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Part I: Unique Games and Small 
Set Expansion



Review: Unique Games Problem

• Unique Games: Have a graph 𝐺 where we wish 
to assign each vertex 𝑣 of 𝐺 a label l𝑣 ∈ [1, 𝑘]
where 𝑘 is a large constant.

• For each edge (𝑣, 𝑤) in 𝐺, we have a constraint 
specifying that 𝑙𝑤 = 𝜎(𝑙𝑣) where 𝜎 is a 
permutation of [1, 𝑘].

• Goal: Maximize the number of satisfied 
constraints.



Unique Games Picture

𝑣1

𝑣2

𝑣3

In this example, we can 
satisfy two of the three 
costraints.



Review: Unique Games Conjecture

• Unique Games Conjecture (UGC): For all 𝜖 > 0, 
there exists a constant 𝑘 such that it is NP-hard 
to distinguish between the case when at most 
𝜖 of the constraints can be satisfied and the 
case when at least (1 − 𝜖) of the constraints 
can be satsified

• UGC is a central open problem in theoretical 
computer science

• If true, implies optimal inapproximability 
results for MAX CUT and other problems



Expansion of a Graph

• Definition: If 𝐺 is a 𝑑-regular graph on a set of 
𝑛 vertices 𝑉 and 𝑆 ⊆ 𝑉 is a subset of size at 
most 

𝑛

2
, the expansion 𝛷𝐺(𝑆) of 𝑆 is 𝛷𝐺 𝑆 =

|𝐸 𝑆,𝑉∖𝑆 |

𝑑|𝑆|
where 𝐸(𝑆, 𝑉 ∖ 𝑆) is the set of edges 

between 𝑆 and 𝑉 ∖ 𝑆.

• Definition: the expansion of a graph 𝐺 is 𝛷𝐺 =
min

𝑆:0< 𝑆 ≤
𝑛

2

𝛷𝐺(𝑆)



Small Set Expansion Problem

• What if we want to restrict ourselves to 
subsets of a certain small density 𝛿?

• Definition: Define 𝛷𝐺(𝛿) = min
𝑆:
|𝑆|

𝑛
=𝛿

𝛷𝐺(𝑆)

• Gap small set expansion problem (SSE): Given 
small constants 𝜂, 𝛿 > 0 and a graph 𝐺 on 𝑛
vertices, distinguish whether 𝛷𝐺 𝛿 ≥ 1 − 𝜂
or 𝛷𝐺 𝛿 ≤ 𝜂.



Relation between UG and SSE

• One direction: Given a unique games instance 𝐺
where each vertex is involved in the same 
number of constraints, we can form the graph ෡G
whose vertices correspond to pairs (𝑣, 𝑖) where 
𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [1, 𝑘] and whose edges 
correspond to satisfied constraints.

• Call ෡G the label extended graph of 𝐺

• A solution to the unique games instance 
satisfying almost all constraints gives a subset of 
vertices of density 𝛿 =

1

𝑘
with small expansion.



Label Extended Graph Picture

𝑣1

𝑣2

𝑣3



Relation between UG and SSE

• Unfortunately, there could be other sets of the 
same size which have small expansion.

• For example, we could take a subset of 𝑛/𝑘
vertices {vj} and then take all of the pairs 
(𝑣𝑗 , 𝑖).

• Still, this suggests that UG and SSE are closely 
related.



Reduction from SSE to UG

• Theorem [RS10]: There is a reduction from SSE 
to UG.

• Idea: Consider the following game with a verifier 
and two provers. Given a 𝑑-regular graph 𝐺:

1. the verifier chooses k =
1

𝛿
edges 

𝑢1, 𝑣1 , … , (𝑢𝑘 , 𝑣𝑘) at random, sends the 
permuted set (𝑢1, … , 𝑢𝑘) to one prover, and sends 
the permuted set (𝑣1, … , 𝑣𝑘) to the other prover.

2. Each prover chooses one vertex from their set
3. The provers win if they selected some edge 

(𝑢𝑖 , 𝑣𝑖)



Unique Games Instance

• This corresponds to a unique games instance:

• The vertices are possible subsets of 𝑘 vertices sent 
to a prover.

• Each randomly chosen set of 𝑘 edges 
𝑢1, 𝑣1 , … , (𝑢𝑘 , 𝑣𝑘) gives a constraint between the 

vertices (𝑢1, … , 𝑢𝑘) and (𝑣1, … , 𝑣𝑘)



Unique Games Partial Strategy

• Key idea: If there is a set 𝑆 of size 𝛿𝑛 which has small 
expansion, the provers can use the following partial 
strategy:

• If they are given a set which contains precisely one 
vertex in 𝑆, take that vertex. Otherwise, do not 
answer.

