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Introduction

We will only look at feasibility, no optimization.
We look at the Ellipsoid algorithm for solving SDP.

I Needs a polynomial time separation oracle for the constraints.
PSD-ness constraint has a polynomial time separation oracle.

I Needs technical assumptions on solution space.
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Technical assumptions for Ellipsoid algorithm

V = feasible region for a given convex optimization problem.
Parameters:

1. R: radius of initial L2-norm ball containing V

2. r : number such that

V 6= ∅ ⇐⇒ V contains some L2-norm ball of radius r



Ellipsoid algorithm

Ellipsoid algorithm:

I Start with the ball of size R (initial ellipsoid).

I Repeatedly find a violated constraint for the center, and
construct the next ellipsoid based on that.

Termination:

1. Center of ellipsoid is feasible.

2. Volume gets too small, so there is no solution.

The Ellipsoid algorithm runs in time polynomial in log(R/r).
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Ellipsoid algorithm running time

For linear programming, let

L = the total number of bits in all coefficients together

Can always take, without loss of generality, R = O(2L).
Usually however, r = 0.
Can modify the problem by changing

aix = bi =⇒ −ε ≤ aix − bi ≤ ε

for small enough ε.
Therefore, running time on LP is polynomial in L.



Degree-d SOS running time

Degree-d SOS can typically be formulated in nO(d) bits.
So L = nO(d), but what are r and R?
The paper gives an example where every SOS proof has very large
coefficients:

Very large = 2Ω(2n)

If we start with an ellipsoid centered at 0, then R = 2Ω(2n).
It seems that r = 0 (?)



Preliminary observation

SDP solutions can need doubly exponential coefficients:

x1 = 2, xi+1 = x2
i ∀i

Solution:

xn = 22n−1



The example with large coefficients

Given the constraints

2x1y1 = y1, 2x2y2 = y2, 2x3y3 = y3, 2xnyn = yn

x2
1 = x1, x2

2 = x2, x2
3 = x3, x2

n = xn

y2
1 = y2, y2

2 = y3, y2
3 = y4, y2

n = 0

Prove that pn(x , y) = x1 + x2 + x3 + . . .+ xn − 2y1 ≥ 0.

Solution by hand

I Solve the second row to get xi ∈ {0, 1} ∀i .
I Solve the third row to get yi = 0∀i .
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Prove that pn(x , y) = x1 + x2 + x3 + . . .+ xn − 2y1 ≥ 0.
How do we show that SOS needs large coefficients?
We focus on degree-2 SOS here.



The example with large coefficients

Given the constraints
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Prove that pn(x , y) = x1 + x2 + x3 + . . .+ xn − 2y1 ≥ 0.

Working “mod the ideal”

Solve
pn(x , y) ≡

∑
j

`j(x , y)2 mod (K )

Where K is the set of equations above and (K ) the generated ideal.
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The example with large coefficients

pn(x , y) ≡
∑
j

`j(x , y)2 mod (K )

1. We ignore the “cross terms” xixj , xiyj and yiyj (i 6= j).
They do not “mix” with the rest through the ideal.

2. `j must have zero constant terms.

Proof
The constant term is of the form

∑
j c

2
j and is not reduced by the

ideal, and pn(x , y) has zero constant term.
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The example with large coefficients

Therefore, if `j =
∑

i aijxi +
∑

i bijyi ,∑
j

`j(x , y)2 ≡
∑
i

(A2
i x

2
i + 2Mixiyi + B2

i y
2
i ) mod (K , crossterms)

where Ai =
√∑

j a
2
ij , Bi =

√∑
j b

2
ij and Mi =

∑
j aijbij .

Note that by Cauchy-Schwarz, |Mi | ≤ AiBi .



The example with large coefficients

The constraints were

2x1y1 = y1, 2x2y2 = y2, 2x3y3 = y3, 2xnyn = yn

x2
1 = x1, x2

2 = x2, x2
3 = x3, x2

n = xn

y2
1 = y2, y2

2 = y3, y2
3 = y4, y2

n = 0

Therefore∑
i

(A2
i x

2
i + 2Mixiyi + B2

i y
2
i ) ≡

∑
i

(A2
i xi + Miyi + B2

i yi+1) mod (K )

where yn+1 = 0.



The example with large coefficients

∑
i

xi − 2y1 ≡
∑
i

(A2
i xi + Miyi + B2

i yi+1) mod (K , crossterms)

Now we can drop the “mod”.
This implies

1. Ai = 1 for all i .

2. M1 = −2.

3. Mi+1 = −B2
i .

Combining this with |Mi | ≤ AiBi , we get B1 ≥ 2 and Bi+1 ≥ B2
i .

Therefore, Bn ≥ 22n−1
.

So, the largest coefficient is doubly exponential.



Part 2: Even approximately

Degree-2 SOS proofs of the approximate version

pn(x , y) ≥ −on(1)

needs coefficients of size 2Ω(2n).
It turns out, we can look at pn(x , y) ≥ −0.01.



Analysis of approximate case

We can still disregard cross-terms xkxk ′ , xkyk ′ and ykyk ′ (k 6= k ′).
But linear functions may have non-zero constant terms.
Therefore, if `j =

∑
i aijxi +

∑
j bijyi + cj ,

∑
`j(x , y)2 becomes∑

i

(A2
i x

2
i + 2Mixiyi + B2

i y
2
i + 2Uixi + 2Viyi ) + C 2

where Ai , Bi and Mi are as before, Ui =
∑

aijcj , Vi =
∑

bijcj ,

and C =
√∑

j c
2
j .
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Analysis of approximate case

∑
i

(A2
i x

2
i + 2Mixiyi + B2

i y
2
i + 2Uixi + 2Viyi ) + C 2 =∑

i

((A2
i + 2Ui )xi + (Mi + 2Vi )yi + B2

i yi+1) + C 2 =∑
xi − 2y1 + 0.01

1. C 2 = 0.01,

2. A2
i + 2Ui = 1∀i ,

3. M1 + 2V1 = −2,

4. Mi+1 + 2Vi+1 = −B2
i ∀i .



Analysis of approximate case

1. C 2 = 0.01,

2. A2
i + 2Ui = 1∀i ,

3. M1 + 2V1 = −2,

4. Mi+1 + 2Vi+1 = −B2
i ∀i .

5. C = 0.1 and |Ui | ≤ 0.1Ai , |Vi | ≤ 0.1Bi .

6. A2
i − 0.2Ai ≤ 1 =⇒ Ai ≤ 1.2∀i .

7. |M1| ≥ 2− 0.2B1.

8. |Mi+1| ≥ B2
i − 0.2Bi+1 ∀i .

Now combine with |Mi | ≤ AiBi ≤ 1.2Bi to get

1. 1.2B1 ≥ 2− 0.2B1.

2. 1.2Bi+1 ≥ B2
i − 0.2Bi+1 ∀i .

So Bi ≥ 1.4(2/1.42)2i−1
, which is doubly exponential.
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Analysis of approximate case: Archimedean constraints

The paper goes on to show that after adding the constraints
x2
i ≤ 1 and y2

i ≤ 1, we still need doubly-exponential coefficients.



SOS with only booleanness constraints

If the only constraints are that all variables must be boolean
(x2

i = xi ), then Ellipsoid runs in nO(d) time on the SOS problem.
(up to additive error 2−n

c
for arbitrary constant c)
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