrarily close to the result by Middleton et al. [23], while for
w0 > 0 the bound deteriorate quickly.

System with two unstable real poles

Next we consider the system [25, Eq. (40)], given by

P (s) =
1

(s− p1)(s− p2)
.

In this case p1 is fixed to 0.2, and the delay margin computed for different values
of p2 ∈ [0.1, 3]. Then for values of w0 ∈ [−10, 0.5) only minor improvements over
the result in [25] are achieved; for the corresponding optimal choice of w0, the
improvements are between 0.19% and 2.9% depending on p2.
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(a) Estimates of the delay margin for the cases,
from top to bottom, (r, θ) = (1, π/4), (r, θ) =
(1, π/3), and (r, θ) = (2, π/3).

(b) Best choice of w0 as function of the zero
position z.

Figure C.5: Reults for the example in (C.5.3).

System with conjugate pair of complex poles

Finally we consider the system [25, Eq. (45)], which has a pair of unstable complex
poles and a nonminimum phase zero. This system is given by

P (s) =
s− z

(s− reiθ)(s− re−iθ)
, (C.5.3)

and we compute an estimate of the delay margin for three fixed values of the pair
(r, θ), namely for (r, θ) = (1, π/4), (r, θ) = (1, π/3), and (r, θ) = (2, π/3). Moreover,
for these values of (r, θ) we vary z in [0.01, 4] and for each value of z we investigate
all values of w0 ∈ [−1.5, 0.5) (with steps 0.02) to find the w0 that maximizes the
estimated delay margin. Results are shown in Figure C.5, where Figure C.5a shows
the estimated delay margin and Figure C.5b shows the corresponding best value of
w0. The proposed method gives significantly improved bounds in some regions, for
example when θ = π/3 and z is small compared to r.

C.6 On the control implementation

There are certain problems with the implementation of the stabilizing controller
that need attention. The complementary sensitivity function is given by

T (s) = T̃ (s)Wτ̄ (s)−1 + w0. (C.6.1)

Indeed, since Wτ̄ is outer, it is nonzero in C+, and hence it can be inverted there.
However, since Wτ̄ (0) = 0, T typically has a pole in s = 0, and therefore the closed
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loop system may not be stable (cf. [5, p. 36]). This can be rectified by replacing φτ̄
by

φτ̄ ,ε(ω) = max(ε, φτ̄ (ω))

for ε > 0. This will give a stable system and, by continuity, as ε→ 0 we can obtain
a maximum delay margin estimate arbitrary close to τ̄ .

Selecting τ̄ to be the supremum for which (C.2.6) holds gives rise to a singular
Pick matrix (C.3.6) and a unique solution T̃ which is a Blaschke product [9, pp.
5-9], so ‖T̃‖H∞ = 1. Such a solution will not satisfy (C.2.6) and thus may not have
delay margin τ̄ . However, for any τ̄ smaller than the supremum the Pick matrix is
positive definite and the analytic interpolation problem (e.g., (C.3.4)) has infinitely
many rational solutions [3], [6]. We must now choose such a solution appropriately
so that the stabilizing controller

K = P−1(T̃ + (1− w0)Wτ̄ )−1(T̃ + w0Wτ̄ ), (C.6.2)

is a rational function and thus can be implemented by a finite-dimensional system.
Hence, unlike the approach in [24, 25], an approximation may be needed to design
the controller. Again, methods similar to the ones presented in [18] can be used to
obtain such an approximation, but details are left for a forthcoming paper.

C.7 Conclusions and future directions

In this work we build on the approach in [24], [25] for computing a lower bound
for the maximum delay margin of a system. We introduce a parameter that can
be tuned to improve the bounds, and in numerical examples we can in some cases
come (arbitrarily) close to the true upper bound. Subsequent work will focus on
why this is the case, but also on how to tune the method and how to construct
implementable controllers; the latter by following along the lines of [3], [6], [18].
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C.8 Appendix

A bound on <(w0)

Lemma C.8.1. For τ > 0 the function h(s) = −1 +w0−w0e
−τs is nonzero in C̄+

if and only if <(w0) < 1/2.
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Proof. Suppose τ > 0. If <(w0) < 0, h(s) is trivially nonzero for all s ∈ C̄+.
Consequently we need only consider the case <(w0) ≥ 0. Then {w0e

−τs | s ∈ C̄+} =
|w0|D̄, where D̄ is the closed unit disc {s ∈ C | |s| ≤ 1}. Therefore h(s) is nonzero
if and only if 1− w0 6∈ |w0|D̄, which is true if and only if |1− w0| > |w0| which in
turn is true if and only if <(w0) < 1/2.

Computing φτ̄ (ω)

Since supx f(x) = infx 1/f(x) we have that

φτ̄ (ω)−1 = inf
τ∈[0,τ̄ ]

|w0 − g(ω, τ)| ,

where g(ω, τ) := (1− e−iωτ )−1. Introducing the set

Aτ̄ (ω) :=
{
g(ω, τ) | τ ∈ [0, τ̄ ]

}
for each ω,

φτ̄ (ω)−1 = dist
(
w0 , Aτ̄ (ω)

)
,

where dist(s1, C) := infs2∈C |s1 − s2| denotes the distance between a point and a
set. Next we note that

g(ω, τ) =
1

2
− i

2

sin(ωτ)

1− cos(ωτ)
=

1

2
− i

2
cot
(ωτ

2

)
,

so =
(
g(ω, τ)

)
is a monotone increasing function of the product ωτ in any interval

(0, 2π) + k · 2π, k ∈ Z. Moreover,

g(ω, τ)− w0 =

[
1

2
−<(w0)

]
+ i
[
=
(
g(ω, τ)

)
−=(w0)

]
,

where the real part is positive since we need <(w0) < 1/2 by Lemma C.8.1. Therefore
|g(ω, τ) − w0| will take a minimum value when

∣∣=(g(ω, τ)
)
−=(w0)

∣∣ is as small
as possible. For a fixed ω ≥ 0, consider three cases. First, if ω ≤ 2π/τ̄ and if
=
(
g(ω, τ̄)

)
≥ =(w0), then, since =

(
g(ω, τ)

)
is monotone increasing in τ , 1/2 −

=(w0) ∈ Aτ̄ (ω) and |g(ω, τ)− w0| ≥ 1
2 −<(w0), and hence

dist
(
w0 , Aτ̄ (ω)

)
=

1

2
−<(w0).

Second, if ω > 2π/τ̄ the argument can be reduced to the above one by noticing
that =

(
g(ω, τ)

)
is 2π-periodic in ωτ and that [0, 2π] ⊂ {ωτ | τ ∈ [0, τ̄ ]}. Third, if

=
(
g(ω, τ̄)

)
< =(w0), then the minimum will be obtained for τ = τ̄ , so

dist
(
w0 , Aτ̄ (ω)

)
= |w0 − g(ω, τ̄)|.
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In the same manner we obtain the analogous results for negative ω. Now define
ω̄+ ∈ (0, 2π/τ̄) to be the value of ω for which =

(
g(ω̄+, τ̄)

)
= =(w0), and let

ω̄− ∈ (−2π/τ̄ , 0) be the corresponding negative value. These are the frequencies
at which φ−1

τ̄ changes form. Moreover, they can be computed by using ω̄ as in
Section C.4.
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Abstract

The optimal mass transport problem gives a geometric framework for
optimal allocation and has recently gained significant interest in application
areas such as signal processing, image processing, and computer vision. Even
though it can be formulated as a linear programming problem, it is in many
cases intractable for large problems due to the vast number of variables. A
recent development addressing this builds on an approximation with an entropic
barrier term and solves the resulting optimization problem using Sinkhorn
iterations. In this work we extend this methodology to a class of inverse
problems. In particular we show that Sinkhorn-type iterations can be used to
compute the proximal operator of the transport problem for large problems. A
splitting framework is then used to solve inverse problems where the optimal
mass transport cost is used for incorporating a priori information. We illustrate
the method on problems in computerized tomography. In particular we consider
a limited-angle computerized tomography problem, where a priori information
is used to compensate for missing measurements.

Keywords: optimal mass transport, Sinkhorn iterations, convex optimization,
proximal methods, variable splitting, inverse problems, medical imaging

D.1 Introduction

The optimal mass transport problem provides a useful framework that can be utilized
in many contexts, ranging from optimal allocation of resources to applications in
imaging and machine learning. In this work we extend this framework and consider
optimization problems where the objective function contains an optimal mass
transport cost. This includes several inverse problems of interest, for example to
model deformations in the underlying object.

The optimal mass transport problem is sometimes referred to as the Monge-
Kantorovich transportation problem and was originally formulated by Gaspard
Monge in 1781 [67] for transport of soil for construction of forts and roads in order
to minimize the transport expenses. He described the problem as follows: “divide
two equal volumes into infinitesimal particles and associate them one to another
so that the sum of the path lengths multiplied by the volumes of the particles be
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minimum possible” [45]. The second founder of the field is the mathematician and
economist Leonid Kantorovich, who made major advances to the area and as part
of this reformulated the problem as a convex optimization problem along with a
dual framework. He later received the Nobel Memorial Prize in Economic Sciences
for his contributions to the theory of optimum allocation of resources [66]. For
an introduction and an overview of the optimal mass transport problem, see, e.g.,
[67]. During the last few decades the approach has gained much interest in several
application fields, such as image processing [39, 38, 43], signal processing [34, 37, 41],
computer vision, and machine learning [57, 50, 18, 59].

In our setting the optimal transportation cost is used as a distance for comparing
objects and incorporating a priori information. An important property of this
distance is that it does not only compare objects point by point, as standard Lp

metrics, but instead quantifies the length with which that mass is moved. This
property makes the distance natural for quantifying uncertainty and modeling
deformations [41, 46, 47]. More specifically geodesics (in, e.g., the associated
Wasserstein-2 metric [67]) preserve “lumpiness,” and when linking objects via
geodesics of the metric there is a natural deformation between the objects. Such a
property appears highly desirable in tracking moving objects and integrating data
from a variety of sources (see, e.g., [41]). This is in contrast to the fade-in-fade-out
effect that occurs when linking objects in standard metrics (e.g., the L2 metric).

Although the optimal mass transport problem has many desirable properties
it also has drawbacks. Monge’s formulation is a nonconvex optimization problem
and the Kantorovich formulation results in large-scale optimization problems that
are intractable to solve with standard methods even for modest size transportation
problems. A recent development addressing this computational problem builds on
adding an entropic barrier term and solving the resulting optimization problem using
the so-called Sinkhorn iterations [28]. This allows for computing an approximate
solution of large transportation problems and has proved useful for many problems
where no computationally feasible method previously exists. Examples include
computing multi-marginal optimal transport problems and barycenters (centroids)
[7] and sampling from multivariate probability distribution [40]. For quadratic cost
functions this approach can also be seen as the solution to a Schrödinger bridge
problem [21].

In this work we build on these methods and consider variational problems that
contain an optimal mass transport cost. In particular, we focus on problems of the
form

min
µest

Tε(µ0, µest) + g(µest), (D.1.1)

where Tε is the entropy regularized optimal mass transport cost, and g both quantifies
data mismatch and can contain other regularization terms. Typically µ0 is a
given prior and the minimizing argument µest is the sought reconstruction. This
formulation allows us to model deformations, to address problems with unbalanced
masses (cf. [37]), and to solve gradient flow problems [8, 55] appearing in the Jordan-
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Kinderlehrer-Otto framework [42]. A common technique for solving optimization
problems with several additive terms is to utilize the proximal point method [56]
together with a variable splitting technique [4, 14, 31, 48]. These methods typically
utilize the proximal operator and provide a powerful computational framework
for solving composite optimization problems. Similar frameworks have previously
been used for solving optimization problems that include a transportation cost.
In [8] a fluid dynamics formulation [6] is considered that can be used to compute
the proximal operator, and in [55] an entropic proximal operator [64] is used for
solving problems of the form (D.1.1). In this paper we propose a new fast iterative
computational method for computing the proximal operator of Tε(µ0, ·) based on
Sinkhorn iterations. This allows us to use splitting methods, such as Douglas-
Rachford-type methods [32, 13], in order to solve large scale inverse problems of
interest in medical imaging.

The paper is structured as follows. In Section D.2 we describe relevant back-
ground material on optimal transport and Sinkhorn iterations, and we also review
the proximal point algorithm and variable splitting in optimization. Section D.3
considers the dual problem of (D.1.1) and we introduce generalized Sinkhorn itera-
tions which can be used for computing (D.1.1) efficiently for several cost functions
g. In particular the proximal operator of Tε(µ0, ·) is computed using iterations with
the same computational cost as Sinkhorn iterations. In Section D.4 we describe how
a Douglas-Rachford-type splitting technique can be applied for solving a general
class of large scale problems on the form (D.1.1), and in Section D.5 we apply
these techniques to inverse problems using an optimal transport prior, namely two
reconstruction problems in computerized tomography. In Section D.6 we discuss
conclusions and further directions. Finally, the paper has four appendices containing
deferred proofs, connections with the previous work [55], and details regarding the
numerical simulations.

Notation

Next, we briefly introduce some notation. Most operations in this paper are
defined elementwise. In particular we use �, ./, exp, and log to denote elementwise
multiplication, division, exponential function, and logarithm function, respectively.
We also use ≤ (<) to denote elementwise inequality (strict). Let IS(µ) be the
indicator function of the set S, i.e., IS(µ) = 0 if µ ∈ S and IS(µ) = +∞ otherwise.
Finally, let 1n denote the n× 1 (column) vector of ones.

D.2 Background

The optimal mass transport problem and entropy regularization

Monge’s formulation of the optimal mass transport problem is set up as follows.
Given two nonnegative functions, µ0 and µ1, of the same mass, defined on a compact
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set X ⊂ Rd, one seeks the transport function φ : X → X that minimizes the
transportation cost ∫

X

c(φ(x), x)µ0(x)dx

and that is a mass preserving map from µ0 to µ1, i.e.,∫
x∈A

µ1(x)dx =

∫
φ(x)∈A

µ0(x)dx for all A ⊂ X.

Here c(x0, x1) : X×X → R+ is a cost function that describes the cost for transport-
ing a unit mass from x0 to x1. It should be noted that this optimization problem is
not convex and the formulation is not symmetric with respect to functions µ0 and
µ1.

In the Kantorovich formulation one instead introduces a transference plan,
M : X × X → R+, which characterizes the mass which is moved from x0 to x1.
This construction generalizes to general nonnegative measures dM ∈M+(X ×X)
and allows for transference plans where the mass in one point in µ0 is transported
to a set of points in µ1. The resulting optimization problem is convex, and the cost
is given by

T (µ0, µ1) = min
dM∈M+(X×X)

∫
(x0,x1)∈X×X

c(x0, x1)dM(x0, x1)

subject to µ0(x0)dx0 =

∫
x1∈X

dM(x0, x1), (D.2.1)

µ1(x1)dx1 =

∫
x0∈X

dM(x0, x1).

The optimal mass transport cost is not necessarily a metric. However, if X is a
separable metric space with metric d and we let c(x0, x1) = d(x0, x1)p, where p ≥ 1,
then T (µ0, µ1)1/p is a metric on the set of nonnegative measures on X with fixed
mass. This is the so-called Wasserstein metrics.1 Moreover, T (µ0, µ1) is weak∗

continuous on this set [67, Thm. 6.9]. Although the optimal mass transport is only
defined for functions (measures) of the same mass, it can also be extended to handle
measures with unbalanced masses [37] (see also [22] for recent developments).

In this paper we consider the discrete version of the Kantorovich formulation
(D.2.1)

T (µ0, µ1) = min
M≥0

Tr(CTM)

subject to µ0 = M1n1
(D.2.2)

µ1 = MT1n0 .

1The Wasserstein metric was, as many other concepts in this field, first defined by Kantorovich,
and the naming is therefore somewhat controversial; see [66] and [67, pp. 106-107].
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In this setting the mass distributions are represented by two vectors µ0 ∈ Rn0
+

and µ1 ∈ Rn1
+ , where the element [µk]i corresponds to the mass in the point

x(k,i) ∈ X for i = 1, . . . , nk and k = 0, 1. A transference plan is represented by

a matrix M ∈ Rn0×n1
+ where the value mij := [M ]ij denotes the amount of mass

transported from point x(0,i) to x(1,j). Such a plan is a feasible transference plan
from µ0 to µ1 if the row sums of M are µ0 and the column sums of M are µ1.
The associated cost of a transference plan is

∑n0

i=1

∑n1

j=1 cijmij = Tr(CTM), where
[C]ij = cij = c(x(0,i), x(1,j)) is the transportation cost from x(0,i) to x(1,j).

Even though (D.2.2) is a convex optimization problem, it is in many cases
computationally infeasible due to the vast number of variables. The number of
variables is n0n1, and if one seeks to solve the optimal transport problem between
two 256× 256 images, this results in more than 4 · 109 variables.

One recent method to approximate the optimal transport problem, which allows
for addressing large problems, is to introduce an entropic regularizing term. This
was proposed in [28], where the following optimization problem is considered:

Tε(µ0, µ1) = min
M≥0

Tr(CTM) + εD(M) (D.2.3a)

subject to µ0 = M1n1
(D.2.3b)

µ1 = MT1n0 , (D.2.3c)

where D(M) =
∑n0

i=1

∑n1

j=1(mij log(mij)−mij + 1) is a normalized entropy term
[27]. This type of regularization is sometimes denoted entropic proximal [64] and
has previously been considered explicitly for linear programming [35]. Also worth
noting is that D(M) is nonnegative and equal to zero if and only if M = 1n01

T
n1

.
A particularly nice feature with this problem is that any optimal solution belongs

to an a priori known structure parameterized by n0 + n1 variables via diagonal
scaling (see (D.2.6) below). This can be seen by relaxing the equality constraints
and considering the Lagrange function

L(M,λ0, λ1) = Tr(CTM) + εD(M) (D.2.4)

+λT0 (µ0 −M1n1
) + λT1 (µ1 −MT1n0

).

For given dual variables, λ0 ∈ Rn0 and λ1 ∈ Rn1 , the minimum mij is obtained at

0 =
∂L(M,λ0, λ1)

∂mij
= cij + ε log(mij)− λ0(i)− λ1(j) (D.2.5)

which can be expressed explicitly as mij = eλ0(i)/εe−cij/εeλ1(j)/ε, or equivalently
the solution is of the form

M = diag(u0)Kdiag(u1) (D.2.6)

where K = exp(−C/ε), u0 = exp(λ0/ε), and u1 = exp(λ1/ε). A theorem by
Sinkhorn [63] states that for any matrixK with positive elements, there exist diagonal
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matrices diag(u0) and diag(u1) with u0, u1 > 0 such that M = diag(u0)Kdiag(u1)
has prescribed row sums and columns sums (i.e., M satisfies (D.2.3b) and (D.2.3c)).
Furthermore, the vectors u0 and u1 may be found by Sinkhorn iterations, i.e.,
alternatively solving (D.2.3b) for u0 and (D.2.3c) for u1:

diag(u0)Kdiag(u1)1 =µ0 ⇒ u0 = µ0./(Ku1) (D.2.7a)

diag(u1)KTdiag(u0)1 =µ1 ⇒ u1 = µ1./(K
Tu0). (D.2.7b)

The main computational bottlenecks in each iteration are the multiplications Ku1

and KTu0, and the iterations are therefore highly computationally efficient, in
particular for cases where the matrix K has a structure which can be exploited
(see the discussion in Section D.3). Furthermore the convergence rate is linear [36]
(cf. [20] for generalization to positive functions).

Recently, in [7], it was shown that the same iterative procedure for solving
(D.2.3) can also be recovered using Bregman projections [16] or Bregman-Dykstra
iterations [5, 15]. This approach was also used to solve several related problems,
such as for computing barycenters, multimarginal optimal transport problems, and
tomographic reconstruction [7]. It has also been shown that the Sinkhorn iterations
can be interpreted as block-coordinate ascent maximization of the dual problem via
a generalization of the Bregman-Dykstra iterations [55, Prop. 3.1]. In Section D.3
we derive this result using Lagrange duality. This observation opens up for enlarging
the set of optimization problems that fit into this framework and may also result in
new algorithms adopted to the dual optimization problem.

Variable splitting in convex optimization

Variable splitting is a technique for solving variational problems where the objective
function is the sum of several terms that are simple in some sense (see, e.g.,
[4, 24, 31]). One of the more common algorithms for variable splitting is ADMM
[14], but there are plenty of other algorithms, such as primal-dual forward-backward
splitting algorithms [12, 19, 62], primal-dual forward-backward-forward splitting
algorithms [25], and Douglas-Rachford-type algorithms [13, 32]. For a good overview
see [48]. In this work we will explicitly consider variable splitting using a Douglas-
Rachford-type algorithm presented in [13], but in order to better understand how
the algorithm works we will first have a look at the proximal point algorithm and
basic Douglas-Rachford variable splitting.