• Because of the small expansion of 𝑆, when one 
prover answers, with high probability the other 
prover answers as well and they will be correct.



From Partial to Full Strategies

• In a unique game, we must select a choice for every 
vertex.

• Idea: Play the game multiple times independently 
and allow the provers to choose one game which 
they will play. To win, the provers must choose the 
same game and win it.

• Repeating the game a constant number of times, 
with high probability the provers’ partial strategy will 
work for at least one game (and they can choose the 
first such game)



Soundness

• Also need to show that this unique game is sound, 
i.e. if there is no set of size 𝛿𝑛 with small expansion 
then the provers have no strategy to succeed.

• We won’t discuss this here, see [RS10] for details.



Subexponential Time Algorithm

• Theorem [ABS10]: There is an absolute 
constant 𝑐 such that 

1. There is a 2𝑂(𝑘𝑛
𝜖) time algorithm that takes a 

unique games instance with alphabet size 𝑘
which has a solution satisfying 1 − 𝜖𝑐 of its 
constraints and outputs a solution satisfying 1 −
𝜖 of its constraints.

2. There is a 2
𝑂

𝑛𝜖

𝛿 time algorithm that takes a d-
regular graph 𝐺 such that 𝛷𝐺 𝛿 ≤ 𝜖𝑐 and 
outputs a set of vertices 𝑆′ such that 𝑆′ ≤ 𝛿𝑛
and 𝛷𝐺 𝑆′ ≤ 𝜖



Subexponential Time Algorithm

• For most of the remainder of this lecture, we 
will focus on the subexponential time 
algorithm for SSE

• The subexponential time algorithm for UG is 
an extension of this algorithm.



Part II: Cheeger’s Inequality and 
Threshold Rank



Review: Cheeger’s Inequality

• Cheeger’s inequality: Let 𝐺 be a d-regular 
graph, let 𝐴 be its adjacency matrix, and let 
1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 be the eigenvalues of 
𝐴

𝑑
. Then 

1−𝜆2

2
≤ 𝛷𝐺 ≤ 2(1 − 𝜆2)

• The subexponential time algorithm for SSE can 
be thought of as an analogue of Cheeger’s
inequality which looks at many top 
eigenvalues, not just the second.



Easy Direction of Cheeger’s Inequality

• Proof that 𝛷𝐺 ≥
1−𝜆2

2
:

• Let 𝑆 be the subset of size ≤
𝑛

2
such that 

𝛷𝐺 𝑆 =
|𝐸(𝑆,𝑉∖𝑆)|

𝑑|𝑆|
= 𝛷𝐺 and take 𝑣 to be the 

vector 𝑣𝑖 = 𝑛 − |𝑆| if 𝑖 ∈ 𝑆 and 𝑣𝑖 = −|𝑆| if 𝑖 ∉
𝑆. Note that 𝑣 2 = 𝑛 𝑛 − 𝑆 |𝑆|

• 𝑣 ⊥ 1, so 𝜆2 ≥
𝑣𝑇

𝐴

𝑑
𝑣

𝑣 2



Calculation

• 𝑣𝑇
𝐴

𝑑
𝑣 =

2

𝑑
σ 𝑖,𝑗 ∈𝐸(𝐺) 𝑣𝑖𝑣𝑗

• If 𝐸 𝑆, 𝑉\S were 0, we would have that

𝑣𝑇
𝐴

𝑑
𝑣 = 𝑆 𝑛 − 𝑆 2 + 𝑛 − 𝑆 𝑆 2 = 𝑣 2

• Each edge between 𝑆 and 𝑆 ∖ 𝑉 reduces the 
number of edges within 𝑆 and the number of 
edges within 𝑆 ∖ 𝑉 by 

1

2
, which creates a 

difference of 
1

d
−2 𝑛 − 𝑆 𝑆 − 𝑆 2 − 𝑛 − 𝑆 2 = −

𝑛2

𝑑



Calculation Continued

𝑣𝑇
𝐴

𝑑
𝑣 = 𝑣 2 −

𝑛2 𝐸 𝑆,𝑉∖𝑆

𝑑
= 𝑣 2 −

𝑛

𝑛−|𝑆|
⋅

2𝑛 𝑛− 𝑆 𝑆 𝐸 𝑆,𝑉∖𝑆

𝑑 𝑆
= 𝑣 2(1 −

𝑛

𝑛−|𝑆|
𝛷𝐺(𝑆))