The basic idea behind many of the splitting techniques mentioned above springs
from the so-called proximal point algorithm for maximally monotone operators [56].
An operator S : H → H, where H is a real Hilbert space with the inner product
〈·, ·〉, is called monotone if

〈z − z′, w − w′〉 ≥ 0 for all z, z′ ∈ H,w ∈ S(z), and w′ ∈ S(z′),

and maximally monotone if in addition the graph of S,

{(z, w) ∈ H ×H | w ∈ S(z)},
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is not properly contained in the graph of any other monotone operator. The interest
in such operators stems from the fact that the subdifferential of a proper, convex, and
lower semi-continuous function f , denoted by ∂f , is a maximally monotone operator
[56]. Moreover, a global minimizer of such f is any point z so that 0 ∈ ∂f(z), which
we denote by z ∈ zer(∂f). For a maximally monotone operator S and any scalar
σ > 0 the operator (I − σS)−1 is called the resolvent operator or proximal mapping.
The proximal point algorithm is a fixed-point iteration of the resolvent operator,

zk+1 = (I − σS)−1(zk),

and if zer(S) 6= ∅ then zk converges weakly to a point z∞ ∈ zer(S) [56]. For the
case that S = ∂f the resolvent operator is called the proximal operator and is given
by

(I − σ∂f)−1(z) = Proxσf (z) := arg min
z′

{
f(z′) +

1

2σ
‖z′ − z‖22

}
. (D.2.8)

Hence, fixed-point iterations of the form

zk+1 = arg min
z′

{
f(z′) +

1

2σ
‖z′ − zk‖22

}
generates a sequence that converges weakly to a global minimizer of f . The parameter
σ determines the weighting between f and the squared norm in H, and can be
interpreted as a step length.

When the function to be minimized is a sum of several terms, then the resolvent
operator of S = A + B, i.e., (I − σ(A + B))−1, can be approximated in terms of
the operators A and B and their resolvent operators (I − σA)−1 and (I − σB)−1

[31]. This can give rise to fast schemes when the proximal operator of each term in
the sum can be computed efficiently. One specific such algorithm, which is globally
convergent, is the Douglas-Rachford splitting algorithm [32]. In Section D.4 we will
use the splitting algorithm presented in [13], which extends this framework, in order
to address a fairly general class of inverse problems.

D.3 The dual problem and generalized Sinkhorn iterations

In this section we will see that the Sinkhorn iteration is identical to block-coordinate
ascent of the corresponding dual problem. Further, we will show that this procedure
can also be applied to a set of inverse problems where the transportation cost is
used as a regularizing term, and, in particular, for computing the proximal operator
of Tε(µ0, ·).
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Sinkhorn iterations and the dual problem

The Lagrangian dual of (D.2.3) is defined as the minimum of (D.2.4) over all M ≥ 0
[10, p. 485]. In our case this can be obtained by noting that

min
M≥0

L(M,λ0, λ1) = L(M∗, λ0, λ1)

= λT0 µ0 + λT1 µ1 +

n0∑
i=1

n1∑
j=1

(
m∗ij(cij + ε logm∗ij − λ0(i)− λ1(j)) + 1−m∗ij

)

= λT0 µ0 + λT1 µ1 + ε

n0∑
i=1

n1∑
j=1

(1−m∗ij)

= λT0 µ0 + λT1 µ1 − ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) + εn0n1,

where the optimal solution M∗ = [m∗ij ]ij is specified by (D.2.5), which is also used
in the third and fourth equalities. This gives the following expression for the dual
problem, a result which can also be found in [29, Sec. 5].

Proposition D.3.1 ([29]). A Lagrange dual of (D.2.3) is given by

max
λ0,λ1

λT0 µ0 + λT1 µ1 − ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) + εn0n1. (D.3.1)

Note the resemblance between the entropy relaxed dual formulation (D.3.1) and
the dual of the optimal transport problem (D.2.2) [67]:

max
λ0,λ1

µT0 λ0 + µT1 λ1 (D.3.2a)

subject to λ01
T
n1

+ 1n0λ
T
1 ≤ C. (D.3.2b)

The difference is that the inequality constraint (D.3.2b) is exchanged for the penalty
term

− ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) (D.3.3)

in the objective function of (D.3.1). As ε→ 0, the value of the barrier term (D.3.3)
goes to 0 if the constraint (D.3.2b) is satisfied and to −∞ otherwise.

Next, consider maximizing the dual objective (D.3.1) with respect to λ0 for a
fixed λ1. This is attained by setting the gradient of the objective function in (D.3.1)
with respect to λ0 equal to zero, hence λ0 satisfies

µ0 = exp(λ0/ε)� (exp(−C/ε) exp(λ1/ε)) .

This is identical to the update formula (D.2.7a) for u0 = exp(λ0/ε), corresponding to
the Sinkhorn iterations, where as before u1 = exp(λ1/ε). By symmetry, maximizing
λ1 for a fixed λ0 gives a corresponding expression which is identical to (D.2.7b).
Hence the Sinkhorn iterations corresponds to block-coordinate ascent in the dual
problem, i.e., iteratively maximizing the objective in (D.3.1) with respect to λ0

while keeping λ1 fixed, and vice versa.
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Corollary D.3.2 ([55]). The Sinkhorn iteration scheme (D.2.7) is a block-coordinate
ascent algorithm of the dual problem (D.3.1).

This was previously observed in [55, Sec. 3.2]. As we will see next, block-
coordinate ascent of the dual problem results in fast Sinkhorn-type iterations for
several different problems.

Generalized Sinkhorn iterations

Let us go back to the optimization problem (D.1.1) that contains an optimal mass
transport cost

min
µest

Tε(µ0, µest) + g(µest), (D.3.4)

where µ0 is a prior, and g is a term that could include other regularization terms
and data mismatch. In order to guarantee that this problem has a solution and is
convex, we introduce the following assumption.

Assumption D.3.3. Let g be a proper, convex, and lower semi-continuous function
that is finite in at least one point with mass equal to µ0, i.e., g(µest) <∞ for some
µest with

∑n0

i=1 µ0(i) =
∑n1

j=1 µest(j).

The first part of this assumption is to make the problem convex, and the
second part is imposed so that (D.3.4) has a feasible solution. Moreover, note that
Tε(µ0, µest) <∞ restricts µest to a compact set, which guarantees the existence of
an optimal solution. Using the definition of the optimal transport cost, the problem
(D.3.4) can equivalently be formulated as

min
M≥0,µest

Tr(CTM) + εD(M) + g(µest) (D.3.5)

subject to µ0 = M1n1

µest = MT1n0
.

The Lagrangian dual problem of (D.3.5) can be obtained using the same steps as
the derivation of Proposition D.3.1. See Appendix D.7 for details. Results similar
to Proposition D.3.4 are also obtained in the recent preprints [23, Thm. 1] and [60].

Proposition D.3.4. Let µ0 > 0 be given, and let g satisfy Assumption D.3.3. Then
the Lagrange dual of (D.3.5) is given by

max
λ0,λ1

λT0 µ0 − g∗(−λ1)− ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) + εn0n1 (D.3.6)

and strong duality holds.
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The only difference between (D.3.6) and (D.3.1) is that the term λT1 µ1 is replaced
by −g∗(−λ1), where g∗ denotes the dual (or Fenchel) conjugate functional

g∗(λ) = sup
µ

(
λTµ− g(µ)

)
.

Clearly, Proposition D.3.1 is a special case of Proposition D.3.4, and the optimization
problem Tε(µ0, µ1) in (D.2.3) is recovered from (D.3.4) if µest is fixed to µ1, i.e.,
g(µest) = Iµ1

(µest). Since (D.3.6) is a dual problem, the objective function is
concave [10, p. 486], but not necessarily strictly concave (e.g., as in the case (D.3.1)).
Moreover, Assumption D.3.3 assures strong duality between (D.3.5) and (D.3.6)
(see the proof in Appendix D.7). As for the standard optimal mass transport
problem, we now consider block-coordinate ascent to compute an optimal solution.
The corresponding optimality conditions are given in the following lemma and are
obtained by noting that the optimum is only achieved when zero is a (sub)gradient
of (D.3.6) [10, pp. 711-712].

Lemma D.3.5. For a fixed λ1, then λ0 is the maximizing vector of (D.3.6) if

µ0 = exp(λ0/ε)� (exp(−C/ε) exp(λ1/ε)) . (D.3.7a)

Similarly, for a fixed λ0, then λ1 is the maximizing vector of (D.3.6) if

0 ∈ ∂g∗(−λ1)− exp(λ1/ε)�
(
exp(−CT /ε) exp(λ0/ε)

)
. (D.3.7b)

When (D.3.7) can be computed efficiently, block-coordinate ascent could give
rise to a fast computational method for solving (D.3.6). In particular this is the case
if (D.3.7b) can be solved element by element, i.e., in O(n) (excluding matrix-vector
multiplication exp(−CT /ε) exp(λ0/ε)). This is true for several cases of interest.

Example D.3.6. g(µ) = I{µ1}(µ). This corresponds to the optimal mass transport
problem (D.2.3)

Example D.3.7. g(µ) = ‖µ− µ1‖1.

Example D.3.8. g(µ) = 1
2‖µ− µ1‖22.

Example D.3.9. g(µ) = 1
2‖Aµ− µ1‖22 where A∗A is diagonal and invertible.

Example D.3.8 is of particular importance, since this corresponds to computing
the proximal operator of the transportation cost, and will be addressed in detail in
the next subsection. Note that Lemma D.3.5 can also be expressed in terms of the
entropic proximal operator [55]; see Appendix D.9 for details.

Sinkhorn-type iterations for evaluating the proximal operator

The proximal point algorithm [56] and splitting methods [31] are extensively used in
optimization, and a key tool is the computation of the proximal operator (D.2.8) (see
Sections D.2 and D.4). In order to use these kinds of methods for solving problems of
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the form (D.3.4) we consider the proximal operator of the entropy regularized mass
transport cost and propose a Sinkhorn-type algorithm for computing the proximal
operator of the transportation cost

ProxσTε(µ0,·)(µ1) = arg min
µest

Tε(µ0, µest) +
1

2σ
‖µest − µ1‖22.

First note that this can be identified with the optimization problem (D.3.5) where
the data fitting term and the corresponding conjugate functional are

g(µ) =
1

2σ
‖µ− µ1‖22, g∗(λ) = λT

(
µ1 +

σ

2
λ
)
.

The dual problem is then given by

max
λ0,λ1

λT0 µ0 + λT1 (µ1 −
σ

2
λ1)− ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) + εn0n1. (D.3.8)

The optimality conditions corresponding to Lemma D.3.5 lead to the equations (see
the proof of Theorem D.3.10 in Appendix D.8 for the derivation)

λ0 = ε log (µ0./(K exp(λ1/ε))) , (D.3.9a)

λ1 =
µ1

σ
− εω

(µ1

σε
+ log

(
KT exp(λ0/ε)

)
− log(σε)

)
. (D.3.9b)

Here ω denotes the elementwise Wright ω function,2 i.e., the function mapping
x ∈ R to ω(x) ∈ R+ for which x = log(ω(x)) + ω(x) [26]. The first equation can be
identified with the first update equation (D.2.7a) in the Sinkhorn iteration. Note
that the bottlenecks in the iterations (D.3.9) are the multiplications with K and
KT . All other operations are elementwise and can hence be computed in O(n),
where n = max(n0, n1). The full algorithm is presented in Algorithm D.1. This
leads to one of our main results.

Theorem D.3.10. The variables (λ0, λ1) in Algorithm D.1 converge to the optimal
solution of the dual problem (D.3.8). Furthermore, the convergence rate is locally
q-linear.

Proof. See Appendix D.8.

This proof is based on the duality (i.e., Proposition D.3.4 and Lemma D.3.5). The
algorithm could also be derived directly using Bregman projections [16], similarly to
the derivation of the Sinkhorn iteration in [7]. Some remarks are in order regarding
the computation of the iterations for the Sinkhorn-type iterations.

2Our implementation uses ω(x) = W (ex) for x ∈ R, where W is the Lambert W function [26].
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Remark D.3.11. The bottlenecks in the iterations (D.3.9) are the multiplications
with the matrices K and KT . All other operations are elementwise. In many cases
of interest the structures of K can be exploited for fast computations. In particular
when the mass points (pixel/voxel locations) x(0,i) = x(1,i) are on a regular grid
and the cost function is translation invariant, e.g., as in our application example
(see (D.10.1)), where the cost function only depends on the distance between the
grid points. Then the matrices C and K are multilevel Toeplitz-block-Toeplitz and
the multiplication can be performed in O(n log(n)) using the fast Fourier transform
(FFT) (see, e.g., [49]).

Remark D.3.12. In order for (D.2.3) to approximate the optimal mass transportation
problem (D.2.2) it is desirable to use a small ε. The entropy regularization has a
smoothing effect on the transference plan M , and a too large value of ε may thus
result in an undesirable solution to the variational problem (D.3.4). However, as
ε→ 0 the problem becomes increasingly ill-conditioned and the convergence becomes
slower [28]. To handle the ill-conditioning one can stabilize the computations using
logarithmic reparameterizations. One such approach is described in [20], where the
variables log(u0), log(u1) are used, together with appropriate normalization and
truncation of the variables, to compute the Sinkhorn iterations (D.2.7). Another
approach to handling the ill-conditioning is described in [60], where a different
logarithmic reparameterization is used together with an adaptive scheme for scaling
of both ε and the discretization grid (cf. [23]). However, note that these approaches
are not compatible with utilizing FFT computations for the matrix-vector products
by exploiting the Toeplitz-block-Toeplitz structure in C (and K). Due to this fact
we have not used this type of stabilization.

Algorithm D.1 Generalized Sinkhorn algorithm for evaluating the proximal oper-
ator of Tε(µ0, ·).
Input: ε, C, λ0, µ0, µ1

1: K = exp(−C/ε)
2: while Not converged do
3: λ0 ← ε log (µ0./(K exp(λ1/ε)))
4: λ1 ← µ1

σ − εω
(
µ1

σε + log
(
KT exp(λ0/ε)

)
− log(σε)

)
5: end while

Output: µest ← exp(λ1/ε)� (KT exp(λ0/ε))

D.4 Inverse problems with optimal mass transport priors

In this section we use the splitting framework [13] to formulate and solve inverse
problems. This is a generalization of the Douglas-Rachford algorithm [32]. In
particular this allows us to address large scale problems of the form (D.3.4), since the
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proximal operator of the regularized transport problem can be computed efficiently
using generalized Sinkhorn iterations.

The theory in [13] provides a general framework that allows for solving a large
set of convex optimization problems. Here we consider problems of the form

inf
z∈H

f(z) +

m∑
i=1

gi(Liz − ri) (D.4.1)

where H is a Hilbert space, f : H → R̄ is proper, convex, and lower semi-continuous,
gi : Gi → R̄, where Gi is a Hilbert space and gi is proper, convex, and lower
semi-continuous, and Li : H → Gi is a nonzero bounded linear operator, which is a
special case of the structure considered in [13].

The problem (D.4.1) can be solved by the iterative algorithm [13, Eq. (3.6)],
in which we only need to evaluate the proximal operators Proxτf and Proxσig∗i

for

i = 1, . . . ,m. For reference, this simplified version of the algorithm is shown in
Algorithm D.2. Note that by Moreau decomposition we have that Proxτf (x) =

x − τ Prox
1/τ
f∗ (x/τ) [4, Thm. 14.3], and therefore Algorithm D.2 can be applied

as long as either the proximal operators of the functionals f and {gi}mi=1 or the
proximal operators of their Fenchel conjugates can be evaluated in an efficient way.

In the following examples we restrict the discussion to the finite-dimensional
setting where the underlying set X is a d-dimensional regular rectangular grid with
points xi for i = 1, . . . n, and hence the corresponding Hilbert space is H = Rn. Let
A : Rn → Rm be a linear operator (matrix) representing measurements, and let
∇ : Rn → Rd×n be a discrete gradient operator3 based on the grid X. Furthermore,
for Y = (y1, . . . , yn) ∈ Rd×n we let ‖Y ‖2,1 =

∑n
i=1 ‖yi‖2 be the isotropic `1-norm

(sometimes called group `1-norm). With this notation ‖∇µ‖2,1 is the isotropic total
variation (TV) of µ, which is often used as a convex surrogate for the support of
the gradient [58, 17]. This terminology allows us to set up a series of optimization
problems for addressing inverse problems.

Optimal mass transport priors using variable splitting

Next, we use optimal mass transport for incorporating a priori information. We con-
sider a particular case of (D.3.4) for achieving this and formulate the reconstruction
problem as follows:

min
µest

γTε(µ0, µest) + ‖∇µest‖2,1 (D.4.2)

subject to ‖Aµest − b‖2 ≤ κ.

Here µ0 is a prior, κ quantifies the allowed measurement error, and γ determines
the trade off between the optimal transport prior and the TV-regularization. Since

3In each dimension of the regular rectangular grid a forward-difference is applied and the
boundary of the domain is padded with zeros, i.e., (∇µ)j,i is the forward-difference along the
j-axis in the grid point xi. See Appendix D.10 for more details.
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Algorithm D.2 Douglas-Rachford-type primal-dual algorithm [13].

Input: τ, (σi)
m
i=1, (λn)n≥1, such that

∑∞
n=1 λn(2−λn)=∞ and τ

∑m
i=1 σi‖Li‖2< 4.

1: n = 0
2: p1,0 = w1,0 = z1,0 = 0
3: p2,i,0 = w2,i,0 = z2,i,0 = 0
4: while Not converged do
5: n← n+ 1
6: p1,n ← Proxτf

(
xn − τ

2

∑m
i=1 L

∗
i vi,n

)
7: w1,n ← 2p1,n − xn
8: for i = 1, . . . , m do
9: p2,i,n ← Proxσig∗i

(
vi,n + σi

2 Liw1,n − σiri
)

10: w2,i,n ← 2p2,i,n − vi,n
11: end for
12: z1,n ← w1,n − τ

2

∑m
i=1 L

∗
iw2,i,n

13: xn+1 ← xn + λn(z1,n − p1,n)
14: for i = 1, . . . , m do
15: z2,i,n ← w2,i,n + σi

2 Li(2z1,n − w1,n)
16: vi,n+1 ← vi,n + λn(2z2,i,n − p2,i,n)
17: end for
18: end while
Output: x∗ = Proxτf

(
xn − τ

2

∑m
i=1 L

∗
i vi,n

)

we can compute the proximal operator of Tε(µ0, µ) in an efficient way, this problem
can be solved by, e.g., making a variable splitting according to

f(·) = γTε(µ0, ·),
g1(·) = ‖ · ‖2,1, L1 = ∇, r1 = 0,
g2(·) = IBm(κ)(·), L2 = A, r2 = b,

where Bm(κ) = {b̂ ∈ Rm : ‖b̂‖2 ≤ κ} is the κ-ball in Rm. We apply Algorithm D.2
for solving this problem and use Algorithm D.1 for computing the proximal operator
of Tε(µ0, ·). Explicit expressions for the proximal operators of the Fenchel duals of
g1 and g2 can be computed; see, e.g., [48] for details.

Remark D.4.1. An alternative first-order method to solve optimization problems
with one or more transportation costs is considered in [30]. The authors use a
dual forward-backward (proximal-gradient) scheme where a key component is the
evaluation of the gradient of the dual conjugate functional of Tε(µ0, ·). However,
our problem (D.4.2) contains two terms in addition to the optimal mass transport
cost and does not directly fit into this framework. Since our method builds on the
splitting framework in [13], it allows for an arbitrary number of cost terms (see
(D.4.1)).
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Formulating standard inverse problems using variable splitting

Given a linear forward operator A, many common regularization methods for solving
inverse problems can be formulated as optimization problems of the form (D.4.1).
Hence they can also be solved using variable splitting. We will use this to compare the
proposed reconstruction method with two other approaches, first with an approach
using TV-regularization [17], and second with an approach where we use a priori
information with respect to the standard `2-norm. We formulate and solve both
these problems using Algorithm D.2.

First, we consider the TV-regularization problem

min
µest≥0

‖∇µest‖2,1 (D.4.3)

subject to ‖Aµest − b‖2 ≤ κ

and formulate it in the setting of (D.4.1) by defining

f(·) = IRn+(·),
g1(·) = ‖ · ‖2,1, L1 = ∇, r1 = 0,
g2(·) = IBm(κ)(·), L2 = A, r2 = b.

The positivity constraint is handled by f , the TV-regularization by g1 and the data
matching by g2. All functions needed in Algorithm D.2 can be explicitly computed
[48].

In (D.4.3) there is no explicit notion of prior information and reconstruction
is entirely based on the data and an implicit assumption on the sparsity of the
gradient. One way to explicitly incorporate prior information in the problem is to
add an `2-norm term that penalizes deviations from the given prior. This leads to
the optimization problem

min
µest≥0

γ‖µest − µ0‖22 + ‖∇µest‖2,1 (D.4.4)

subject to ‖Aµest − b‖2 ≤ κ

which we formulate in the setting of (D.4.1) by defining

f(·) = IRn+(·),
g1(·) = γ‖ · ‖22, L1 = I, r1 = µ0

g2(·) = ‖ · ‖2,1, L2 = ∇, r2 = 0
g3(·) = IBm(κ)(·), L3 = A, r3 = b.

The positivity constraint is handled by f , the `2 prior by g1, the TV-regularization
by g2 and the data matching by g3. The parameter γ determines the trade off
between the `2 prior and the TV-regularization. Also here, all functions needed in
Algorithm D.2 can be computed explicitly [48].
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D.5 Application in computerized tomography

Computerized tomography (CT) is an imaging modality that is frequently used in
many areas, especially in medical imaging (see, e.g., the monographs [9, 44, 52, 53]).
In CT the object is probed with X-rays, and since different materials attenuate
X-rays to different degrees, the intensities of the incoming and outgoing X-rays
contain information of the material content and distribution. In the simplest case,
where the attenuation is assumed to be energy independent and where scatter and
nonlinear effects are ignored, one gets the equation [53, Chp. 3]∫

L

µtrue(x)dx = log

(
I0
I

)
.

Here µtrue(x) is the attenuation in the point x, L is the line along which the X-ray
beam travels through the object, and I0 and I are the the incoming and outgoing
intensities. By taking several measurements along different lines L, one seeks to
reconstruct the attenuation map µtrue.

A set of measurements thus corresponds to the line integral of µtrue along a
limited set of lines, and the corresponding operator that maps µtrue to the line
integrals is called a ray transform or a partial Radon transform. Let A be the partial
Radon transform operator, i.e., the operator such that A(µ) gives the line integral of
µ along certain lines. This is a linear operator, and we consider the inverse problem
of recovering µtrue from measurements

b = A(µtrue) + noise.

However, this is an ill-posed inverse problem [33, p. 40]. In particular, the problem
is severely ill-posed if the set of measurements is small or limited to certain angles,
and hence regularization is needed to obtain an estimate µest of µtrue. One way
to obtain such a µest is to formulate variational problems akin to the ones in
Section D.4. In this section we consider CT problems, such as image reconstruction
from limited-angle measurements, and use optimal mass transport to incorporate
prior information to compensate for missing measurements. We also compare
this method with standard reconstruction techniques. Tomography problems with
transport priors have previously been considered in [1, 7], but in a less general
setting. We compare and discuss the details in Remark D.5.2 in the end of this
section.

Numerical simulations

To this end, consider the Shepp-Logan phantom in Figure D.1a [61] and the hand
image in Figure D.4a [3]. Assume that the deformed images in Figure D.1b and
Figure D.4b has been reconstructed previously from a detailed CT scan of the patient
(where the deformation is due to, e.g., motion or breathing). By using the deformed
images D.1b and D.4b as prior information we want to reconstruct the images D.1a
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(a) (b)

Figure D.1: Figure showing (a) the Shepp-Logan phantom, (b) the deformed Shepp-
Logan prior used in the first example. Gray scale values are shown to the right of
each image.

and D.4a from relatively few measurements of the latter. For the reconstruction
of the Shepp-Logan image we consider a scenario where the set of angles belongs
to a limited interval (see the next paragraph). For the reconstruction of the hand
image phantom we consider uniform spacing across all angles. In both examples we
compare the reconstructions obtained by solving the variational problems (D.4.2),
(D.4.3), and (D.4.4), as well as a standard filtered backprojection reconstruction
[52].

In these examples, the images have a resolution of 256×256 pixels and we
compute the data from the phantoms in Figures D.1a and D.4a. For the Shepp-
Logan example we let data be collected from 30 equidistant angles in the interval
[π/4, 3π/4], and for the hand example from 15 equidistant angles in the interval
[0, π]. In both cases the data is the line integrals from 350 parallel lines for each
angle. On each data set white Gaussian noise is added (5% and 3%, respectively).
The corresponding optimization problems (D.4.2), (D.4.3), and (D.4.4) are solved4

with the Douglas-Rachford-type algorithm (Algorithm D.2) from [13], where the
functions are split according to the description in Section D.4. The exact parameter
values are given in Appendix D.10. Since the grid is regular and the cost in the
transportation cost is spatially invariant, we can use the FFT for the computations
of Tε(µ0, ·) and the corresponding proximal operator, and thus we do not need to
explicitly store the cost matrix or the final transference plan (see Remarks D.3.11
and D.5.1). These examples have been implemented and solved using ODL5 [2],
which is a python library for fast prototyping focusing on inverse problems. The
ray transform computations are performed by the GPU-accelerated version of

4A fixed number of 10 000 Douglas-Rachford iterations are computed in each reconstruction.
5Open source code, available from https://github.com/odlgroup/odl

191

https://github.com/odlgroup/odl


Paper D

ASTRA6 [54, 65]. The code used for these examples is available online from
http://www.math.kth.se/~aringh/Research/research.html.

Remark D.5.1. These inverse problems are highly underdetermined and ill-posed.
The total number of pixels is 2562 = 65 536, but the number of data points in the
examples are only 350·30 = 10 500 and 350·15 = 5 250, respectively. Also note that
solving the corresponding optimal transport problems explicitly would amount to
matrices of sizes 2562×2562, which means solving linear programs with over 4 · 109

variables.

Reconstruction of Shepp-Logan image

The reconstructions are shown in Figure D.2. Both the filtered backprojection
reconstruction in Figure D.2a and the TV-reconstruction in Figure D.2b suffer from
artifacts and severe vertical blurring due to poor vertical resolution resulting from
the limited angle measurements. Figure D.2c shows the reconstruction with `2-prior.
Some details are visible; however, these are at the same locations as in the prior and
do not adjust according to the measurements of the phantom. Considerable artifacts
also appear in this reconstruction, typically as fade-in-fade-out effects where the
prior and the data do not match. The fade-in-fade-out effect that often occurs when
using strong metrics for regularization is illustrated in Figure D.3. Selecting a low
value γ (Figure D.3a) results in a reconstruction close to the TV-reconstruction,
and selecting a large value γ gives a reconstruction close to the prior (Figure D.3c).
By selecting a medium value γ one gets a reconstruction that preserves many of the
details found in the prior; however, they remain at the same position as in the prior
and hence are not adjusted to account for the measurement information.

The reconstruction with optimal mass transport prior is shown in Figure D.2d.
Some blurring occurs, especially in the top and the bottom of the image; however,
the overall shape is better preserved compared to the other reconstructions. Fine
details are not visible, but the major features are better estimated compared to
the TV- and `2-reconstructions. This example illustrates how one can improve the
reconstruction by incorporating prior information, but without the fade-in-fade-out
effects that typically occur when using a strong metric such as `2 for regularization.

Reconstruction of hand image

The reconstructions based on the phantom and the prior in Figure D.4 are shown in
Figure D.5, and we obtain similar results similar to those in the previous example.
The filtered backprojection reconstruction in Figure D.5a is quite fragmented, and
although some details are visible there is also a considerable amount of noise and
artifacts throughout the image. The TV-reconstruction, shown in Figure D.5b,
is smeared, and few details are visible. Moreover, in the reconstruction with `2
prior, shown in Figure D.5c, artifacts similar to those in the Shepp-Logan example

6Open source code, available from https://github.com/astra-toolbox/astra-toolbox
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(a) (b)

(c) (d)

Figure D.2: Reconstructions using different methods. (a) Filtered backprojection,
(b) reconstruction using TV-regularization, (c) reconstruction with `22-prior and
TV-regularization (γ = 10), and (d) reconstruction with optimal transport prior
and TV-regularization (γ = 4).
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(a) (b) (c)

Figure D.3: Reconstructions using `2 prior with different regularization parameters:
(a) γ = 1, (b) γ = 100, and (c) γ = 10 000.

(a) (b)

Figure D.4: Figure showing (a) the hand image used as phantom, and (b) the hand
image used as prior in the second example. Gray scale values are shown to the right
of each image.

are present. Again, they stem from a mismatch between the prior and the data.
Note especially that the thumb, but also the index and middle fingers, almost look
dislocated or broken in the reconstruction. The reconstruction with an optimal
mass transport prior is shown in Figure D.5d. Also in this case the fine details are
not visible. Note, however, that details are more visible in D.5d, compared to the
TV-reconstruction D.5b, and that the reconstruction in D.5d does not suffer from
the the same kind of artifacts as the `2-regularized reconstruction in D.5c.

To illustrate the effect of the optimal mass transport prior on the final recon-
struction, we also include Figure D.6. Figure D.6a shows the prior D.4b with certain
areas marked, and Figure D.6b shows how the mass from these areas in D.6a are
transported to D.6c. For reference the optimal mass transport reconstruction from
D.5d is shown in Figure D.6c. By comparing the images one can see that the thumb
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(a) (b)

(c) (d)

Figure D.5: Reconstructions using different methods. (a) Filtered backprojection,
(b) reconstruction using TV-regularization, (c) reconstruction with `22-prior and
TV-regularization, and (d) reconstruction with optimal transport prior and TV-
regularization.
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(a) (b)

(c)

Figure D.6: Visualizing how the mass from certain regions are transported: (a) the
prior and three regions that are considered, (b) how the mass from certain regions
in the prior is transported to the reconstruction, and (c) the reconstruction using
an optimal mass transport prior.

196



Generalized Sinkhorn iterations

in the prior is to a large extent transported to the location of the thumb in the
phantom, which is what the optimal mass transport is intended to do. However, a
fraction of the mass from the thumb is also transported to the index finger, giving
rise to some artifacts. One can also note that there is a certain “halo-effect” around
each region, especially for the region on the thumb. This is most likely due to the
computational regularization εD(M) in (D.2.3), which forces the optimal M to be
strictly positive. It would therefore be desirable to precondition or in other ways
improve the numerical conditioning of the steps in Algorithm D.1, to allow for the
computation of the proximal operator for lower values of ε.

Remark D.5.2. As mentioned in the beginning of this section, the papers [1, 7] also
consider tomography problems with optimal mass transport priors. In both these
papers, the optimization problems are of the form

min
µest

T (µ0, µest) +

L∑
`=1

γ`T̃ (Pθ`µest, b`),

where T and T̃ are transportation costs and Pθ` denotes the projection along the
angle θ` (i.e., a partial Radon transform). In our formulation we use a hard data
matching constraint based on the L2-norm (see (D.4.2)) which models Gaussian
noise. A computational approach is provided in [7] that also builds on Sinkhorn
iterations (Bregman projections). However, the computational procedure builds
on the fact that the adjoint PTθ` commutes with elementwise functions, which is a
result of the implementation of the partial ray transform Pθ` using nearest neighbor
interpolation.7 On the other hand, our method allows for an arbitrary (linear)
forward operator.

D.6 Concluding remarks and further directions

In this work we have considered computational methods for solving inverse problems
containing entropy regularized optimal mass transport terms. First, using a dual
framework we have generalized the Sinkhorn iteration, thereby making it applicable
to a set of optimization problems. In particular, the corresponding proximal operator
of the entropy regularized optimal mass transport cost is computed efficiently. Next,
we use this to address a large class of inverse problems using variable splitting. In
particular we use a Douglas-Rachford-type method to solve two problems in CT
where prior information is incorporated using optimal mass transport.

Interestingly, both the Sinkhorn iterations and the proposed approach for com-
puting the proximal operator are identical to coordinate ascent of the dual problem.
For these problems the coordinate ascent step can be computed explicitly by (D.2.7)
or (D.3.9), respectively. In this setting the hard constraint (D.3.2b) is replaced by

7Implementing the partial ray transform Pθ` using nearest neighbor interpolation results in a
matrix representation where each column is an elementary unit vector.
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the soft constraint (D.3.3). The Hessian of the barrier term is given explicitly by

−1

ε

(
diag(u0 � (Ku1)) diag(u0)Kdiag(u1)

diag(u1)KTdiag(u0) diag(u1 � (KTu0))

)
and multiplication of this can be computed quickly (cf. Remark D.3.11). This
opens up for accelerating convergence using, e.g., quasi-Newton or parallel tangent
methods [51].

The methodology presented in this paper naturally extends to problems with
several optimal mass transport terms. In particular this would be useful for cases
where estimates are not guaranteed to have the same mass or where some parts
are not positive. An example of such a problem is the computation of a centroid
(barycenter) from noisy measurements (cf. [23]), i.e.,

min
µ`, `=0,...,L

L∑
`=1

(
Tε(µ0, µ`) +

1

2σ`
‖µ` − ν`‖22

)
. (D.6.1)

This problem has applications in clustering and will be considered in future work.

D.7 Appendix 1: Proof of Proposition D.3.4

We seek the dual problem of the following optimization problem

min
M≥0,µest

Tr(CTM) + εD(M) + g(µest) (D.7.1)

subject to µ0 = M1n1

µest = MT1n0 .

Lagrange relaxation gives the Lagrangian

L(M,µest, λ0, λ1) = Tr(CTM) + εD(M) + g(µest)

+ λT0 (µ0 −M1n1
) + λT1 (µest −MT1n0

)

= Tr((C − 1n1
λT0 − λ11

T
n0

)TM) + εD(M)

+ λT0 µ0 − ((−λ1)Tµest − g(µest)).

First note that by definition g∗(−λ1) = maxµest
(−λ1)Tµest − g(µest), and hence

the last term equals −g∗(−λ1) for the minimizing µest. Next, the minimizing M is
unique and satisfies

ε log(mij) + cij − λ0(i)− λ1(j) = 0

or, equivalently,

M = diag(exp(λ0/ε)) exp(−C/ε)diag(exp(λ1/ε)).
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By plugging these into the Lagrangian we obtain

min
M,µest

L(M,µest, λ0, λ1) = ε

n0∑
i=1

n1∑
j=1

(1−mij) + λT0 µ0 − g∗(−λ1)

= λT0 µ0 − g∗(−λ1)− ε exp(λT0 /ε) exp(−C/ε) exp(λ1/ε) + εn0n1,

which is the objective function of the dual problem.
Moreover, by Assumption D.3.3 and the fact that Tε(µ0, µest) <∞ restricts µest

to a compact set, there exists an optimal solution to (D.7.1). To see this, note
that if µest is a point such that g(µest) <∞ and

∑n0

i=1 µ0(i) =
∑n1

j=1 µest(j), then

M = µ0µest
T is an inner point where the objective function takes a finite value.

From this it also follows that the minimum of (D.7.1) is finite. Therefore by [10,
Prop. 5.3.2] strong duality holds. �

D.8 Appendix 2: Proof of Theorem D.3.10

First we would like to show that Algorithm D.1 corresponds to coordinate ascent
of the dual problem, i.e., that steps 3 and 4 correspond to the maximization of
λ0 and λ1, respectively. This follows directly for step 3 since it is identical to
(D.3.7a) in Lemma D.3.5. Note that step 3 is the Sinkhorn iterate (D.2.7a) (cf.
Corollary D.3.2).

Next, consider the condition (D.3.7b) in Lemma D.3.5, from which it follows
that the minimizing λ1 satisfies

µ1 − σλ1 = exp(λ1/ε)�
(
KTu0

)
,

where we let K = exp(−C/ε) and u0 = exp(λ0/ε). Taking the logarithm and adding
(µ1 − σλ1)/(σε)− log(σε) to each side, we get

µ1 − σλ1

σε
+ log

(
µ1 − σλ1

σε

)
=
µ1

σε
+ log

(
KTu0

σε

)
,

or, equivalently,

µ1 − σλ1

σε
= ω

(
µ1

σε
+ log

(
KTu0

σε

))
, (D.8.1)

where ω denotes the elementwise Wright omega function, i.e., the function mapping
x ∈ R to ω(x) ∈ R+ for which x = log(ω(x)) + ω(x) [26]. The function is well
defined as a function R→ R+ which is the domain and range of interest in our case.
This expression of λ1 is equivalent to step 4 (and (D.3.9b)), and we have thus shown
that Algorithm D.1 is a coordinate ascent algorithm for the dual problem (D.3.8).

Next, note that (D.3.8) is a strictly convex optimization problem. This follows
since the Hessian

− 1

ε

(
diag(u0 � (Ku1)) diag(u0)Kdiag(u1)

diag(u1)KTdiag(u0) diag(u1 � (KTu0))

)
−
(

0 0
0 σI

)
(D.8.2)
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is strictly negative definite. This can be seen by noting that the first term is
diagonally dominant and hence negative semidefinite. Since σ > 0, then any zero
eigenvector of (D.8.2) can only have nonzero elements in the first block. However,
the (1, 1)-block of (D.8.2), i.e., −diag(u0� (Ku1))/ε, is negative definite, and hence
no zero eigenvalue exists and (D.8.2) is strictly negative definite.

As seen above, the optimization problem is strictly convex, and hence there is a
unique stationary point which is also the unique maximum. To show convergence,
note that the objective function in (D.3.8) is continuously differentiable, and hence
any limit point of the coordinate ascent is stationary [10, Prop. 2.7.1]. Further,
since the superlevel sets of (D.3.8) are bounded and there is a unique stationary
point, Algorithm D.1 converges to unique maximum. Finally, locally linear conver-
gence follows from [11, Thm. 2.2] since the optimization problem is strictly convex. �

Remark D.8.1. For future reference, we note that (D.8.1) can be rewritten as

λ1

ε
=
µ1

σε
− ω

(
µ1

σε
+ log

(
KTu0

σε

))
=
µ1

σε
−
(
µ1

σε
+ log

(
KTu0

σε

)
− log

[
ω

(
µ1

σε
+ log

(
KTu0

σε

))])
(D.8.3)

= log

σεω
(
µ1

σε + log
(
KTu0

σε

))
KTu0

 ,

where we in the second equality use the definition ω(x) = x − log(ω(x)). This
expression can alternatively be used in Algorithm D.1. However, our experience is
that (D.8.1) is better conditioned than (D.8.3).

D.9 Appendix 3: Connection with method based on
Dykstra’s algorithm

We would like to thank the reviewers for pointing out [55]. In fact, Algorithm D.1
can be seen as a (nontrivial) special case of the iterations in [55, Prop. 3.3]. We
will here provide a separate derivation leading to a simplified but equivalent version
of this algorithm. The algorithm [55, Prop. 3.3] also addresses the optimization
problem (D.3.5) and can be used when the entropic proximal, defined by

ProxKL
σg (z) := arg min

x
σg(x) +D(x|z),

where D(x|z) =
∑n
i=1(xi log(xi/zi)− xi + zi), is fast to compute. It can be noted

that computing the entropic proximal is equivalent to

ProxKL
σg (z) := arg min

x,x′
g(x) +

1

σ
D(x′|z)

subject to x = x′,
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which has a Lagrange dual that is given by (cf. the proof of Proposition D.3.4)

max
λ
−g∗(−λ)− exp(σλT )z/σ + 1T z/σ

and where the optima of the primal and dual problems relate as σλ = log(x./z).
The maximizing argument λ is specified by

0 ∈ ∂g∗(−λ)− exp(σλ)� z/σ.

Noting that this condition is equivalent to (D.3.7b) with z/σ=exp(−CT/ε)exp(λ0/ε)
and ε = 1/σ, the dual update of λ1 can be written as

exp(λ1/ε) =
ProxKL

ε−1g(exp(−CT /ε) exp(λ0/ε))

exp(−CT /ε) exp(λ0/ε)
=

ProxKL
ε−1g(K

Tu0)

KTu0
, (D.9.1)

where as before K = exp(−C/ε) and ui = exp(λi/ε), for i = 0, 1. Using this we can
state the simplified, but equivalent, version of [55, Prop. 3.3], shown in Algorithm
D.3. The algorithm is equivalent in the sense that if K = ξT , then it holds that

b(2`) = b(2`−1) = u
(`)
0 and a(2`+1) = a(2`) = u

(`)
1 for ` ≥ 1. Similar algorithms have

also been derived in the recent preprints [23, 60].

Algorithm D.3 Simplified version of [55, Prop. 3.3].

Input: ε, C, λ0, µ0, g
1: K = exp(−C/ε) and u1 = 1
2: ` = 0
3: while Not converged do
4: `← `+ 1
5: u

(`)
0 ← µ0./(Ku

(`−1)
1 )

6: u
(`)
1 ←

ProxKL
ε−1g(K

Tu
(`)
0 )

KTu
(`)
0

7: end while
Output: µest ← u

(`)
1 � (KTu

(`)
0 )

The case which is a main focus for this paper is g(·) = 1
2σ‖·−µ1‖22, and comparing

the expressions (D.9.1) and (D.8.3) indicates that

ProxKL
ε−1g(K

Tu0) = σε ω

(
µ1

σε
+ log

(
KTu0

σε

))
.

This can in fact be verified by direct computations along the lines of the proof of
Theorem D.3.10.
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D.10 Appendix 4: Parameters in the numerical examples

The problem is set up with noise level 5% in the Shepp-Logan example and 3% in
the hand example. The parameter κ is selected to be 120% of the norm of the noise.
That is, in the Shepp logan example white noise is generated and normalized so
that ‖b − Aµtrue‖2/‖Aµtrue‖2 = 0.05 and κ = 1.2 · 0.05 · ‖Aµtrue‖2. This ensures
that the true image µtrue belongs to the feasible region {µ : ‖b−Aµ‖2 ≤ κ}. The
cost function in the optimal mass transport distance is given by

c(x1, x2) = min(‖x1 − x2‖2, 20)2, (D.10.1)

where the truncation at 20 is done in order to improve the conditioning of the com-
putations. Further, the proximal operator of the optimal mass transport functional
is computed using 200 generalized Sinkhorn iterations. Each optimization problem
is solved using 10 000 iterations in the Douglas-Rachford algorithm. The step size
parameters σi are set to be σi = (τ‖Li‖2op)−1 where ‖L‖op = sup‖x‖2≤1 ‖Lx‖2 is
the operator norm (approximated using the power iterations in ODL [2]). The
remaining parameters are selected according to Table D.1. The gradient operator
used in the TV-terms is the default Gradient operator in ODL, which pads the
boundaries with zeros and applies a forward-difference in each dimension (see the
documentation http://odlgroup.github.io/odl/). Other options are available,
e.g., zero-order-hold padding or periodic boundary conditions, as well as backward-
or central-difference. In our case, zero-padding is not an issue since both phantoms
are zero along the boundary; see Figures D.1a and D.4a. For the filtered backprojec-
tion reconstruction we use the ODL-implementation with a Hann filter with filter
parameter 0.7 for the Shepp-Logan example and 0.5 for the hand example.