• 𝑣 ⊥ 1, so 𝜆2 ≥ 1 −
𝑛

𝑛− 𝑆
𝛷𝐺 𝑆 ≥ 1 − 2𝛷𝐺(𝑆)



Hard Direction of Cheeger’s Inequality

• Want to show that 𝛷𝐺 ≤ 2(1 − 𝜆2)

• Proof idea: Let 𝑣 be the eigenvector with 
eigenvalue 𝜆2. Show that there exists a cutoff 
value 𝑐 such that if we take 𝑆 = {𝑖: 𝑣𝑖 ≤ 𝑐}

then 𝛷𝐺 𝑆 ≤ 2(1 − 𝜆2)



Threshold Rank

• Definition: Let 𝐺 be a d-regular graph, let 𝐴 be 
its adjacency matrix, and let 1 = 𝜆1 ≥ 𝜆2 ≥

⋯ ≥ 𝜆𝑛 be the eigenvalues of 
𝐴

𝑑
. Given 𝜏 ∈

[0,1), the threshold rank is defined to be 
𝑟𝑎𝑛𝑘𝜏 𝐺 = |{𝑖: 𝜆𝑖 > 𝜏}|

• Example 1: 𝜆0 is the usual rank of 𝐴

• Example 2: For all 𝜏 > 0, with high probability 
𝑟𝑎𝑛𝑘𝜏 𝐺 = 1 for a random graph if there are 
sufficiently many vertices.



Theorem Cases

• Given a small 𝜂 > 0, either 𝑟𝑎𝑛𝑘1−𝜂 𝐺 ≤ 𝑛𝜖

or 𝑟𝑎𝑛𝑘1−𝜂 𝐺 > 𝑛𝜖

• Case I (analogue of the easy direction of 
Cheeger’s inequality): For any set 𝑆 with small 
expansion, there is a corresponding vector 𝑣
which is close to being in the subspace of 
eigenvectors with eigenvalue > 1 − 𝜂. Since 
this subspace has dimension ≤ 𝑛𝜖, we can 
search for an approximation to 𝑣 in 
subexponential time.



Theorem Cases

• Case II (analogue of the hard direction of 
Cheeger’s inequality): If 𝑟𝑎𝑛𝑘1−𝜂 𝐺 > 𝑛𝜖

then we can find a set of vertices 𝑆 of size at 
most 𝛿𝑛 (but it could be much smaller) which 
has small expansion.



Part III: Low Threshold Rank Case



Low Threshold Rank Case

• Theorem 2.2 of [ABS10]: There is a 

2
𝑂 𝑟𝑎𝑛𝑘1−𝜂 𝐺

𝑝𝑜𝑙𝑦(𝑛) time algorithm which 
given 𝜖 > 0 and a graph 𝐺 containing a set 𝑆
such that 𝛷𝐺 𝑆 ≤ 𝜖, outputs a sequence of 
sets, one of which has symmetric difference of 
size at most 8(𝜖/𝜂)|𝑆| with the set 𝑆



Low Threshold Rank Case

• Let 𝑈 be the subspace of eigenvectors of 
𝐴

𝑑
with 

eigenvalue > 1 − 𝜂

• Let 𝑆 be a set of vertices of size 𝛿𝑛 such that 
𝛷𝐺 𝑆 ≤ 𝜖. Take 𝑣 to be the same vector as 
before except normalized so that 𝑣 = 1. In 

other words, 𝑣𝑖 =
(𝑛−|𝑆|)

𝑛|𝑆|(𝑛−|𝑆|)
if 𝑖 ∈ 𝑆 and 𝑣𝑖 =

−|𝑆|

𝑛|𝑆|(𝑛−|𝑆|)
if 𝑖 ∉ 𝑆

• Want to find a vector 𝑣′ in 𝑈 which 𝑣 is close to.



Low Threshold Rank Case

• Write 𝑣 = 1 − 𝛾 𝑢 + 𝛾𝑢⊥ where 𝑢 ∈ 𝑈 and 
𝑢⊥ ∈ 𝑈⊥.