Table D.1: Parameter values for the variational problems and reconstruction
algorithms. A ? means that the parameter is not used in this problem.

Reconstruction example Parameters in Parameters in
optimization problem Algorithm D.2

Phantom Objective function γ ε τ λ

Shepp-Logan TV ? ? 0.05 1
TV + L2

2 {1, 10, 100, 10 000} ? 0.05 1
TV + OMT 4 1 5 1.8

Hand TV ? ? 1/
√

2 1

TV + L2
2 10 ? 1/

√
2 1

TV + OMT 4 1.5 500
√

2 1.8
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Abstract

We propose using the Wasserstein loss for training in inverse problems.
In particular, we consider a learned primal-dual reconstruction scheme for
ill-posed inverse problems using the Wasserstein distance as loss function in the
learning. This is motivated by miss-alignments in training data, which when
using standard mean squared error loss could severely degrade reconstruction
quality. We prove that training with the Wasserstein loss gives a reconstruction
operator that correctly compensates for miss-alignments in certain cases,
whereas training with the mean squared error gives a smeared reconstruction.
Moreover, we demonstrate these effects by training a reconstruction algorithm
using both mean squared error and optimal transport loss for a problem in
computerized tomography.

Keywords: machine learning, optimal mass transport, Wasserstein distance, inverse
problems, computed tomography

E.1 Introduction

In inverse problems the goal is to determine model parameters, henceforth called
signal, from indirect noisy observations. Example of such problems arise in many
different fields in science and engineering, e.g., in X-ray Computed Tomography
(CT) [36], electron tomography [37], and magnetic resonance imaging [11]. Machine
learning has recently also been applied in this area, especially in imaging applications.
Using supervised machine-learning to solve inverse problems in imaging requires
training data where ground truth images are paired with corresponding noisy
indirect observations. The learning provides a mapping that associates observations
to corresponding images. However, in several applications there are difficulties in
obtaining the ground truth, e.g., in many cases it may have undergone a distortion.
For example, a recent study showed that MRI images may be distorted by up to 4
mm due to, e.g., inhomogeneities in the main magnetic field [47]. If these images
are used for training, the learned MRI reconstruction will suffer in quality. Similar
geometric inaccuracies arise in several other imaging modalities, such as Cone Beam
CT and full waveform inversion in seismic imaging.

This work provides a scheme for learning a reconstruction method for an ill-
posed inverse problem with a Wasserstein loss by leveraging upon recent advances
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in efficient solutions of optimal transport [14, 28, 44] and learned iterative schemes
for inverse problems [5]. The proposed method is demonstrated on a computed
tomography example, where we show a significant improvement compared to training
the same network using mean squared error loss. In particular, using the Wasserstein
loss instead of standard mean squared error gives a result that is more robust against
potential miss-alignment in training data.

E.2 Background

Inverse problems

Formalizing the notion of an inverse problem, our goal is to reconstruct an estimate
of the signal ftrue ∈ X from noisy indirect measurements (data) g ∈ Y assuming

g = A(ftrue) + δg. (E.2.1)

In the above, the sets X and Y are called the reconstruction and data space,
respectively. Both are typically Hilbert or Banach spaces. Moreover A : X → Y
denotes the forward operator, which models how a given signal gives rise to data
in absence of noise. Finally, δg ∈ Y is the noise component of data. Many inverse
problems of interest are ill-posed, meaning that there is no uniques solution to
(E.2.1) and hence there is no inverse to A. Typically reconstructions of ftrue are
sensitive to the data and small errors gets amplified. One way to mitigate these
effects is to use regularization [16].

Variational regularization In variational regularization one formulates the re-
construction problem as an optimization problem. To this end, one introduces a
data discrepancy functional f 7→ L(A(f), g), where L : Y × Y → R, that quantifies
the miss-fit in data space, and a regularization functional S : X → R that encodes
a priori information about ftrue by penalizing undesirable solutions. For a given
g ∈ Y , this gives an optimization problem of the form

min
f∈X

L(A(f), g) + λS(f). (E.2.2)

Here, λ acts as a trade-off parameter between the data discrepancy and regulariza-
tion functional. In many cases L is taken to be the negative data log-likelihood, e.g.,
L(A(f), g) = ‖A(f)− g‖22 in the case of additive white Gaussian noise. Moreover,
a typical choice for regularization functional is total variation (TV) regulariza-
tion, S(f) = ‖∇f‖1 [43]. Such regularizers typically give rise to large scale and
non-differentiable optimization problems, which requires advanced optimization
algorithms. These methods are typically based on the proximal point algorithm and
operator splitting [7] and commonly used examples are FISTA [8], the Primal-Dual
Hybrid-Gradient algorithm [12], and ADMM [10].
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Learning for inverse problems In many applications, and so also for some
inverse problems, data driven approaches have shown dramatic improvements over
the state-of-the-art [30]. Using supervised learning to solve an inverse problem

amounts to finding a parametrized operator A†Θ : Y → X where the parameters Θ
are selected so that

g = A(ftrue) + δg =⇒ A†Θ(g) ≈ ftrue.

For inverse problems in image processing, such as denoising and deblurring, we
have Y = X and it is possible to apply a wide range of widely studied machine
learning techniques, such as neural networks with various architectures, including
fully convolutional networks [24] and denoising auto-encoders [49].

However, in more complicated inverse problems as in tomography, the data and
reconstruction spaces are very different, e.g., their dimension after discretization
may differ. For this reason, learning a mapping from Y to X becomes nontrivial,
and classical architectures that map, e.g., images to images using convolutional
networks cannot be applied as-is. One solution is to use fully-connected layers as in
[40] for very small scale tomographic reconstruction problems. A major disadvantage
with such a fully learned approach is that the parameters space has to be very high
dimensional in order to be able to learn both the prior and the data model, which
often renders it infeasible due to training time and lack of training data.

A more successful approach is to first apply some crude reconstruction operator
A† : Y → X and then use machine learning to post process the result. This
separates the learning from the complications of mapping between spaces since
the operator A† can be applied off-line, prior to training. Such an approach has
been demonstrated for tomographic reconstruction in [41, 48]. Its drawback for
ill-posed inverse problems is that information is typically lost by using A†, and this
information cannot be recovered by post processing.

Finally, another approach is to incorporate the forward operator A and its adjoint
A∗ : Y → X into the neural network. In these learned iterative schemes, classical
neural networks are interlaced with applications of the forward and backward
operator, thus allowing for the learned reconstruction operator to work directly from
data without having to learn the data model. For example, in [50] an ADMM-like
scheme for Fourier inversion is learned and [42] consider solving inverse problems
typically arising in image restoration by a learned gradient-descent scheme. In [4]
this later approach is shown to be applicable to large scale tomographic inversion.
Finally, in [5] they apply learning in both spaces X and Y , yielding a Learned
Primal-Dual scheme, and show that it outperforms learned post-processing for
reconstruction of medical CT images.

Loss functions for learning Once the Θ parametrization of A†Θ is set, the
parameters are typically chosen by minimization of some loss functional L. Without
doubt, the most common loss function is the mean squared error, also called L2 loss,
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given by

L(Θ) = Ef,g

[
‖A†Θ(g)− f‖22

]
. (E.2.3)

It has however been noted that it is sub-optimal for imaging, and a range of other
loss functions have been investigated. These include the classical `p norms and
the structural similarity index (SSIM) [51], as well as more complex losses such as
perceptual losses [26] and adversarial networks [33].

Recently, optimal mass transport has also been considered as loss function,
e.g., for classification [18], generative models [6, 19], and system identification
for stochastic differential equations [23]. In this work we consider using optimal
transport for training a reconstruction scheme for ill-posed inverse problems.

Optimal mass transport and Sinkhorn iterations

In optimal mass transport the aim is to transform one distribution into another
by moving the mass in a way that minimizes the cost of the movement. For an
introduction and overview of the topic, see, e.g., the monograph [46]. Lately, the
area has attracted a lot of research [14, 15, 13] with applications to, e.g., signal
processing [22, 20, 25, 17], image processing [31], and inverse problems [9, 35, 28, 2].

The optimal mass transport problem can be formulated as follows: let Ω ⊂ Rd,
and let µ0 and µ1 be two measures, defined on Ω, with the same total mass. Given
a cost c : Ω × Ω → R+ that describes the cost for transporting a unit mass from
one point to another, find a (mass preserving) transference plan M that is as cheap
as possible. Here, the transference plan characterizes how to move the mass of
µ0 in order to deform it into µ1. Letting the transference plan be a nonnegative
measure dM on the space Ω× Ω yields a linear programming problem in the space
of measures:

T (µ0, µ1) = min
dM≥0

∫
(x0,x1)∈Ω×Ω

c(x0, x1)dM(x0, x1) (E.2.4)

subject to µ0(x0)dx0 =

∫
x1∈Ω

dM(x0, x1),

µ1(x1)dx1 =

∫
x0∈Ω

dM(x0, x1).

Moreover, under suitable conditions one can define the Wasserstein metrics Wp

using T . This is done by taking c(x0, x1) = d(x0, x1)p, for p ≥ 1 and where d is a
metric on Ω, and defining Wp(µ0, µ1) := T (µ0, µ1)1/p [46, Definition 6.1]. As the
name indicates, Wp is a metric on the set of nonnegative measures on Ω with fixed
mass [46, Theorem 6.9], and T is weak∗ continuous on this set. One important
property is that T (and thus also Wp) does not only compare objects point by point,
as standard Lp metrics, but instead quantifies how the mass is moved. This makes
optimal transport natural for quantifying uncertainty and modelling deformations
[25, 27].
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One way to solve the optimal transport problem in applications is to discretize
Ω and solve the corresponding finite-dimensional linear programming problem. In
this setting the two measures are represented by point masses on the discretization
grid, i.e., by two vectors µ0, µ1 ∈ Rn+ where the element [µk]i corresponds to the
mass in the point x(i) ∈ Ω for i = 1, . . . , n and k = 0, 1. Moreover, a transference

plan is represented by a matrix M ∈ Rn×n+ where the value mij := [M ]ij denotes
the amount of mass transported from point x(i) to x(j). The associated cost of a
transference plan is

∑n
i,j=1 cijmij = Tr(CTM), where [C]ij = cij = c(x(i), x(j)) is

the transportation cost from x(i) to x(j), and by discretizing the constraints we get
that M is a feasible transference plan from µ0 to µ1 if the row sums of M is µ0 and
the column sums of M is µ1. The discrete version of (E.2.4) thus takes the form

T (µ0, µ1) = min
M≥0

Tr(CTM) (E.2.5)

subject to µ0 = M1n, µ1 = MT1n,

where M ≥ 0 denotes element-wise non-negativity of the matrix. However, even
though (E.2.5) is a linear programming problem it is in many cases computationally
infeasible due to the vast number of variables. Since M ∈ Rn×n+ the number of
variables is n2, and thus if one seek to solve the optimal transport problem between
two 512× 512 images this results in more than 6 · 1010 variables.

One approach for addressing this problem was proposed in [14] and introduces an
entropic regularizing term D(M) =

∑n
i,j=1(mij log(mij)−mij+1) for approximating

the transference plan, resulting in the perturbed optimal transport problem

min
M≥0

Tr(CTM) + εD(M) (E.2.6)

subject to µ0 = M1n, µ1 = MT1n.

One can show that an optimal solution to (E.2.6) is of the form

M = diag(u)Kdiag(v),

where K = exp(−C/ε) (point-wise exponential) is known, and u, v ∈ Rn+ are
unknown. This shows that the solution is parameterized by only 2n variables.
Moreover, the two vectors can be computed iteratively by so called Sinkhorn
iterations, i.e., alternatingly compute u and v that matches µ0 and µ1 respectively.
This is summarizied in Algorithm E.1 where � denotes elementwise multiplication
and ./ elementwise division. The procedure has been shown to have a linear
convergence rate, see [14] and references therein.
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Algorithm E.1 Sinkhorn iterations for computing entropy-regularized optimal
transport [14]

1: Input C, ε, µ0, µ1

2: initialize v0 > 0 and K = exp(−C/ε)
3: for i = 1, . . . , N do
4: ui ← µ0./(Kvi−1)
5: vi ← µ1./(K

Tui)
6: end for
7: Return uTN (K � C)vN

Moreover, when the underlying cost c(x0, x1) is translation invariant the dis-
cretized cost matrix C, and thus also the transformation K, gets a Toeplitz-block-
Toeplitz structure. This structure can be used in order to compute Kv and KTu
efficiently using the fast Fourier transform in O(n log n), instead of naive matrix-
vector multiplication in O(n2) [28] (see also [44] for connection to the convolutional
Wasserstein-2 distance). This is crucial for applications in imaging since otherwise,
for images of size 512× 512 pixels one would have to explicitly store and multiply
with matrices of size 262144× 262144.

The formulations described above are only defined for measures µ0 and µ1 with
the same total mass. However, they can also be extended to handle measures
with unbalanced masses [20, 13]. This can be done by also allowing for adding or
subtracting mass in the two marginals, e.g., defining the cost via the optimization
problem

Tκ(µ0, µ1) := min
ν0,ν1≥0

T (ν0, ν1) + κ

1∑
i=0

‖νi − µi‖1 (E.2.7)

where κ is the cost of adding or subtracting a unit mass. Here νi are nonnegative
measures on Ω. As with the standard optimal transport problem, under suitable
conditions Tκ(·, ·)1/p defines a metric if c(x0, x1) = d(x0, x1)p where d is a metric
on Ω, and p ≥ 1 (cf. [20]). Moreover, (E.2.7) can be formulated as a optimal mass
transport problem where the domain Ω has been extended with an additional point.
We can thus apply Sinkhorn-iterations to approximate the solution of (E.2.7), see
Appendix E.7 for details.

E.3 Learning a reconstruction operator using Wasserstein
loss

As mentioned in the introduction, when training data comes from real applications
there might be geometric distortions between the data g and the ground truth
f. In this work we propose to use optimal transport as loss function to train a
reconstruction operator, i.e., to select the parameters as

Θ∗ ∈ arg min
Θ

Ef,g

[
Tκ(A†Θ(g), f)

]
. (E.3.1)
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This should give better results when data g is not aligned with the ground truth f.
The above claim is motivated by considering optimal reconstructions in a sim-

plified setting comparing L2 and Wasserstein losses. In the ideal case, training the
network with the L2 loss (E.2.3) will result in a perfect reconstruction composed
with a convolution that “smears” the reconstruction over the area of possible miss-
alignment. On the other hand since optimal mass transport does not only compare
objects point-wise, the network will learn a perfect reconstruction combined with a
movement of the object to the average miss-alignment (in the ideal case and for a
point mass f). These statements are made more precise in the following propositions,
whose proofs are deferred to Appendix E.6.

Proposition E.3.1. Let g ∈ L2(Rn), let τ be a Rn-valued random variable with
probability measure dP (t), and let gτ (x) := g(x− τ). Then there exists a function
f ∈ L2(Rn) that minimizes Eτ

[
‖f − gτ‖22

]
, and this f has the form

f(x) = (dP ∗ g)(x) :=

∫
Rn
g(x− t)dP (t).

Proposition E.3.2. Let τ be a Rn-valued random variable with probability measure
dP (t), and δτ (x) := δ(x − τ) where δ denotes the Dirac delta distribution on Rn.
Then

Eτ
[
T (δτ , µ)

]
=

∫
Rn

(∫
Rn
c(t, x)dP (t)︸ ︷︷ ︸
:=F (x)

)
dµ(x)

whenever µ is a positive measure with unit mass, and Eτ
[
T (δτ , µ)

]
=∞ otherwise.

Moreover, finding a µ that minimizes µ 7→ Eτ
[
T (δτ , µ)

]
is equivalent to finding a

global minimizer to x 7→ F (x). In particular, if (i) the probability measure dP is
symmetric around its mean, (ii) the underlying cost c is of the form c(t, x) = d(x−t),
where d is convex and symmetric, then µ(x) = δ

(
x− E[τ ]

)
is an optimal solution.

Furthermore, if d is also strictly convex, then this is the unique minimizer.

To illustrate Propositions E.3.1 and E.3.2 we consider the following example.

Example E.3.3. Let τ be uniformly distributed on [−1, 1], and let c(x0, x1) =
(x0 − x1)2. This gives

F (x) =
1

2

∫ 1

−1

(x− t)2dt =
1

3
+ x2,

which has minimum x = 0, and hence the (unique) minimizer to Eτ
[
T (δτ , µ)

]
is

µ(x) = δ(x). For the L2 case with the uniform distribution, the minimizer of
Eτ
[
‖f − gτ‖22

]
is the smoothed function g ∗ 1

2χ[−1,1].

The most common choice of distance c is to use the squared norm c(x0, x1) =
‖x0 − x1‖2, as in the previous example. In this case the result of Proposition E.3.2
can be strengthened, as shown in the following example.
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Figure E.1: Network architecture used to solve the inverse problem. Dual and
primal iterates are in blue and red boxes, respectively. Several arrows pointing to
the same box indicates concatenation. The initial values f0, h0 enter from the left,
while the data g is supplied to the dual iterates.

Example E.3.4. Let τ be a Rn-valued random variable with probability measure
dP (t) with finite first and second moments, and let c(x0, x1) = ‖x0 − x1‖2. This
gives

F (x) =

∫
Rn

(x− t)2dP (t) = x2 − 2xE[τ ] + E[τ2],

which has a unique global minimum in x = E[τ ] and hence the unique global
minimizer to Eτ

[
T (δτ , µ)

]
is given by µ(x) = δ

(
x− E[τ ]

)
.

E.4 Implementation and evaluation

We use the recently proposed learned primal-dual structure in [5] for learning a
reconstruction operator A†Θ for solving the inverse problem in (E.2.1). In this
algorithm, a sequence of small blocks work alternatingly in the data (dual) space
Y and the reconstruction (primal) space X and are connected using the forward
operator A and its adjoint A∗. The algorithm works with any differentiable operator
A, but we state the version for linear operators for simplicity in Algorithm E.2. A
specific instance of this network is also shown in graphical format in Figure E.1.

We compare a learned reconstruction operator of this form when trained using
L2 loss (E.2.3) and using optimal transport loss (E.3.1). Moreover, the evaluation
is done on a problem similar to the evaluation problem in [5, 4], i.e., on a problem
in computed tomography. More specifically, training is done on data that consists
of randomly generated circles on a domain of 512 × 512 pixels, and the forward
operator A is the ray transform [36]. The ray transform is a linear operator that
maps a function to a set of line integrals, i.e., for given f ∈ X and any line ` it is
defined by

A(f)(`) =

∫
`

fds
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(a) Phantom.

−→

(b) Translated phantom.

−→

(c) Data.

Figure E.2: Example of data generation process used for training and validation,
where E.2a shows an example phantom, E.2b is the phantom with a random
translation and E.2c is the data (sinogram) corresponding to E.2b with additive
white noise on top. Pairs of the form (gi, fi) = (E.2c, E.2a) is what is used in the
training.

where ds is the line measure. The adjoint of this operator is given by the back-
projection [34].

What makes this an ill-posed problem is that the data acquisition is done from
only 30 views with 727 parallel lines. Moreover, the source of noise is two-fold in
this set-up: (i) the pairs (gi, fi) of data sets and phantoms are not aligned, meaning
that the data is computed from a phantom with a random change in position. This
random change is independent for the different circles, and for each circle it is
a shift which is uniformly distributed over [−40, 40] pixels, both in up-down and
left-right direction. (ii) on the data computed from the shifted phantom, 5% additive
Gaussian noise was added. For an example, see Figure E.2.

We use the optimal mass transport distance (E.2.7), which allows for unbalanced
marginals, and compute it with Sinkhorn iterations. The underlying transportation
cost is

c(x1, x2) =
(

1− e−‖x1−x2‖4/804
)

and the cost for adding and subtracting mass is κ = 1. The cost function c was
chosen since it heavily penalizes large movements, while not diverging to infinity
which causes numerical instabilities. Moreover, c(x1, x2)1/4 is in fact a metric
on R2 (see Appendix E.8) and thus W4(µ0, µ1) := T (µ0, µ1)1/4 gives rise to a
Wasserstein metric on the space of images, where T (µ0, µ1) is the optimal mass
transport distance with the transport cost c(x1, x2). Since this cost is translation
invariant, the matrix-vector multiplications Ku and KT v can be done with fast
Fourier transform, as mentioned in Section E.2. We used 10 Sinkhorn iterations
with entropy regularization ε = 10−3, to approximate the optimal mass transport.
Automatic differentiation in TensorFlow was used to back-propagate the result
during training.
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(a) Phantom. (b) Translated phantom used for
generating data.

(c) Reslut after training with
mean squared error loss.

(d) Result after training with
Wasserstein loss.

Figure E.3: In E.3a we show the validation phantom, which was generated from the
same training set but not used in training, in E.3b the translated phantom from
which the validation data was computed, in E.3c a reconstruction with the neural
network trained using mean squared error loss (E.2.3), and in E.3d a reconstruction
with the neural network trained using Wasserstein loss (E.3.1).

Algorithm E.2 Learned Primal-Dual reconstruction algorithm

1: Initialize f0 ∈ XNprimal , h0 ∈ UNdual

2: for i = 1, . . . , I do

3: hi ← ΓΘd
i

(
hi−1,A(f

(2)
i−1), g

)
4: fi ← ΛΘp

i

(
fi−1,A∗(h(1)

i )
)

5: end for
6: A†Θ(g) := f

(1)
I

The reconstruction method in algorithm E.2 was implemented using ODL [3],
ASTRA [38, 45], and TensorFlow [1]. We used the reference implementation
from [5] with default parameters, i.e., the number of blocks in the primal and
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dual space was I = 10, and the number of primal and dual variables was set to
Nprimal = Ndual = 5. Moreover, the blocks used a residual structure and had three
layers of 3× 3 convolutions with 32 filters. PReLU nonlinearities were used. Thus,
this corresponds to a residual CNN with convolutional depth of 10 · 2 · 3 = 60, as
shown in graphical format in Figure E.1. We used zero initial values, f0 = h0 = 0.

The training also followed [5] closely. In particular, we used 2 · 104 batches of
size 1, using the ADAM optimizer [29] with default values except for β2 = 0.99. The
learning rate (step length) used was cosine annealing [32] with initial step length
10−3. Moreover, in order to improve training stability we performed gradient norm
clipping [39] with norms limited to 1. The convolution parameters were initialized
using Xavier initialization [21], and all biases were initialized to zero. The training
took approximately 3 hours using a single Titan X GPU. The source code used to
replicate these experiments are available online.1.

Results are presented in Figure E.3. As can be seen, the reconstruction using L2

loss “smears” the reconstruction, in this case to an extent where the shape is hard
to recover. On the other hand, the reconstruction using the Wasserstein loss retains
the over-all global shape of the object, although relative and exact positions of the
circles are not recovered. These results are qualitatively in line with the results
in the simplified setting of section E.3, where the optimal L2 reconstructions are
smeared (proposition E.3.1) and where the optimal Wasserstein reconstructions are
sharp (proposition E.3.2). This suggests that training with a Wasserstein loss can
be useful when there are miss-alignments in the training data.

E.5 Conclusions and future work

In this work we have considered using Wasserstein loss to train a neural network
for solving ill-posed inverse problems in imaging where data is not aligned with
the ground truth. We give a theoretical motivation for why this should give better
results compared to standard mean squared error loss, and demonstrate it on a
problem in computed tomography. In the future, we hope that this method can
be applied to other inverse problems and to other problems in imaging such as
segmentation.

E.6 Appendix 1: Deferred proofs

Proof of Proposition E.3.1. To show that f(x) = (dP ∗ g)(x) ∈ L2(Rn) minimizes
Eτ [‖f − gτ‖22] we note that

Eτ
[
‖f − gτ‖22

]
=

∫
Rn

(∫
Rn

(f(x)− gt(x))2dx

)
dP (t)

=

∫
Rn

(∫
Rn

(f(x)− gt(x))2dP (t)

)
dx

1https://github.com/adler-j/wasserstein_inverse_problems
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by Fubini’s theorem. Next, by expanding the expression using that
∫
Rn dP (t) = 1

and completing the square, this can be written as

Eτ
[
‖f − gτ‖22

]
=

∫
Rn

(
f(x)−

∫
Rn
gt(x)dP (t)

)2

dx+ c,

where c is a constant. Using this it follows that the minimizing f is of the form

f(x) =

∫
Rn
gt(x)dP (t) = (dP ∗ g)(x).

To see that f ∈ L2(Rn) we note that, by using Fubini’s theorem, we have

‖f‖22 =

∫
Rn

(∫
Rn
gt(x)dP (t)

)2

dx

=

∫
Rn

∫
Rn

(∫
Rn
gs(x)gt(x)dx

)
dP (s)dP (t)

≤
∫
Rn

∫
Rn

(
1

2

∫
Rn
gs(x)2 + gt(x)2dx

)
dP (s)dP (t)

= ‖g‖22 <∞

where the first inequality is the arithmetic-geometric mean inequality. This completes
the proof.

Proof of Proposition E.3.2. We consider finding the marginal µ that minimizes the
expectation Eτ

[
T (δτ , µ)

]
. Without loss of generality we assume that τ is zero-mean,

since otherwise we simply consider τ̃ = τ − E[τ ], where τ̃ is a zero-mean random
variable, and shift the coordinate system. First we note that T (δt, µ) is only finite
for nonegative measures µ with total mass 1, and hence Eτ

[
T (δτ , µ)

]
is only finite

for such measures. Second, for such a µ we have

T (δt, µ) =

∫
Rn
c(t, x)dµ(x),

since one needs to transport all mass in µ into the point t where δt has its mass.
Using this and expanding the expression for the expectation gives that

Eτ
[
T (δτ , µ)

]
=

∫
Rn
T (δt, µ)dP (t)

=

∫
Rn

(∫
Rn
c(t, x)dP (t)

)
dµ(x),

where we have used Fubini’s theorem in the last step. From this we note that
the optimal µ have support only in the global minimas of the function F (x) :=∫
Rn c(t, x)dP (t). This completes the first half of the statement.
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To prove the second half of the statement, since c(t, x) = d(x− t) we have that

F (x) =

∫
Rn
d(x− t)dP (t).

We now note that since dP and d are symmetric we must have that F is also
symmetric, i.e., that F (−x) = F (x). However, this means that for any x ∈ Rn we
have that

F (x) =
1

2
F (x) +

1

2
F (−x)

=
1

2

∫
Rn
d(x− t)dP (t) +

1

2

∫
Rn
d(−x− t)dP (t)

=

∫
Rn

(
1

2
d(x− t) +

1

2
d(−x− t)

)
dP (t)

≥
∫
Rn
d(t)dP (t) = F (0),

where the inequality follows from convexity and symmetry of d. This shows that
F (x) has a global minimum in x = 0, and hence by the first part of the proof it
follows that an optimal solution is µ(x) = δ(x). Now, if d is strictly convex the
inequality is strict for x 6= 0, which shows that the optimal solution is unique. This
completes the proof.

E.7 Appendix 2: OMT for unbalanced marginals via
Sinkhorn iterations

Recall the Kantorovich formulation of the optimal mass transport problem (E.2.4)

T (µ0, µ1) = min
dM≥0

∫
(x0,x1)∈Ω×Ω

c(x0, x1)dM(x0, x1)

subject to µ0(x0)dx0 =

∫
x1∈Ω

dM(x0, x1),

µ1(x1)dx1 =

∫
x0∈Ω

dM(x0, x1).

This is only well-defined if the two marginals have the same total mass, but can be
extended to handle the case when the two marginals have different mass [20, 13].
One such formulation is

Tκ(µ0, µ1) := min
ν0,ν1≥0

T (ν0, ν1) + κ

1∑
i=0

‖νi − µi‖1,
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which in the discrete setting this becomes

Tκ(µ0, µ1) := min
ν0,ν1,M≥0

Tr(CTM) + κ

1∑
i=0

‖νi − µi‖1

subject to ν0 = M1n, ν1 = MT1n. (E.7.1)

Here we will show how Sinkhorn iterations can be used to compute an approximate
solution to the problem (E.7.1). First note that without loss of generality we can
always assume that ‖µ0‖1 ≤ ‖µ1‖1, due to the symmetry. One can then show the
following lemma.

Lemma E.7.1. Let the cost matrix be C = [cij ]ij where cij ≥ 0 and cii = 0. Then
there is an optimal solution such that ν∗0 , ν

∗
1 to (E.7.1) such that ν∗0 = µ0. Moreover,

assume that ‖µ0‖1 ≤ ‖µ1‖1. If κ ≥ 1
2 maxij cij then there is an optimal solution

such that ν∗0 = µ0 and

ν∗1 ≤ µ1. (E.7.2)

Proof. Let ν∗0 , ν
∗
1 ,M

∗ denote an optimal solution to (E.7.1), and let m∗i be the ith
row of M∗ and m̃∗j be the jth column. Also note that feasibility of (E.7.1) implies

that ν∗0 = M∗1n and ν∗1 = (M∗)T1n are determined by the transport plan M∗ and
have the same total mass.

To show the first statement, first assume that there is point x(i) such that
ν∗0 (i) < µ0(i). A new transport plan can be obtained asM = M∗+eie

T
i (µ0(i)−ν∗0 (i)),

with associated marginals ν` = ν∗` + ei(µ0(i)− ν∗0 (i)). Since cii = 0, the objective
value of this transport plan is less than or equal to that of M∗ and hence also
optimal.

Next, assume that there is point x(i) such that ν∗0 (i) > µ0(i). In this case let
M be th transport plan where mi = m∗i · µ0(i)/ν∗0 (i) and m` = m∗` for ` 6= i. Since
cij ≥ 0 again the objective value of this transport plan is less than or equal to that
of M∗ and hence also optimal.

Repeating these two steps we can modify the transport plan so that ν0 = µ0

without increasing the objective value. This proves the first statement.

To prove the second statement we can, without loss of generality, take ν∗0 = µ0.
By the assumption ‖µ0‖1 ≤ ‖µ1‖1 this means that ‖ν∗1‖1 ≤ ‖µ1‖1. Now, assume
that the inequality (E.7.2) is violated. Then there must be two points x(i) and x(j)

so that µ1(i) < ν∗1 (i) and ν∗1 (j) < µ1(j). In this case consider the transport plan
M given by m̃i = (1 − α)m̃∗i , m̃j = m̃∗j + αm̃∗i , and m̃` = m̃∗` otherwise, where
α = min{ν∗1 (i)− µ1(i), µ1(j)− ν∗1 (j)}/‖m̃∗i ‖1. This gives at most an increase in the
transport cost of αmaxij cij‖m̃∗i ‖1 which is less than or equal to 2ακ‖m̃∗i ‖1, the
latter corresponding to the decrease in the second term of the cost function. Since
‖ν∗1‖1 ≤ ‖µ1‖1 we can repeat this process without increasing the objective function
until the inequality (E.7.2) is satisfied.
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Based on lemma E.7.1 we can introduce a modified optimal transport problem
that is equivalent to (E.7.1) but where the second term in the cost function is
explicitly removed by incorporating it into C and M . To this end, let mn+1 ∈ R1×n

+

and define

M̃ =

[
M

mn+1

]
, C̃ =

[
C
κ1Tn

]
, µ̃0 =

[
µ0

(µ1 − µ0)T1n

]
.

Here mT
n+1 corresponds to the difference µ1 − ν1, which by the inequality (E.7.2) in

lemma E.7.1 has a nonnegative optimal solution. We can thus write (E.7.1) as

T̃κ(µ0, µ1) := min
M̃≥0

Tr(C̃T M̃)

subject to µ̃0 = M̃1n+1, µ1 = M̃T1n.

This is an optimal transport problem where we have added an extra mass in µ0,
corresponding to the difference in total mass, from which it costs κ to move the mass
to any other point in µ1. We can now make an entropy-regularization of this problem,
which gives and optimal solution M̃ = diag(ũ)K̃diag(v), where K̃ = exp(−C̃/ε) and
ũ = [u, û]T for û scalar. As before, this solution can be obtained via the Sinkhorn
iterations, which takes the form

ũi ← µ̃0./(K̃vi−1) =

[
µ0./(Kvi−1)

(µ1 − µ0)T1n/(1nv) exp(κ/ε)

]
vi ← µ1./(K̃

T ũi) = µ1./(K
Tui + exp(−κ/ε)1nû).

From this we note that we can still utilize the FFT-based methods for fast compu-
tations.

Remark E.7.2. Note that one can also get a symmetric formulation by using the
following redefinitions instead

M̃ =

[
M m̃n+1

mn+1 mn+1,n+1

]
, C̃ =

[
C κ1n
κ1Tn 0

]
,

and

µ̃0 =

[
µ0

µT1 1n

]
, µ̃1 =

[
µ1

µT0 1n

]
,

E.8 Appendix 3: Metric property of the cost function

This appendix is dedicated to proving the following lemma.

Lemma E.8.1. Let ‖ · ‖ be a norm on Rm. Then

d(x1, x2) =
(
1− e−‖x1−x2‖n

) 1
n .

is a metric on Rm for n ≥ 1.
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Proof. It is easily seen that d(x1, x2) is symmetric, nonnegative, and equal to zero
if only if x1 = x2. Thus we only need to verify that the triangle inequality holds.
To this end we note that if(

1− e−(a+b)n
) 1
n ≤

(
1− e−a

n) 1
n +

(
1− e−b

n) 1
n , ∀ a, b ≥ 0, (E.8.1)

for all n ≥ 1, then by taking a = ‖x1 − x2‖, b = ‖x2 − x3‖, and using the triangle
inequality for the norm ‖ · ‖ we have that

d(x1, x3) =
(
1− e−‖x1−x3‖n

) 1
n

≤
(
1− e−(‖x1−x2‖+‖x2−x3‖)n

) 1
n

≤
(
1− e−‖x1−x2‖n

) 1
n +

(
1− e−‖x2−x3‖n

) 1
n

= d(x1, x2) + d(x2, x3).

Therefore we will show that (E.8.1) holds for all n ≥ 1, and to do so we will

(i) show that if a function g : R+ → R+ fulfills g(0) = 0, g(x)′ ≥ 0, g′′(x) ≤ 0 for
all x ∈ R+, then g(x1 + x2) ≤ g(x1) + g(x2),

(ii) show that for x ≥ 0 the map x 7→ (1− e−xn)
1
n fulfills the assumptions in (i)

for any n ≥ 1.

To show (i) we note that

g(x1 + x2) =

∫ x1+x2

0

g′(t)dt =

∫ x1

0

g′(t)dt+

∫ x1+x2

x1

g′(t)dt

≤
∫ x1

0

g′(t)dt+

∫ x2

0

g′(t)dt = g(x1) + g(x2),

where the inequality uses that g′(t) ≥ g′(x+ t) for any x, t ≥ 0 since g′′(x) ≤ 0 for
all x ≥ 0.

To show (ii), let g(x) := (1− e−xn)
1
n and observe that g(0) = 0. Differentiating

g twice gives

g′(x) =
e−x

n

(1− e−xn)
1
nxn−1

1− e−xn

g′′(x) = − (1− e−xn)
1
nxn−2

(exn − 1)2

·
(
nex

n

xn − xn + ex
n

− nex
n

+ n− 1︸ ︷︷ ︸
=:hn(xn)

)
.

For x ≥ 0 we see that g′(x) ≥ 0 for all n ≥ 1. Moreover, for x ≥ 0 we see that
g′′(x) ≤ 0 for all x ≥ 0 and for all n ≥ 1 if and only if hn(xn) ≥ 0. With the change
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of variable xn = y, we thus want to show that hn(y) ≥ 0 for all y ≥ 0 and all n ≥ 1.
To see this we note that hn(0) = 0 and that

h′n(y) = neyy + ey − 1 ≥ 0 for all y ≥ 0 and n ≥ 1.

This shows (ii), and hence completes the proof.

References

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467, 2016.

[2] I. Abraham, R. Abraham, M. Bergounioux, and G. Carlier. Tomographic
reconstruction from a few views: A multi-marginal optimal transport approach.
Applied Mathematics & Optimization, 75(1):55–73, 2017.

[3] J. Adler, H. Kohr, and O. Öktem. Odl 0.6.0, April 2017.
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[5] J. Adler and O. Öktem. Learned primal-dual reconstruction. IEEE Transactions
on medical imaging, 37(6):1322–1332, 2018.

[6] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[7] H.H. Bauschke and P.L. Combettes. Convex analysis and monotone operator
theory in Hilbert spaces. Springer, New York, NY, 2011.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[9] J.-D. Benamou, G. Carlier, M. Cuturi, L. Nenna, and G. Peyré. Iterative
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Abstract

In this work, we consider methods for solving large-scale optimization
problems with a possibly nonsmooth objective function. The key idea is
to first specify a class of optimization algorithms using a generic iterative
scheme involving only linear operations and applications of proximal operators.
This scheme contains many modern primal-dual first-order solvers like the
Douglas-Rachford and hybrid gradient methods as special cases. Moreover, we
show convergence to an optimal point for a new method which also belongs
to this class. Next, we interpret the generic scheme as a neural network and
use unsupervised training to learn the best set of parameters for a specific
class of objective functions while imposing a fixed number of iterations. In
contrast to other approaches of ”learning to optimize”, we present an approach
which learns parameters only in the set of convergent schemes. As use cases,
we consider optimization problems arising in tomographic reconstruction and
image deconvolution, and in particular a family of total variation regularization
problems.

Keywords: convex optimization, proximal algorithms, monotone operators, ma-
chine learning, inverse problems, computed tomography

F.1 Introduction

Many problems in science and engineering can be formulated as convex optimization
problems which then need to be solved accurately and efficiently. In this paper we
focus on methods for solving such problems, namely of the form

min
x∈X

[
F (x) +

m∑
i=1

Gi(Lix)
]
. (F.1.1)

Here, Li : X → Yi, i = 1, . . . ,m, are linear operators, where X ,Y1, . . . ,Ym are
Hilbert spaces, and F : X → R and Gi : Yi → R, i = 1, . . . ,m, are proper, convex
and lower semicontinuous functions. This class of optimization problems appears
for example in variational regularization of inverse problems in imaging, such as
X-ray computed tomography (CT) [40, 39], magnetic resonance imaging (MRI) [17],
and electron tomography [41].
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A key challenge is to handle the computational burden. In imaging, and especially
so for three-dimensional imaging, the resulting optimization problem is very high-
dimensional even after clever digitization and might involve more than one billion
variables. Moreover, many regularizers that are popular in imaging (see Section
F.5), like those associated with sparsity, result in a nonsmooth objective function.
These issues prevent usage of variational methods in time-critical applications, such
as medical imaging in a clinical setting. Modern methods which aim at overcoming
these obstacles are typically based on the proximal point algorithm [45] and operator
splitting techniques, see e.g., [24, 11, 19, 15, 20, 21, 28, 14, 13, 32, 33, 9] and
references therein.

The main objective of the paper is to offer a computationally tractable approach
for minimizing large-scale nondifferentiable, convex functions. The key idea is to
“learn” how to optimize from training data, resulting in an iterative scheme that
is optimal given a fixed number of steps, while its convergence properties can be
analyzed. We will make this precise in Section F.4.

Similar ideas have been proposed previously in [26, 34, 7], but these approaches
are either limited to specific classes of iterative schemes, like gradient-descent-like
schemes [34, 7] that are not applicable for nonsmooth optimization, or specialized
to a specific class of regularizers as in [26], which limits the possible choices of
regularizers and forward operators. The approach taken here leverages upon these
ideas and yields a general framework for learning optimization algorithms that are
applicable to solving optimization problems of the type (F.1.1), inspired by the
proximal-type methods mentioned above.

A key feature is to present a general formulation that includes several existing
algorithms, among them the primal-dual hybrid gradient (PDHG) algorithm (also
called the Chambolle–Pock algorithm) [19] and the primal-dual Douglas–Rachford
algorithm [14] as a special case. This means that the learning can be done in a space
of schemes that includes these solvers as special cases. Moreover, from the proposed
parametrization we also derive a new optimization algorithm. We demonstrate
the performance of a solver based on this general formulation by training in an
unsupervised manner for two inverse problems: image reconstruction in CT and
deconvolution, both through TV regularization. In particular, we present a method
to learn the parameters of a convergent solver and demonstrate the improvement
to the ad-hoc parameter choice. Moreover, empirical results indicate that by using
additional parameters we can achieve improved performance.

The paper is organized as follows: In Section F.2 we recall elements of monotone
operator theory and convex optimization, while setting up the notation. In Section
F.3, we present and analyze a new solver for monotone inclusions, which we also
specialize to convex optimization problems of the form (F.1.1). Section F.4 deals
with the notion of “learning” an optimization solver, and in Section F.5 we present
numerical experiments for variational regularization of inverse problems in imaging.
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F.2 Background

Solving optimization problems of the type in (F.1.1) are often addressed using
variable splitting techniques, which work well if the different terms are “simple”
[9, 20, 23]. To keep the discussion as general as possible and since it does not add
complexity to the proof of convergence, we will carry it out for monotone inclusions
instead of convex optimization problems. The following subsections present necessary
background material on monotone operators, convex optimization, and variable
splitting.

Fundamental notions

Let H be a real Hilbert space with the inner product 〈·, ·〉. We denote convergence
in norm (or strong convergence) and weak convergence by → and ⇀, respectively.
A set-valued operator S : H⇒ H is monotone if

〈z − z′, w − w′〉 ≥ 0 for all z, z′ ∈ H, w ∈ S(z), and w′ ∈ S(z′).