• 𝑣𝑇
𝐴

𝑑
𝑣 = (1 −

𝑛

𝑛− 𝑆
𝜖)

• 𝑣𝑇
𝐴

𝑑
𝑣 = 1 − 𝛾 𝑢𝑇

𝐴

𝑑
𝑢 + 𝛾 𝑢⊥

𝑇 𝐴

𝑑
𝑢 ≤

1 − 𝛾 + 𝛾 1 − 𝜂 = 1 − 𝛾𝜂

• Thus, 𝛾 ≤
𝑛

𝑛− 𝑆
𝜖/𝜂.



Low Threshold Rank Case

• We can find a vector 𝑣′ such that d2 𝑣, 𝑣′ ≤
2𝑛𝜖

𝜂(𝑛−|𝑆|)
using epsilon nets (see next few slides)

• Once we have such a vector 𝑣′, we can obtain a 

set 𝑆′ by taking 𝑖 ∈ 𝑆′ if 𝑣𝑖
′ ≥

𝑛

2
−|𝑆|

𝑛 𝑛− 𝑆 |𝑆|
and 

taking 𝑖 ∉ 𝑆′ if 𝑣𝑖
′ <

𝑛

2
−|𝑆|

𝑛 𝑛− 𝑆 |𝑆|



Low Threshold Rank Case

• Each coordinate where 𝑆, 𝑆′ differ contributes at 
least 

𝑛

4 𝑛− 𝑆 |𝑆|
to d2 𝑣, 𝑣′

• d2 𝑣, 𝑣′ ≤
2𝑛𝜖

𝜂(𝑛−|𝑆|)
so there are at most 

8𝜖

𝜂
|𝑆|

such coordinates.



Epsilon Nets

• Definition: An 𝜖-net for a set 𝑋 is a set of points 
{𝑝𝑖} ⊆ 𝑋 such that ∀𝑥 ∈ 𝑋 ∃𝑖: 𝑑 𝑥, 𝑝𝑖 ≤ 𝜖

𝜖

𝑋



Epsilon Net Existence

• Lemma: For any set 𝑋, there is an epsilon net 
for 𝑋 of size at most 

𝑉(𝑋+𝐵𝜖/2)

𝑉(𝐵𝜖/2)
where 𝐵𝜖/2 is the 

ball of radius 𝜖/2 and 𝑋 + 𝐵𝜖/2 = {𝑝: ∃𝑥 ∈
𝑋: 𝑑 𝑝, 𝑥 ≤ 𝜖/2}

• Proof: We can construct our 𝜖-net greedily. As 
long as there is a point 𝑥 ∈ 𝑋 which is not yet 
covered, take 𝑝𝑖+1 = 𝑥. When we are done, the 
balls of radius 𝜖/2 around each 𝑝𝑖 have zero 
intersection so there are at most 

𝑉(𝑋+𝐵𝜖/2)

𝑉(𝐵𝜖/2)
points in our 𝜖-net.



Finding Epsilon Nets

• How can we find 𝜖-nets?

• If we can sample 𝑋 + 𝐵𝜖/2 at random, the 
probabilistic method gives us a 2𝜖-net with high 
probability (which is just as good as 𝜖 is 
arbitrary).

• In particular, choose each point by sampling a 
point 𝑞′𝑖 randomly from 𝑋 + 𝐵𝜖/2 and then 
locating an arbitrary point 𝑞𝑖 ∈ 𝑋 which is 
within distance 

𝜖

2
of 𝑝𝑖

′.



Finding Epsilon Nets Continued

• Let {𝑝𝑖} be an arbitrary 𝜖-net of 𝑋 of size 𝑚. If 

∀𝑖∃𝑗: 𝑑 𝑞𝑗
′ , 𝑝𝑖 ≤

𝜖

2
then 𝑞𝑗 will be within 

distance 𝜖 of 𝑝𝑖 and thus the ball of radius 2𝜖
around 𝑞𝑗 contains the ball of radius 𝜖 around 
𝑝𝑖 and we have a 2𝜖-net

• With high probability, sampling 

𝑂(
𝑉(𝑋+𝐵𝜖/2)

𝑉(𝐵𝜖/2)
𝑙𝑜𝑔𝑚) points is sufficient



Summary

• Upshot: We can find and enumerate over an 𝜖-
net for the unit ball in dimension 𝑑 =

𝑟𝑎𝑛𝑘1−𝜂(𝐺) in time 
2

𝜖

𝑂(𝑑)
which is 

2𝑂(𝑑𝑙𝑜𝑔(𝜖))



Finding 𝑣′

• If 𝑣 is the vector we wish to approximate and 

we know 𝑣 is distance at most 𝜖′ =
𝑛𝜖

𝜂(𝑛−|𝑆|)

from 𝑈 then take an 𝜖′-net {𝑝𝑖} of 𝑈. Letting 
𝑢 ∈ 𝑈 be the closest point in 𝑈 to 𝑣, take 𝑣′ to 
be an arbitrary 𝑝𝑖 of distance ≤ 𝜖′ from 𝑢.