A monotone operator S is called maximally monotone if, in addition, the graph of
S, defined by graph(S) := {(z, w) ∈ H ×H | w ∈ S(z)}, is not properly contained
in the graph of any other monotone operator, i.e.,

(z, w) ∈ graph(S) ⇐⇒ 〈z − z′, w − w′〉 ≥ 0 for all (z′, w′) ∈ graph(S).

A monotone operator is called strongly monotone if there exists a µ > 0 such that

〈z − z′, w − w′〉 ≥ µ ‖z − z′‖2 for all z, z′ ∈ H, w ∈ S(z), and w′ ∈ S(z′).

Next, for any scalar σ > 0, the operator JσS = (Id +σS)
−1

is called the resolvent
operator or proximal mapping [45]. It can be shown that JσS is a single-valued
operator H → H [9, Proposition 23.8]. Note that an efficient routine to evaluate JσS
for all σ > 0 also enables to evaluate the resolvent operator of S−1 via

JσS−1(z) = z − σJ1/σ
S (z/σ) (F.2.1)

for z ∈ H (see [9, Proposition 23.20]).
A maximally monotone inclusion problem is defined as the problem of finding a

point z ∈ H such that 0 ∈ S(z), which we henceforth denote z ∈ zer(S). In fact,
it is easily seen that z ∈ zer(S) is equivalent with z being a fixed-point for the
resolvent operator, i.e., z = JσS (z).

One reason for the interest in maximally monotone inclusion problems is that the
subdifferential ∂F of a proper, convex and lower semicontinuous function F : H → R
is a maximally monotone operator [38]. Here, ∂F : H⇒ H is defined to be

∂F (x) := {y ∈ H | ∀x̃ ∈ H : F (x̃) ≥ F (x) + 〈y, x̃− x〉}
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if F (x) ∈ R and ∂F (x) = ∅ if F (x) ∈ {±∞}. Moreover, the subdifferential at any
minimizer of such a function contains zero, so F can be minimized by solving a
maximally monotone inclusion problem [9, Theorem 16.3]. Note that we do not
distinguish between local and global minimizers, since any local minimizer of a
convex function is global [9, Proposition 11.4].

Remark F.2.1. A continuous linear operator A : H → H of a Hilbert space H into
itself is maximally monotone if and only if it is accretive, i.e., if 〈x,Ax〉 ≥ 0 for all
x ∈ H [9, Corollary 20.28, see also Definition 2.23], and it is the subdifferential ∂f
of a function f : H → R if and only if it is additionally symmetric [8, Proposition
2.51]. In particular the Volterra integral operator [10, Example 4.4]

(Af)(t) =

∫ t

0

f(s) ds

and its inverse are maximally monotone, but not the subdifferential of a proper,
convex and lower semicontinuous function.

For F : H → R, the Fenchel dual (convex conjugate) function F ∗ : H → R is
defined by [9, Chapter 13]

F ∗(y) := sup
x∈H

[
〈x, y〉 − F (x)

]
for y ∈ H.

If F is proper, convex and lower semicontinuous, then ∂F ∗ = (∂F )
−1

[9, Corollary
16.30].

The proximal point algorithm is a fixed-point iterative scheme for solving the
maximally monotone inclusion problem. It is given by repeatedly applying the
resolvent operator:

zk+1 = JσS
(
zk
)
.

It can now be shown that if zer(S) 6= ∅ then zk converges weakly to a point
z∞ ∈ zer(S) [45] for all starting points z0 ∈ H. The special case when S := ∂F , i.e.,
the case of the resolvent of a subdifferential of F , is called the proximal operator.
One can express the proximal as [38]

Jσ∂F (x) = ProxσF (x) = arg min
x′∈H

{
F (x′) +

1

2σ
‖x′ − x‖2

}
.

To see this, we simply note that if x′ is a minimizing argument then

0 ∈ ∂F (x′) +
1

σ
(x′ − x) ⇐⇒ x′ = Jσ∂F (x).

It is thus interesting to note that the fixed-point iteration

xk+1 = ProxσF
(
xk
)

= arg min
x′∈H

{
F (x′) +

1

2σ

∥∥x′ − xk∥∥2
}
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generates a sequence
(
xk
)

that converges weakly to a minimizer of F . In this setting,
the parameter σ can be interpreted as a step length. This can give rise to methods
for solving the optimization problems if the proximal operator can be efficiently
computed, e.g., through a closed-form expression. Note that (F.2.1) gives a method
to obtain the proximal points of F ∗ from those of F , namely

ProxτF∗ (x) = x− τ Prox
1/τ
F (x/τ) for all τ > 0.

Sometimes the resolvent of the maximally monotone operator S is not easy to
evaluate, but S is of the form S = A+B where A and B are maximally monotone
and the resolvents of A and B can be evaluated efficiently. One may then consider
approximating JσA+B with JσA and JσB (splitting) [23]. An example when this arises
is in convex minimization of an objective that is a sum of two (or more) functions
F +G, like in (F.1.1). In these cases it is often not possible to compute a closed-form
expression for the proximal operator ProxσF+G. Such problems can be addressed
using operator splitting techniques that allow for solving the problem by only
evaluating ProxσF and ProxσG [20].1

Convex optimization

Next, we will consider duality and optimality conditions for the problem (F.1.1).
To simplify the notation, we consider the case m = 1 in (F.1.1), i.e., let X and Y
be two Hilbert spaces and consider the model problem

min
x∈X

[
F (x) +G(Lx)

]
, (F.2.2)

where L : X → Y is a continuous linear operator and F : X → R and G : Y → R are
proper, convex and lower semicontinuous functions. Note that (F.1.1) is recovered
by setting

G(y) :=

m∑
i=1

Gi(yi) for y = (y1, . . . , ym) ∈ Y := Y1 × . . .× Ym (F.2.3)

and Lx := (L1x, . . . , Lmx) for x ∈ X in (F.2.2).
The dual formulation of the primal problem (F.2.2) is

max
y∈Y

[
−F ∗(L∗y)−G∗(−y)

]
. (F.2.4)

Under suitable conditions the two optimization problems (F.2.2) and (F.2.4) have
the same optimal value [9, Chapter 15.3]. Also note that, since both F and G
are proper, convex and lower semicontinuous functions, F ∗∗ = F and G∗∗ = G by

1In optimization, this operator splitting is sometimes referred to as variable splitting. The
reason for this can be understood by comparing equations (F.2.2) and (F.2.7) below.
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the Fenchel–Moreau theorem [9, Theorem 13.37]. Hence, the following primal-dual
formulation

min
x∈X

max
y∈Y

L(x; y) with L(x; y) := 〈Lx, y〉+ F (x)−G∗(y) (F.2.5)

(the mapping L(·; ·) is called the Lagrangian) is equivalent to the primal problem.2

In fact, under suitable assumptions it can be shown that if (x̄, ȳ) is a saddle point
to (F.2.5), then x̄ is a solution to the primal problem (F.2.2) and ȳ is a solution to
the dual problem (F.2.4) [9, Proposition 19.20].

A necessary optimality condition for the primal-dual formulation (F.2.5) is that
the corresponding point (x̄, ȳ) ∈ X ×Y be stationarity with respect to both variables,
i.e., that

Lx̄ ∈ ∂G∗(ȳ) and −L∗ȳ ∈ ∂F (x̄). (F.2.6)

For later use we note that the first of these conditions can be reformulated as

Lx̄ ∈ ∂G∗(ȳ) ⇐⇒ ȳ + σLx̄ ∈ ȳ + σ∂G∗(ȳ) = (I + σ∂G∗)(ȳ)

⇐⇒ ȳ = Jσ∂G∗(ȳ + σLx̄) = ProxσG∗ (ȳ + σLx̄),

and the second as

−L∗ȳ ∈ ∂F (x̄) ⇐⇒ x̄− τL∗ȳ ∈ x̄+ τ∂F (x̄) = (I + τ∂F )(x̄)

⇐⇒ x̄ = Jτ∂F (x̄− τL∗ȳ) = ProxτF (x̄− τL∗ȳ).

Therefore, an equivalent condition to (F.2.6) is

ȳ = ProxσG∗ (ȳ + σLx̄) and x̄ = ProxτF (x̄− τL∗ȳ). (F.2.7)

Two splitting algorithms

As mentioned before, there are many different splitting methods available to solve
problems of the form (F.1.1). For ease of reference, we here mention two popular
choices. The first one, given in (F.2.8), is PDHG [19]

yn+1 = ProxσG∗ (yn + σLvn),

xn+1 = ProxτF (xn − τL∗yn+1),

vn+1 = xn+1 + θ(xn+1 − xn).

(F.2.8)

The second one is the Douglas–Rachford type primal-dual algorithm [14], presented
in (F.2.9)

pn = ProxτF (xn − τL∗yn),

xn+1 = xn + λn(pn − xn),

qn = ProxσG∗ (yn + σL(2pn − xn)),

yn+1 = yn + λn(qn − yn).

(F.2.9)

2To see this, note that maxy∈Y
[
〈Lx, y〉 −G∗(y)

]
= G∗∗(Lx) = G(Lx).

238



Data-driven nonsmooth optimization

F.3 A new family of optimization solvers

In this section we introduce a new family of optimization algorithms and prove
convergence for a subfamily. For ease of notation we will consider the simplified
optimization problem (F.2.2), but results easily extend to the general case (F.1.1).

To this end, consider the two algorithms (F.2.8) and (F.2.9). Note that they
can both be written as

qn = ProxσG∗ (b12yn + b11L(c11pn−1 + c12xn−1)), (F.3.1a)

yn+1 = a21qn + a22yn, (F.3.1b)

pn = ProxτF (d12xn + d11L
∗(a11qn + a12yn)), (F.3.1c)

xn+1 = c21pn + c22xn, (F.3.1d)

for suitable values of the coefficients. More precisely, the PDHG algorithm (F.2.8)
is obtained by setting

a11 = 1 a12 = 0 a21 = 1 a22 = 0 b11 = σ b12 = 1

c11 = 1 + θ c12 = −θ c21 = 1 c22 = 0 d11 = −τ d12 = 1

and the Douglas-Rachford algorithm (F.2.9) by setting

a11 = λn a12 = 1− λn a21 = λn a22 = 1− λn b11 = σ b12 = 1

c11 = 2 c12 = −1 c21 = λn c22 = 1− λn d11 = −τ d12 = 1.

We now go on to analyze the scheme (F.3.1). To state our results as generally
as possible, we formulate them for a monotone inclusion problem that in particular
specializes to the optimality conditions in (F.2.6) when the operators are subdiffer-
entials. The monotone inclusion problem we seek to solve reads as follows: Let X
and Y be two (not necessarily finite-dimensional) Hilbert spaces, and let L : X → Y
be a continuous linear operator. Let A : X ⇒ X and B : Y ⇒ Y be maximally
monotone operators. Find a pair (x̄, ȳ) ∈ X × Y such that

Lx̄ ∈ B−1ȳ and −L∗ȳ ∈ Ax̄. (F.3.2)

In this setting, the scheme (F.3.1) generalizes to

qn = JσB−1(b12yn + b11L(c11pn−1 + c12xn−1)), (F.3.3a)

yn+1 = a21qn + a22yn, (F.3.3b)

pn = JτA(d12xn + d11L
∗(a11qn + a12yn)), (F.3.3c)

xn+1 = c21pn + c22xn. (F.3.3d)

We first note that if a21 = 0 or c21 = 0 the update for either yn+1 or xn+1 becomes
trivial, and the algorithm will not be globally convergent to a point fulfilling (F.3.2)
in general. Henceforth we will therefore assume that a21 and c21 are not equal to 0,
unless the opposite is explicitly stated.
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Fixed-point analysis

In this section, we give necessary and sufficient conditions for the solution set of
(F.3.2) and the fixed point set of (F.3.3) to coincide for any choice of A, B, and L.
To this end, let (q̄, ȳ, p̄, x̄) ∈ Y ×Y ×X ×X be a fixed point of the iterative scheme
(F.3.3) and note that (F.3.3b) and (F.3.3d) gives

q̄ =
1− a22

a21
ȳ and p̄ =

1− c22

c21
x̄.

Using this, we further get that

1− a22

a21
ȳ = JσB−1

(
b12ȳ + b11L

(
c11

1− c22

c21
x̄+ c12x̄

))
1− c22

c21
x̄ = JτA

(
d12x̄+ d11L

∗
(
a11

1− a22

a21
ȳ + a12ȳ

))
The conditions in (F.3.2) can now be re-phrased as

ȳ = JσB−1(ȳ + σLx̄) and x̄ = JτA(x̄− τL∗ȳ),

and combining the above two equations yields

a21 + a22 = 1, b12 = 1, b11(c11 + c12) = σ,

c21 + c22 = 1, d12 = 1, d11(a11 + a12) = −τ.
(F.3.4)

The conditions in (F.3.4) are necessary and sufficient, however, due to the linearity
of L, the algorithm does not change if we agree to the normalization

b11 = σ, c11 + c12 = 1,

d11 = −τ, a11 + a12 = 1.

If we fix all these conditions, the iteration (F.3.3) takes the form

qn = JσB−1(yn + σL(xn−1 + c11(pn−1 − xn−1))), (F.3.5a)

yn+1 = yn + a21(qn − yn), (F.3.5b)

pn = JτA(xn − τL∗(yn + a11(qn − yn))), (F.3.5c)

xn+1 = xn + c21(pn − xn). (F.3.5d)

Convergence analysis

The following theorem gives sufficient conditions for the weak convergence of the
sequence (xn, yn) generated by (F.3.5) to a point that satisfies (F.3.2), i.e., a point
that solves the monotone inclusion problem.
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Theorem F.3.1. Assume that there is a point that satisfies (F.3.2), i.e., the
monotone inclusion problem has a solution. Moreover, let

a11 = a21 and c11 = 1 +
c21

a21
. (F.3.6)

Assume furthermore that 0 < a21 < 2, 0 < c21 < 2 and

στ ‖L‖2 < a2
21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2 with σ, τ > 0. (F.3.7)

Finally, let (qn, yn, pn, xn) be the sequence generated by scheme (F.3.5). Then the
following holds:

(a)
∑
n≥0

‖xn − pn‖2 < +∞ and
∑
n≥0

‖xn − xn+1‖2 < +∞.

(b)
∑
n≥0

‖yn − qn‖2 < +∞ and
∑
n≥0

‖yn − yn+1‖2 < +∞.

(c) The sequence (xn, yn)n converges weakly to a point that satisfies (F.3.2).

(d) If A is strongly monotone, then there is a unique x̄ ∈ X such that all solutions of

(F.3.2) are of the form (x̄, y) with some y ∈ Y. Moreover,

∞∑
n=1

‖pn − x̄‖2 < +∞,

in particular pn → x̄ strongly.
If B−1 is strongly monotone, then there is a unique ȳ ∈ Y such that all solutions

of (F.3.2) are of the form (x, ȳ) with some x ∈ X . Moreover,

∞∑
n=1

‖qn+1 − ȳ‖2 <

+∞, in particular qn → ȳ strongly.

By rewriting with (F.3.6), the iteration (F.3.5) takes the following form:

Algorithm F.3.2. Choose parameters σ > 0, τ > 0 and a21 ∈ R, c21 ∈ R and
starting points x0 ∈ X , x1 ∈ X , p0 ∈ X , y1 ∈ Y. For all n = 1, 2, . . ., calculate

qn = JσB−1

(
yn + σL

(
pn−1 +

c21

a21
(pn−1 − xn−1)

))
, (F.3.8a)

yn+1 = yn + a21(qn − yn), (F.3.8b)

pn = JτA(xn − τL∗yn+1), (F.3.8c)

xn+1 = xn + c21(pn − xn). (F.3.8d)

Then, xn ⇀ x̄, pn ⇀ x̄, yn ⇀ ȳ, and qn ⇀ ȳ, where (x̄, ȳ) is a solution of (F.3.2),
provided that 0 < a21 < 2, 0 < c21 < 2 and (F.3.7) are satisfied.
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The remainder of the convergence analysis will therefore refer to scheme (F.3.8).
The proof of Theorem F.3.1 rests upon a number of technical results and is given in
the subsection below. An immediate corollary is the convergence of the primal-dual
Douglas–Rachford method with constant relaxation [14].

Corollary F.3.3. Let στ ‖L‖ < 1 and 0 < λ < 2. Then, for the iteration

qn = JσB−1(yn + σL(2pn−1 − xn−1)),

yn+1 = yn + λ(qn − yn),

pn = JτA(xn − τL∗yn+1),

xn+1 = xn + λ(pn − xn),

the sequence (xn, yn)n converges weakly to a point that satisfies (F.3.2).

Proof. Set a21 = c21 = λ in Theorem F.3.1 and observe that (F.3.7) reduces to

στ ‖L‖2 < 1.

Proof of Theorem F.3.1

For the proof, we define notions of distance Q1 and Q2 on the space X × Y of
pairs of primal and dual variables (Lemma F.3.5). Next, we show that the distance
(in terms of Q1) between the iterates and the set of solutions of (F.3.2) decreases
(Proposition F.3.6). This property is also known as Fejér monotonicity [9, Chapter
5]. Proposition F.3.7 improves the statement of Proposition F.3.6 for strongly
monotone operators. The proof of Theorem F.3.1 is completed by showing that any
weak sequential cluster point of the iteration sequence is a solution to (F.3.2).

We start with some simple inequalities between real numbers. In particular,
Lemma F.3.4 (a) shows that we do not divide by zero in (F.3.7).

Lemma F.3.4. Let 0 < a21 < 2 and 0 < c21 < 2. Then

(a) a21 + c21 > a21c21 and

(b)
a21c21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2 ≤ 1.

Proof. By assumption, a21(2− a21) > 0, i.e., a21 >
1
2a

2
21, and the same holds for

c21. Therefore,

a21 + c21 >
1

2
a2

21 +
1

2
c221 ≥ a21c21,

whence (a).
For (b), use the inequality 2a21c21 ≤ a2

21 + c221 in

a21c21(2− a21)(2− c21) = 4a21c21 − 2a2
21c21 − 2a21c

2
21 + a2

21c
2
21

≤ a2
21 + c221 + 2a21c21 − 2a2

21c21 − 2a21c
2
21 + a2

21c
2
21

= (a21 + c21 − a21c21)
2
.
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Lemma F.3.5. Define the quadratic forms Q1, Q2 : X × Y → R by

Q1(x, y) =
1

2τc21
‖x‖2 +

1

2σa21
‖y‖2 − 1

a21
〈y, Lx〉,

Q2(x, y) =
2− c21

2τ
‖x‖2 +

2− a21

2σ
‖y‖2 − a21 + c21 − a21c21

a21
〈y, Lx〉

for all x ∈ X and y ∈ Y. Under the assumptions in Theorem F.3.1, there exist
C1, C2, D1, D2 > 0 such that

Qi(x, y) ≥ Ci ‖x‖2 and Qi(x, y) ≥ Di ‖y‖2

for all x ∈ X , y ∈ Y and i = 1, 2.

Proof. We can rewrite

Q1(x, y) =
1

2σa21
‖y − σLx‖2 +

1

2τc21
‖x‖2 − σ

2a21
‖Lx‖2 ,

Q1(x, y) =
1

2τc21

∥∥∥∥x− c21τ

a21
L∗y

∥∥∥∥2

+
1

2σa21
‖y‖2 − c21τ

2a2
21

‖L∗y‖2

and

Q2(x, y) =
2− a21

2σ

∥∥∥∥y − σ(a21 + c21 − a21c21)

a21(2− a21)
Lx

∥∥∥∥2

+
2− c21

2τ
‖x‖2 − σ(a21 + c21 − a21c21)

2

2a2
21(2− a21)

‖Lx‖2 ,

Q2(x, y) =
2− c21

2τ

∥∥∥∥x− τ(a21 + c21 − a21c21)

a21(2− c21)
L∗y

∥∥∥∥2

+
2− a21

2σ
‖y‖2 − τ(a21 + c21 − a21c21)

2

2a2
21(2− c21)

‖L∗y‖2 .

From this, the assertion of the lemma is clear with the quantities

C1 =
1

2τc21
− σ

2a21
‖L‖2 =

a21 − c21στ ‖L‖2

2τa21c21
,

D1 =
1

2σa21
− c21τ

2a2
21

‖L‖2 =
a21 − c21στ ‖L‖2

2σa2
21

,

C2 =
2− c21

2τ
− σ(a21 + c21 − a21c21)

2

2a2
21(2− a21)

‖L‖2

=
a2

21(2− a21)(2− c21)− (a21 + c21 − a21c21)
2
στ ‖L‖2

2τa2
21(2− a21)

,
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D2 =
2− a21

2σ
− τ(a21 + c21 − a21c21)

2

2a2
21(2− c21)

‖L‖2

=
a2

21(2− a21)(2− c21)− (a21 + c21 − a21c21)
2
στ ‖L‖2

2σa2
21(2− c21)

provided that the numerators are positive, i.e.,

στ ‖L‖2 < min

{
a21

c21
,
a2

21(2− a21)(2− c21)

(a21 + c21 − a21c21)
2

}
.

Now, by Lemma F.3.4, the minimum is always attained by the second value, and
positivity is guaranteed by (F.3.7).

Proposition F.3.6. Define Q1 and Q2 as in Lemma F.3.5, let (x̄, ȳ) ∈ X × Y
satisfy (F.3.2), and let the sequence (qn, yn, pn, xn) be generated by scheme (F.3.8).
Under the assumptions in Theorem F.3.1, we have for all n ≥ 1

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) ≤ −Q2(pn − xn, qn+1 − yn+1).

Proof. Let (x̄, ȳ) satisfy (F.3.2). Then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ)

=
1

2τc21

(
‖xn+1 − x̄‖2 − ‖xn − x̄‖2

)
+

1

2σa21

(
‖yn+2 − ȳ‖2 − ‖yn+1 − ȳ‖2

)
+

1

a21
(〈yn+1 − ȳ, Lxn − Lx̄〉 − 〈yn+2 − ȳ, Lxn+1 − Lx̄〉)

=
1

2τc21

(
‖xn − x̄+ c21(pn − xn)‖2 − ‖xn − x̄‖2

)
+

1

2σa21

(
‖yn+1 − ȳ + a21(qn+1 − yn+1)‖2 − ‖yn+1 − ȳ‖2

)
+

1

a21

(
〈yn+1 − ȳ, Lxn − Lx̄〉

− 〈yn+1 − ȳ + a21(qn+1 − yn+1), Lxn − Lx̄+ c21(Lpn − Lxn)〉
)

=
c21

2τ
‖pn − xn‖2 +

1

τ
〈xn − x̄, pn − xn〉+

a21

2σ
‖qn+1 − yn+1‖2

+
1

σ
〈yn+1 − ȳ, qn+1 − yn+1〉+

c21

a21
〈ȳ − yn+1, Lpn − Lxn〉

+ 〈qn+1 − yn+1, Lx̄− Lxn〉+ c21〈yn+1 − qn+1, Lpn − Lxn〉. (F.3.9)

To estimate the above, we use the monotonicity of the operator B−1 together with
the inclusions Lx̄ ∈ B−1ȳ from (F.3.2) and

yn+1 − qn+1

σ
+ Lpn +

c21

a21
(Lpn − Lxn) ∈ B−1qn+1, (F.3.10)
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which is a reformulation of (F.3.8a) with n replaced by n + 1. This yields the
inequality

0 ≤
〈
yn+1 − qn+1

σ
+ Lpn +

c21

a21
(Lpn − Lxn)− Lx̄, qn+1 − ȳ

〉
=

1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − ȳ〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉 (F.3.11)

Analogously, we can rewrite (F.3.8c) as

xn − pn
τ

− L∗yn+1 ∈ Apn. (F.3.12)

The monotonicity of A together with the inclusion −L∗ȳ ∈ Ax̄ from (F.3.2) now
yields

0 ≤
〈
xn − pn

τ
− L∗yn+1 + L∗ȳ, pn − x̄

〉
=

1

τ
〈xn − pn, pn − x̄〉+ 〈ȳ − yn+1, Lpn − Lx̄〉. (F.3.13)

Adding (F.3.11) and (F.3.13) yields

0 ≤ 1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − yn+1〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉+

1

τ
〈xn − pn, pn − x̄〉, (F.3.14)

which, combined with (F.3.9), gives

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ)

≤ c21

2τ
‖pn − xn‖2 +

1

τ
〈xn − x̄, pn − xn〉+

a21

2σ
‖qn+1 − yn+1‖2

+
1

σ
〈yn+1 − ȳ, qn+1 − yn+1〉+

c21

a21
〈ȳ − yn+1, Lpn − Lxn〉

+ 〈qn+1 − yn+1, Lx̄− Lxn〉+ c21〈yn+1 − qn+1, Lpn − Lxn〉

+
1

σ
〈yn+1 − qn+1, qn+1 − ȳ〉+ 〈Lpn − Lx̄, qn+1 − yn+1〉

+
c21

a21
〈Lpn − Lxn, qn+1 − ȳ〉+

1

τ
〈xn − pn, pn − x̄〉

=

(
c21

2τ
− 1

τ

)
‖pn − xn‖2 +

(
a21

2σ
− 1

σ

)
‖qn+1 − yn+1‖2

+

(
c21

a21
+ 1− c21

)
〈qn+1 − yn+1, Lpn − Lxn〉

= −Q2(pn − xn, qn+1 − yn+1). (F.3.15)
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This concludes the proof.

Proposition F.3.7. Let Q1 and Q2 be defined as in Lemma F.3.5 and assume the
conditions stated in Theorem F.3.1 hold.

1. If A is µ1-strongly monotone for some µ1 > 0, then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ1 ‖pn − x̄‖2

≤ −Q2(pn − xn, qn+1 − yn+1).

2. If B−1 is µ2-strongly monotone for some µ2 > 0, then

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ2 ‖qn+1 − ȳ‖2

≤ −Q2(pn − xn, qn+1 − yn+1).

Proof. If A is µ1-strongly monotone, we obtain from (F.3.12) and −L∗ȳ ∈ Ax̄
(F.3.2) the estimation

µ1 ‖x̄− pn‖2 ≤
〈
xn − pn

τ
− L∗yn+1 + L∗ȳ, pn − x̄

〉
,

which is a sharpened version of (F.3.13). By modifying (F.3.14) and (F.3.15)
accordingly, we get the assumption. The case of a strongly monotone B−1 is
analogously shown by improving (F.3.11).

Having stated and proved the necessary estimations, we are now ready to prove
Theorem F.3.1.

Proof of Theorem F.3.1. Let (x̄, ȳ) satisfy (F.3.2). By Proposition F.3.6, we get the
estimation

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) ≤ −Q2(pn − xn, qn+1 − yn+1).

Considering Lemma F.3.5, we see that the real sequence

(Q1(xn − x̄, yn+1 − ȳ))n≥1

is monotonically nonincreasing and therefore has a limit for each primal-dual solution
(x̄, ȳ). Furthermore, for all N ≥ 1,

Q1(xN − x̄, yN+1 − ȳ)−Q1(x0 − x̄, y1 − ȳ)

≤ −
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1).
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By Lemma F.3.5, we have Q1(xN − x̄, yN+1 − ȳ) ≥ 0 and

Q1(x0 − x̄, y1 − ȳ) ≥
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1)

≥
N−1∑
n=0

C2 ‖pn − xn‖2

as well as

Q1(x0 − x̄, y1 − ȳ) ≥
N−1∑
n=0

D2 ‖qn+1 − yn+1‖2 .

Since this holds for arbitrary N ≥ 1, this proves parts (a) and (b) of the theorem.
On the other hand, we have

Q1(x0 − x̄, y1 − ȳ) ≥ Q1(xN − x̄, yN+1 − ȳ) ≥ C1 ‖xN − x̄‖2

and
Q1(x0 − x̄, y1 − ȳ) ≥ Q1(xN − x̄, yN+1 − ȳ) ≥ D1 ‖yN+1 − ȳ‖2

for all N ≥ 1, so the sequences (xn)n and (yn) are bounded in X and Y , respectively.
Let (nk)k be a subsequence with xnk ⇀ x∞ ∈ X and ynk+1 ⇀ y∞ ∈ Y . By (F.3.12)
and (F.3.10), we obtain

xnk − pnk
τ

− L∗ynk+1 ∈ Apnk ,
ynk+1 − qnk+1

σ
+ Lpnk +

c21

a21
(Lpnk − Lxnk) ∈ B−1qnk+1.

Now apply [6, Proposition 2.4] with

ak = pnk ,

a∗k =
xnk − pnk

τ
− L∗ynk+1,

bk =
ynk+1 − qnk+1

σ
+ Lpnk +

c21

a21
(Lpnk − Lxnk),

b∗k = qnk+1

and observe that

ak = xnk + (pnk − xnk) ⇀ x∞,

b∗k = ynk+1 + (qnk+1 − ynk+1) ⇀ y∞,

a∗k + L∗b∗k =
xnk − pnk

τ
+ L∗(qnk+1 − ynk+1)→ 0,

Lak − bk = −ynk+1 − qnk+1

σ
− c21

a21
(Lpnk − Lxnk)→ 0
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because parts (a) and (b) imply that xnk − pnk → 0 and ynk+1 − qnk+1 → 0 as
k → +∞. This gives Lx∞ ∈ B−1y∞ and −L∗y∞ ∈ Ax∞, i.e., (x∞, y∞) satisfies
(F.3.2). Since the choice of the weakly convergent subsequence was arbitrary, each
weak sequential cluster point satisfies (F.3.2). Claim (c) now follows from [9,
Lemma 2.47] applied to the norm

√
Q1(·) on the product space X × Y and to the

solution set of (F.3.2).
Now assume that A is µ1-strongly monotone for some µ1 > 0. By Proposi-

tion F.3.7, we get the estimation

Q1(xn+1 − x̄, yn+2 − ȳ)−Q1(xn − x̄, yn+1 − ȳ) + µ1 ‖pn − x̄‖2

≤ −Q2(pn − xn, qn+1 − yn+1)

for all n ≥ 0. Choose N ≥ 1 and sum up this inequality for n = 0, . . . , N − 1 to
obtain

Q1(xN − x̄, yN+1 − ȳ)−Q1(x0 − x̄, y1 − ȳ) + µ1

N−1∑
n=0

‖pn − x̄‖2

≤ −
N−1∑
n=0

Q2(pn − xn, qn+1 − yn+1)

Since the terms Q1(xN − x̄, yN+1 − ȳ) and
∑N−1
n=0 Q2(pn − xn, qn+1 − yn+1) are non-

negative by Lemma F.3.5, we obtain

µ1

N−1∑
n=0

‖pn − x̄‖2 ≤ Q1(x0 − x̄, y1 − ȳ).

Analogously, one gets

µ2

N−1∑
n=0

‖qn+1 − ȳ‖2 ≤ Q1(x0 − x̄, y1 − ȳ),

if B−1 is µ2-strongly monotone, and since N is arbitrary, both sums

∞∑
n=0

‖pn − x̄‖2 and

∞∑
n=0

‖qn+1 − ȳ‖2

are finite in the respective cases. The uniqueness of the point x̄ under the assumption
of strong monotonicity of A holds by the fact that we have shown pn → x̄ for any
solution (x̄, ȳ) of (F.3.2). An analogous argument for ȳ concludes the proof of
Claim (d).

Remark F.3.8. We were not able to show the weak convergence of PDHG (F.2.8)
for θ 6= 1 with this proof method. Indeed, by a straightforward calculation it can
be shown that from Fejér monotonicity with respect to any quadratic form of the
sequence (xn, yn+1)n the conditions (F.3.6) can be derived, which implies θ = 1.
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Application to convex optimization

In this section, we specialize the scheme (F.3.8) to the case where the monotone
operators A and B are subdifferentials ∂F and ∂G of proper, convex and lower
semicontinuous functions F : X → R and G : Y → R, respectively. Algorithm F.3.2
then reads as follows:

Algorithm F.3.9. Choose parameters σ > 0, τ > 0 and a21 ∈ R, c21 ∈ R and
starting points x0 ∈ X , x1 ∈ X , p0 ∈ X , y1 ∈ Y. For all n = 1, 2, . . ., calculate

qn = ProxσG∗

(
yn + σL

(
pn−1 +

c21

a21
(pn−1 − xn−1)

))
, (F.3.16a)

yn+1 = yn + a21(qn − yn), (F.3.16b)

pn = ProxτF (xn − τL∗yn+1), (F.3.16c)

xn+1 = xn + c21(pn − xn). (F.3.16d)

Then, xn ⇀ x̄, pn ⇀ x̄, yn ⇀ ȳ, and qn ⇀ ȳ, where (x̄, ȳ) is a solution of (F.2.6),
provided that 0 < a21 < 2, 0 < c21 < 2, and (F.3.7) are satisfied.

In this case, it is possible to get estimations for the Lagrangian, which is defined
in (F.2.5).

Theorem F.3.10. Given the assumptions in Theorem F.3.1, let F : X → R and
G : Y → R be two proper, convex and lower semicontinuous functions. Let x ∈ X
and y ∈ Y be arbitrary. Then the sequence (qn, yn, pnxn) generated by (F.3.16)
satisfies

min
n=0,...,N−1

(L(pn; y)− L(x; qn+1)) ≤ 1

N
Q1(x0 − x, y1 − y),

L

(
1

N

N−1∑
n=0

pn; y

)
− L

(
x;

1

N

N−1∑
n=0

qn+1

)
≤ 1

N
Q1(x0 − x, y1 − y).

This theorem is proved using the following proposition, which bounds the
Lagrangian in terms of the quadratic forms defined in Lemma F.3.5.

Proposition F.3.11. Given the assumptions in Theorem F.3.1, let F : X → R and
G : Y → R be two proper, convex and lower semicontinuous functions. Let x ∈ X
and y ∈ Y be arbitrary. Then the sequence (qn, yn, pn, xn) generated by (F.3.16)
satisfies

L(pn; y)− L(x; qn+1) ≤ Q1(xn − x, yn+1 − y)−Q1(xn+1 − x, yn+2 − y)

−Q2(pn − xn, qn+1 − yn+1)

for all n ≥ 1, x ∈ X and y ∈ Y.
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Proof. Since B−1 = ∂G∗ and A = ∂F , the inclusions (F.3.10) and (F.3.12) provide
certain subgradients, which imply the inequalities

G∗(y) ≥ G∗(qn+1) +
1

σ
〈yn+1 − qn+1, y − qn+1〉+ 〈Lpn, y − qn+1〉

+
c21

a21
〈Lpn − Lxn, y − qn+1〉,

F (x) ≥ F (pn) +
1

τ
〈xn − pn, x− pn〉 − 〈L∗yn+1, x− pn〉.

Therefore, we have

L(pn; y)− L(x; qn+1)

= 〈Lpn, y〉+ F (pn)−G∗(y)− 〈Lx, qn+1〉 − F (x) +G∗(qn+1)

≤ 1

τ
〈xn − pn, pn − x〉+ 〈Lpn − Lx, qn+1 − yn+1〉

+
1

σ
〈yn+1 − qn+1, qn+1 − y〉+

c21

a21
〈Lpn − Lxn, qn+1 − y〉.

The right-hand side is now (except for the replacement of x̄ and ȳ by x and y,
respectively) equal to the one in (F.3.14), and one easily checks by an analogous
calculation, that it equals the expression in the assertion.

Proof of Theorem F.3.10. By summing the inequality in Proposition F.3.11 for
n = 0, . . . , N − 1 and dividing by N for some N ≥ 1, we get

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≤ 1

N
Q1(x0 − x, y1 − y)

for all x ∈ X and y ∈ Y, where we dropped nonpositive terms on the right-hand
side.

We have two possibilities to further estimate the left-hand side: First, we notice
that it is the arithmetic mean of numbers, which is always greater than the minimum,
i.e.,

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≥ min
n=0,...,N−1

(L(pn; y)− L(x; qn+1)).

On the other hand, the Lagrangian is convex in its first and concave in its second
component, so

1

N

N−1∑
n=0

(L(pn; y)− L(x; qn+1)) ≥ L

(
1

N

N−1∑
n=0

pn; y

)
− L

(
x;

1

N

N−1∑
n=0

qn+1

)
.
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F.4 Learning an optimization solver

Most optimization problems are solved using iterative methods, akin to the ones
presented in Sections F.2 and F.3. However, the number of iterations it takes in
order for the algorithm to converge is in general hard to predict, which creates
problems in time-critical applications. In these situations one could instead consider
only doing a predefined fixed number n of iterations. A natural question that arises
in response to this is: what parameter values in the optimization solver give the
best improvement of the objective function in n iterations? This question leads to a
meta-optimization over optimization solvers. Moreover, in general we are not only
interested in optimizing one single cost function, but rather a (potentially infinite)
family {Fθ}θ∈Θ of cost functions, each with a minimizer x̄θ. Hence, to make the
question precise one needs to specify which family of optimization solvers one is
considering, which is the family of cost functions of interested, and what is meant
with “best improvement”.

One such question was raised in [22], where the authors consider the worst-case
performance supθ∈Θ

[
Fθ(xn)− Fθ(x̄θ)

]
of gradient-based algorithms over the set of

continuously differentiable functions with Lipschitz-continuous gradients, and with
a uniform upper bound on the Lipschitz constants. Subsequent work along the same
lines can be found in [30, 47].

The idea of optimizing over optimization solvers has also been considered from a
machine learning perspective. This has for example been done using reinforcement
learning [34], and using unsupervised learning [26, 7]. In the latter category, one
looks for algorithm parameters which minimize the expected value of the difference
in objective function value,

Eθ
[
Fθ(xn)− Fθ(x̄θ)

]
= Eθ

[
Fθ(xn)

]
− Eθ

[
Fθ(x̄θ)

]
(F.4.1)

where Θ is endowed with a probability measure and xn is the output of the algorithm
after n iterations. However, optimizing (F.4.1) with respect to the parameters of
the method is independent of the optimal points {x̄θ}θ∈Θ, thus, this translates into
unsupervised learning, i.e., the cost function Eθ

[
Fθ(xn)

]
does not depend on x̄θ. In

this setting, [7] restricts attention to an architecture that operates individually on
each coordinate of x. This is done in order to limit the number of parameters in the
algorithm, which otherwise would grow exponentially with the dimension of x. To
overcome this, we use an approach similar to [26], where the network architecture
is inspired by modern first-order optimization solvers for nonsmooth problems, as
presented in Sections F.2 and F.3. Similar ideas have also recently been explored
for supervised learning in inverse problems in [49, 3, 4, 36, 44, 5, 27].
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σn

−
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Figure F.1: Gradient descent.

Unrolled gradient descent as a neural network

Before we define the architecture considered in this work, we first present an
illustrative example. To this end, consider the optimization problem

min
x

F (x).

We assume that F is smooth, which means that the problem can be solved using a
standard gradient descent algorithm, i.e., by performing the updates

xk = xk−1 − σk∇F (xk).

The gradient descent algorithm contains a set of parameters that need to be selected,
namely the step length for each iteration, σk. This is normally done via the Goldstein
rule or backtracking line search (Armijo rule) [12], which under suitable conditions
ensures convergence to the optimal point x̄.

However, if we only run the algorithm for a fixed number n of steps, the gradient
descent algorithm can be seen as a feedforward neural network, as shown in Figure F.1.
Each layer in the network performs the computation xk−1 − σk∇F (xk−1) and the
parameters of the network are [σ1, . . . , σn]. Moreover, if the step length is fixed
to be the same in all iterations, i.e., σ1 = . . . = σn = σ for some σ, the gradient
descent algorithm can in fact be interpreted as a recurrent neural network. In both
cases, for a given family {Fθ}θ∈Θ of cost functions the network parameter(s) can
be trained (optimized) by minimizing Eθ

[
Fθ(xn)], where xn is the output of the

network in Figure F.1. For simple cases this can be done analytically.

Example F.4.1. Consider the family (Fb)b of functions Fb : Rn → R given by
Fb(x) = 1

2x
>Ax− b>x, where A ∈ Rn×n is a (fixed) symmetric and positive definite

matrix. The minimum of Fb is given by x̄b = A−1b. Denote by Λσ the result of
taking a gradient step of length σ > 0, i.e.,

Λσ(x) = x− σ∇Fb(x) = x− σ(Ax− b), x ∈ Rn.
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Let x0 ∈ Rn be an arbitrary starting point of the iteration. This gives

Fb(Λσ(x0)) = Fb(x0 − σ(Ax0 − b))

=
1

2
(x0 − σ(Ax0 − b))>A(x0 − σ(Ax0 − b))− b>(x0 − σ(Ax0 − b))

=
σ2

2
(Ax0 − b)>A(Ax0 − b)− σ ‖Ax0 − b‖2 + Fb(x0).

Let b be a random variable distributed according to b ∼ P for some probability
distribution P with finite first and second moments. Finding a σ that minimizes
the expectation

Eb∼P

[
Fb(Λσ(x0))

]
=
σ2

2
Eb∼P

[
(Ax0 − b)>A(Ax0 − b)

]
− σ Eb∼P

[
‖Ax0 − b‖2

]
+ Eb∼P

[
Fb(x0)

]
,

is a quadratic problem in one variable, and the optimal value of σ is thus

σ =
Eb∼P

[
‖Ax0 − b‖2

]
Eb∼P

[
(Ax0 − b)>A(Ax0 − b)

]
=
‖Ax0‖2 − 2(Ax0)> Eb∼P

[
b
]

+ Eb∼P

[
‖b‖2

]
x>0 A

3x0 − 2(A2x0)> Eb∼P
[
b
]

+ Eb∼P

[
b>Ab

] .
In some particular cases this expression can be simplified. For example if A = I,
then σ = 1 as expected. Or if x0 = 0, then σ = Eb∼P [‖b‖2]/Eb∼P [b>Ab].