• 𝑑2 𝑣, 𝑣′ ≤ 2 𝜖′ 2 =
2𝑛𝜖

𝜂(𝑛−|𝑆|)
because 𝑢 − 𝑣

and 𝑣′ − 𝑢) are orthogonal.



Part IV: High Threshold Rank Case



High Threshold Rank  Case

• Theorem 2.3 of [ABS10]: Let 𝐺 be a regular 
graph on 𝑛 vertices such that 𝑟𝑎𝑛𝑘1−𝜂 𝐺 ≥
𝑛100𝜂/𝛾. Then there exists a set of vertices 𝑆 of 
size at most 𝑛1−𝜂/𝛾 such that 𝛷𝐺 𝑆 ≤ 𝛾. 
Moreover, 𝑆 is the level set of a column of 
𝐼𝑑

2
+

𝐴

2𝑑

𝑗
for some 𝑗 ≤ 𝑂(𝑙𝑜𝑔𝑛)



High Threshold Case Intuition

• Want to show that 𝐺 cannot satisfy both:

1.
𝐴

𝑑
has many large eigenvalues

2. All sets 𝑆 of size at most 𝛿𝑛 have expansion which 
is not too small

• Will analyze 𝑡𝑟
𝐴

2𝑑
+

𝐼𝑑

2

𝑘

• Idea #1: If 
𝐴

𝑑
has 𝑚 eigenvalues which are all at 

least 1 − 𝜂 then 𝑡𝑟
𝐴

2𝑑
+

𝐼𝑑

2

𝑘
≥ 𝑚 1 −

𝜂

2

𝑘



High Threshold Case Intuition

• Idea #2: Applying 
𝐴

2𝑑
+

𝐼𝑑

2

𝑘

2
is equivalent to 

taking 
𝑘

2
steps in a lazy random walk where we 

stay put with probability 
1

2
and take a step with 

probability 
1

2
.

1

𝑛
𝑡𝑟

𝐴

2𝑑
+

𝐼𝑑

2

𝑘
=

1

𝑛
σ𝑖 𝑒𝑖

𝑇 𝐴

2𝑑
+

𝐼𝑑

2

𝑘

2 𝐴

2𝑑
+

𝐼𝑑

2

𝑘

2
𝑒𝑖 is 

the probability that two lazy random walks of 
𝑘

2
steps collide.



High Threshold Case Intuition

• Intuition: If every set of size of vertices of size 
≤ 𝛿𝑛 expands by at least 𝜖, then we expect a 

lazy random walk of length 
𝑘

2
to reach a set of 

size at least min{ 1 + 𝜖
𝑘

4, 𝛿𝑛}. Thus, we 
expect 𝑛 times the collision probability to be at 

most max
𝑛

1+𝜖
𝑘
4

,
1

𝛿

• If so, choosing the right value of 𝑘 gives a 
contradiction.



High Threshold Case Intuition

• The intuition is essentially correct, but 
considerable technical work is required to 
obtain a proof.

• For details, see [ABS10]



Part V: Sketch of the Extension to 
Unique Games



Extension to Unique Games

• How can this algorithm be extended to unique 
games?

• If 𝐺 is a unique games instance with low 
threshold rank, consider the label extended 
graph ෠𝐺.

• It can be shown that ෠𝐺 has relatively low 
threshold rank. Letting 𝑆 be the true solution, 
we can apply the subexponential time 
algorithm to find a subset 𝑆′ ≈ 𝑆, which lets us 
recover an almost optimal solution.



High Threshold Rank Case

• What if 𝐺 has high threshold rank?

• Idea: Decompose 𝐺 into pieces so that each 
piece is either small or has low threshold rank 
and there are few edges between different 
pieces. We can then apply the algorithm to 
each piece.

• For details, see [ABS10]



Part V: Open Problems



Open Problems

• What is the exact relationship between UG 
(unique games) and SSE (small set expansion)?

• Major open problem: How well does SOS do 
on UG and SSE?

• Is there a subexponential time algorithm for 
max cut and/or other problems?
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