Parametrizing a family of optimization algorithms

Similarly to the considerations for the unrolled gradient descent scheme above, for
a fixed number of iterations one can consider the optimization algorithms (F.2.8),
(F.2.9) and (F.3.16) as neural networks, where the variables we want to train are
the parameters of the optimization methods. Optimizing these parameters with
respect to the constraints corresponding to each algorithm is effectively trying to
find optimal parameters for the corresponding algorithm for a given family of cost
functions. However, if one only intends to do a finite number of iterations one
could also remove this constraint, and thereby enlarge the space of schemes one is
optimizing over.

As noted in Section F.3, all of the above mentioned optimization algorithms can
be written on the form (F.3.1). That means that optimizing over the parameters
in (F.3.1) can be seen as optimizing over a space of schemes that includes all three
algorithms. Now, introducing the intermediate states wn = a11qn + a12yn and

253



Paper F

vn+1 = c11pn + c12xn, and the 2× 2 matrices A,B,C,D, the scheme (F.3.1) can
be written as[

wn
yn+1

]
= (A⊗ Id) diag(ProxσG∗ , Id) (B ⊗ Id)

[
Lvn
yn

]
[
vn+1

xn+1

]
= (C ⊗ Id) diag(ProxτF , Id) (D ⊗ Id)

[
L∗wn
xn

]
,

(F.4.2)

where the parameters of the scheme are the elements of the matrices. Here, by ⊗
we denote the Kronecker product, and by diag(A,B, . . .) we denote the diagonal
operator with the operators A,B, . . . on the diagonal. Connecting this with the
previous optimization algorithms, the PDHG algorithm (F.2.8) is obtained by setting

A =

[
1 0
1 0

]
, B =

[
σ 1
0 1

]
, C =

[
1 + θ −θ

1 0

]
, D =

[
−τ 1
0 1

]
,

the primal-dual Douglas-Rachford algorithm (F.2.9) by taking

A =

[
λn 1− λn
λn 1− λn

]
, B =

[
σ 1
0 1

]
, C =

[
2 −1
λn 1− λn

]
, D =

[
−τ 1
0 1

]
,

and the proposed algorithm from Section F.3 by setting

A =

[
a21 1− a21

a21 1− a21

]
, B =

[
σ 1
0 1

]
, C =

[
1 + c21

a21
− c21
a21

c21 1− c21

]
, D =

[
−τ 1
0 1

]
.

Considering (F.4.2) as a neural network, the structure can easily be extended in
order to incorporate more memory in the network. In this work we assume that the
computationally expensive part of the algorithm is the evaluation of the operator L
and its adjoint, which is typically the case in inverse problems in imaging, e.g., in
three-dimensional CT [39, 40]. Therefore, the extension presented here thus keeps
one evaluation L and one evaluation of L∗ in each iteration.

To this end, let N be the number of primal variables x1, . . . , xN ∈ X and M
be the number of dual variables y1, . . . , yM ∈ Y. Introducing the four sequences of
matrices An,Bn ∈ RM×M and Cn,Dn ∈ RN×N , the iterations in (F.4.2) can be
extended to yield the following algorithm.

Algorithm F.4.2. Choose parameters An,Bn ∈ RM×M and Cn,Dn ∈ RN×N ,
stepsizes σ, τ > 0, and starting points x1

0, . . . , x
N
0 ∈ X , y2

0 , . . . , y
M
0 ∈ Y. For all
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n = 1, 2, . . ., calculate
y1
n+1

y2
n+1
...

yMn+1

 = (An ⊗ Id) diag(ProxσG∗ , Id
M−1) (Bn ⊗ Id)


Lx1

n

y2
n
...
yMn

 ,

x1
n+1

x2
n+1
...

xNn+1

 = (Cn ⊗ Id) diag(ProxτF , Id
N−1) (Dn ⊗ Id)


L∗y1

n+1

x2
n
...
xNn

 .
Remark F.4.3. For the more general formulation of (F.1.1), more specialized network
architectures than the one resulting from the choice (F.2.3) are possible, which
handle the dual spaces separately instead of using the same stepsize σ and matrices
An andBn for all of them. An alternative network in the spirit of, e.g., [13, Theorem
2], to solve (F.1.1) reads as follows.

Algorithm F.4.4. Choose parameters An,i,Bn,i ∈ RM×M , for i = 1, . . . ,m, and
Cn,Dn ∈ RN×N , stepsizes σ1, . . . , σm, τ > 0, and starting points x1

0, . . . , x
N
0 ∈ X ,

y2
0,i, . . . , y

M
0,i ∈ Yi, i = 1, . . . ,m. For all n = 1, 2, . . ., calculate

y1
n+1,i

y2
n+1,i

...
yMn+1,i

 = (An,i ⊗ Id) diag(ProxσiG∗i
, IdM−1) (Bn,i ⊗ Id)


Lix

1
n

y2
n,i
...
yMn,i

 ,
i = 1, . . . ,m,

x1
n+1

x2
n+1
...

xNn+1

 = (Cn ⊗ Id) diag(ProxτF , Id
N−1) (Dn ⊗ Id)


∑m
i=1 L

∗
i y

1
n+1,i

x2
n
...
xNn

 .
(F.4.3)

Extension to forward-backward-forward methods

Some methods in the literature, so called forward-backward-forward methods, include
an extra evaluation of the operator and its adjoint per iteration, see, e.g., [21, 14, 16].
However, since the evaluation of the linear operator is assumed to be the expensive
part in our setting, if we allow for two iterations in our framework to complete one
iteration in such a framework, our proposed algorithm contains, e.g., [16, Equation
(3.1)]. Letting · denote an element that can take any value, one such set of matrices
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is given by

A2n =

0 0 1
· · ·
1 0 0

 , B2n =

γn 0 1
· · ·
0 0 1

 ,
C2n =

1 0 −1
· · ·
1 1 0

 , D2n =

−γn 0 1
γn 0 0
0 0 1

 ,
for the even iterations and

A2n+1 =

0 1 0
· · ·
0 0 1

 , B2n+1 =

 · · ·
0 0 1
γn 0 1

 ,
C2n+1 =

0 0 1
· · ·
0 0 1

 , D2n+1 =

 · · ·
· · ·
−γn 0 1

 ,
for the odd iterations.

Remark F.4.5. Other forward-backward-forward methods have been proposed in the
literature, some of which are general enough to include the PDHG as a special case
[28], or both the PDHG and the Douglas-Rachford algorithm as special cases [33].
However, these methods include a step-length computation in their updates. This
computation involves evaluating the norm of current iterates, which is not possible
to achieve by only doing the linear operations we propose. Of course, allowing the
matrix elements to be nonlinear functions of the states would allow us to incorporate
also these methods, however, that is beyond the scope of this article.

F.5 Application to inverse problems and numerical
experiments

As we briefly outline next, optimization problems of the type in (F.1.1) arise when
solving ill-posed inverse problems by means of variational regularization.

The goal in an inverse problem is to recover parameters characterizing a system
under investigation from indirect observations. This can be formalized as the task
of estimating (reconstructing) model parameters, henceforth called signal, ftrue ∈ X
from indirect observations (data) g ∈ Y where

g = A (ftrue) + δg. (F.5.1)

In the above, X and Y are typically Hilbert or Banach spaces, and A : X → Y
(forward operator) models how a given signal gives rise to data in absence of noise.
Furthermore, δg ∈ Y is a single sample of a Y -valued random element that represents
the noise component of data.
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A natural approach for solving (F.5.1) is to minimize a function R : X → R
(data discrepancy functional) that quantifies the miss-fit in data space. Since this
function needs to incorporate the aforementioned forward operator A and the data
g, it is often of the form

R(f) := L (A (f), g) for some L : Y × Y → R.

If L is the negative data log-likelihood, then minimizing f 7→ R(f) corresponds to
finding a maximum likelihood solution to (F.5.1).

However, finding a minimizer toR is an ill-posed problem, meaning that a solution
(if it exists) is discontinuous with respect to the data g. Variational regularization
addresses this issue by introducing an additional function S : X → R (regularization
functional) that encodes a priori information about ftrue and penalizes undesirable
solutions [25]. This results in an optimization problem

min
f∈X

[
λR(f) + S(f)

]
,

which from a statistical perspective can be interpreted as trying to find a maximum
a posteriori estimate [29]. A common choice of regularization functional, especially
for inverse problems in imaging, is the total variation (TV) regularization S(f) :=
‖∇f‖1, but several more advanced regularizers have also been suggested in the
literature, typically exploiting some kind of sparsity using an L1-like norm [18].

In this section, we consider an inverse problem in computerized tomography. To
this end, let A be the Radon transform and consider TV regularization. This means
that we are interested in minimizing

Hb(x) = ‖A (x)− b‖22 + λ ‖∇x‖1 , (F.5.2)

i.e., a family of objective functions that is parametrized by the data b. This means
that we can apply the ideas from Section F.4 on learning an optimization solver.

Implementation and specifications of the training

We train and evaluate several of the algorithms described in this article on a clinically
realistic data set, namely simulated data from human abdomen CT scans as provided
by Mayo Clinic for the AAPM Low Dose CT Grand Challenge [37]. Examples of
two-dimensional phantoms from this data set are given in Figure F.2. Throughout
all examples, the size of the image x is 512 × 512 pixels, and the regularization
parameter λ > 0 is fixed. The Radon transform A used in this example is sampled
according to a fan-beam geometry [39] and the data is generated by applying A to
the phantoms and then adding 5% white Gaussian noise. Examples of such data
(sinograms) are also shown in Figure F.2.

Problem (F.5.2) is obtained from (F.1.1) by setting F (x) := 0 for all x,

L1x := A (x), L2x := ∇x,

G1(y1) := ‖y1 − b‖22 , G2(y2) := ‖y2‖1 ,
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Figure F.2: The top row shows three examples of phantoms used for generating data.
These phantoms take values between [0.0, 3.25], but all images are shown using
a window set to [0.8, 1.2] in order to enhance contrast of clinically more relevant
details. The lower row shows corresponding simulated, noisy sinograms.

and all the proximal operators are implemented in ODL [2]. If not stated otherwise,
we use (F.2.3) to reduce (F.1.1) to (F.2.2).

For each algorithm, the number of unrolled iterations, corresponding to the
depth of the network, was set to nmax = 10, and all evaluations have been done
with this depth. However, in order to heuristically induce better stability of the
general schemes, we have trained using a stochastic depth as follows: In each
step of the training, the depth of the network has been set to the outcome of
the heavy-tailed random variable nmax = min

[
round(8 + Z), 100

]
, where Z is the

exponential of a Gaussian random variable with standard deviation 1.25 and mean
value log (2)− 1.252/2, so that E[Z] = 2. The limitation to 100 iterations is due to
limits in computational resources.

In order to improve stability and generalization properties of the trained networks,
we have normalized the operators before training, i.e., rescaled them so that ‖A‖2 =
‖∇‖2 = 1. For the same reasons, we have used the zero vector as initial guess for
all networks. Training has been done using the Adam solver [31], with standard
parameter values except for β2 = 0.99. Moreover, we have used gradient clipping to
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limit the norm of the gradient of the training cost function (F.4.1) to be less than
or equal to one [43]. As step length (learning rate) we have used a cosine annealing
scheme [35], i.e., a step length which in step t takes the value

ηt =
η0

2

(
1 + cos

(
π

t

trmmax

))
,

where the initial step length η0 has been set to 10−3. We have trained for tmax =
100 000 steps and have used 9 out of 10 phantoms from the AAPM Low Dose CT
Grand Challenge for training and one for evaluation.

All algorithms have been implemented using ODL [2], the GPU accelerated
version of ASTRA [42, 48], and Tensorflow [1]. The source code to replicate the
experiments is available online, where the weights of the trained networks are also
explicitly given.3 We have used this setup to train the following methods.

PDHG method. This corresponds to optimal selection of the parameters θ, τ ,
and σ for the PDHG method (F.2.8) on the family of cost functions (F.5.2).
In order to achieve this, we need to enforce the constraints θ ∈ [0, 1] and

στ ‖L‖2 < 1. This has been done implicitly by a change of variables, namely
by

θ =
es1

1 + es1
, τ =

1

‖L‖
· es2+s3

1 + es2
, σ =

1

‖L‖
· es2−s3

1 + es2
(F.5.3)

with s1, s2, s3 ∈ R. Here, s2 determines how close the parameters σ and τ are
to the constraint στ ‖L‖2 < 1, while s3 determines the trade-off between τ
and σ.

PDHG method without constraints on the parameters. Here we train the
same parameters θ, τ, σ as in the PDHG method. However, we do not make
the change of variables (F.5.3), therefore, no constraints on θ, τ , and σ are
enforced in the training. This means that the resulting scheme might not
correspond to a globally convergent optimization algorithm.

Proposed method from Section F.3. This corresponds to optimal parameter
selection for the method (F.3.16) on the family of cost functions (F.5.2). To
adhere to the constraints in the assumptions in Theorem F.3.1, we have used
the same kind of variable change as in (F.5.3), namely

a21 =
2es1

1 + es1
, c21 =

2es2

1 + es2
, σ =

K

‖L‖
· es3−s4

1 + es3
, τ =

K

‖L‖
· es3+s4

1 + es3

with s1, . . . , s4 ∈ R, where K =
a221(2−a21)(2−c21)

(a21+c21−a21c21)2
, as in (F.3.7).

3https://github.com/aringh/data-driven_nonsmooth_optimization

259

https://github.com/aringh/data-driven_nonsmooth_optimization


Paper F

Table F.1: Loss function values for the CT reconstruction after 10 iterations. The
values given are of the form 1

100

∑100
i=1Hbi(x10)−Hbi(x

∗
i ), i.e., the difference of the

obtained objective function value and an estimate of the true minimum objective
function value Hbi(x

∗
i ) corresponding to data bi, averaged over 100 samples.

Method Loss function values

PDHG with parameters from [46] 109.93
Trained PDHG with constraints on parameters 82.381
Trained solver (F.3.16) 24.183
Trained PDHG without constraints on parameters 27.761
Trained scheme of type (F.4.3) with N = M = 2 20.024
Trained scheme of type (F.4.3) with N = M = 3 14.905

Parametrization proposed in Section F.4. Here, we have trained schemes of
the form (F.4.3). We have done this for constant sequences of matrices A1,
A2, B1, B2, C, and D. We restricted ourselves to the sizes N = M = 2 and
N = M = 3.

Performance of the trained methods

To obtain an estimation of the true optimal value of (F.5.2), we have run 1 000
iterations of PDHG with parameters as in [46]. In Table F.1 we show the difference
between the obtained objective function value and the minimal objective function
value, averaged over 100 samples. As can be seen, the scheme proposed in Section F.4
with N = M = 3 performs best at 10 iterations. Moreover, a general trend seems to
be that more parameters in the algorithms improve the performance. Finally, the
results from one specific phantom are presented as reconstructions in Figure F.3.
Note that the reconstruction by PDHG with parameters as in [46] is left out due to
the page layout.

Generalization to other iteration numbers

Figure F.4 shows the objective function value (F.5.2) as a function of the iteration
number, i.e., how well the learned algorithms generalize to iteration numbers they
are not trained for. For the trained, convergent solvers, the objective function value
keeps decreasing as expected. Furthermore, the solver proposed in (F.3.16) performs
better than the others also when the number of iterations are increased, but poorer
in the beginning. For the other schemes, it can be noted that, while training more
parameters seems to increase the performance after 10 iterations, it also seems to
decrease the generalizability of the algorithm with respect to an increase in the
number of iterations.
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(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (F.3.16).

(d) Trained PDHG without con-
straints on parameters.

(e) Trained scheme of type
(F.4.3) with N = M = 2.

(f) Trained scheme of type
(F.4.3) with N = M = 3.

Figure F.3: Reconstruction with data from a phantom that was not used in the
training. The TV reconstruction, to which they should be compared, is shown in
F.3a. All reconstructions use 10 steps. The phantom takes values between [0.0, 2.33],
but all images are shown using a window set to [0.8, 1.2] in order to enhance contrast
of clinically more relevant details.

Generalization to deblurring

Next, we investigate the generalizability of the trained networks to other optimization
problems by replacing the forward operator A in (F.5.2) with a convolution. This
corresponds to another TV problem in imaging, namely image deblurring.

Clearly, the trained networks that correspond to optimization solvers with
convergence guarantees can be applied to other convex optimization problems.
(Note that we still normalize the operators to have operator norm one so that the
assumptions in Theorem F.3.1 do not change.) However, nothing guarantees that
parameters that give fast convergence on one type of problems will also give fast
convergence on another one.

Two example images are shown in Figure F.5. The images in Figure F.5d–F.5f,
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Figure F.4: The figure shows the values 1
100

∑100
i=1Hbi(xn)−Hbi(x

∗
i ), where Hbi(x

∗
i )

is an estimate of the true minimum objective function value corresponding to data
bi, of several reconstruction methods as a function of the iteration number n. Solid
lines are real optimization solvers, dotted lines are schemes that might not converge
to the true optimal solution. (i) PDHG with parameters as in [46], (ii) PDHG
with trained parameters with constraints, (iii) proposed solver (F.3.16) with trained
parameters, (iv) PDHG with trained free parameters, (v) proposed scheme (F.4.3)
with N = M = 2, and (vi) proposed scheme (F.4.3) with N = M = 3.

corresponding to the “Raccoon” test image, are of size 1024×768 and use a different
regularization parameter. Blurring has been done with Gaussian kernels. For the
“Ascent” test image, the kernel has a standard deviation of approximately three
pixels in each direction, whereas for the “Raccoon” test image, the kernel has a
standard deviation of approximately four pixels in the up-down and six pixels in
the left-right direction. As for the sinograms in the CT example, 5% white noise
has been added to the blurred images. Again, to obtain an estimation of the true
optimal value of we have run 1 000 iterations of PDHG with parameters as in [46].
For each algorithm, the difference between the obtained objective function value
and minimal objective function value is presented in Table F.2, and the deblurred
images are shown in Figures F.6 and F.7. Again, the reconstruction by PDHG with
parameters as in [46] is left out due to the page layout.

The method with N = M = 3 does not generalize well. However, the method
with N = M = 2 generalizes, and the optimization algorithm from Section F.3, with
trained parameters, is one of the best on these two test problems.
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(a) “Ascent” test image. (b) Blurred, noisy image. (c) TV reconstruction.

(d) “Raccoon” test image. (e) Blurred noisy image. (f) TV reconstruction.

Figure F.5: Example images used for the deblurring problem in Section F.5.

Table F.2: Loss function values for the deblurring problem in Section F.5. Here,
Hbi(x

∗
i ) is an estimate of the true minimum objective function value corresponding

to data bi.

Method Hbi(x10)−Hbi(x
∗
i )

Ascent Raccoon

PDHG with parameters from [46] 5.514 11.475
Trained PDHG with constraints on parameters 4.256 8.5126
Trained solver (F.3.16) 2.173 4.5898
Trained PDHG without constraints on parameters 2.204 4.4790
Trained scheme of type (F.4.3) with N = M = 2 3.514 9.9139
Trained scheme of type (F.4.3) with N = M = 3 208.37 873.33
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(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (F.3.16).

(d) Trained PDHG without con-
straints on parameters.

(e) Trained scheme of type
(F.4.3) with N = M = 2.

(f) Trained scheme of type
(F.4.3) with N = M = 3.

Figure F.6: Reconstructions with the trained algorithms for the “Ascent” image.

F.6 Conclusions and future work

In this work, we have first proposed a new solver for maximally monotone inclusion
problems and proved convergence guarantees. In particular, we have also proposed
a new convergent primal-dual proximal solver for convex optimization problems.
Further, we have investigated new aspects of learning an optimization solver. This
is particularly relevant in inverse problems where one can parametrize the objective
function by data, leaving the other parts unchanged. This can, in fact, also be
interpreted as learning a pseudo-inverse of the forward operator in an unsupervised
fashion. Moreover, the framework admits enforcing convergence and stability proper-
ties in the learning. We should emphasize that this implies a form of generalizability
to other data, and even other forward operators, since the scheme cannot diverge.

There are several different directions in which the work from this article can be
extended: Regarding the optimization perspective, one could investigate whether
(F.3.8) can be further relaxed to introduce more free parameters while retaining
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(a) TV reconstruction. (b) Trained PDHG with con-
straints on parameters.

(c) Trained solver (F.3.16).

(d) Trained PDHG without con-
straints on parameters.

(e) Trained scheme of type
(F.4.3) with N = M = 2.

(f) Trained scheme of type
(F.4.3) with N = M = 3.

Figure F.7: Reconstructions with the trained algorithms for the “Raccoon” image.

convergence, e.g. by relaxing (F.3.6) or letting parameters vary in each iteration.

Also from a machine learning perspective, there are aspects to be further investi-
gated:

• Since accelerated first-order algorithms like FISTA [11] can be parametrized
by (F.4.3), does the learning result in a scheme with O

(
1/n2

)
convergence

rate for the objective function values when trained for n iterations?

• Our numerical experiments suggest that training without “convergence con-
straints” gives the network more freedom and thereby improves accuracy.
However, the resulting schemes seem to be unstable beyond the fixed number
of iterates used for training. Is it true that, in general, convergence cannot be
enforced by training alone?

• Is it possible to state and prove a time accuracy trade-off theorem, i.e., to
estimate the error between the trained solver and the true solution to the
optimization? If so, which properties of the underlying family of objective
functions (training data) does this require?
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