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Part I: Semidefinite 
Programming, Examples, 

Canonical Form, and Duality



Semidefinite Programming

• Semidefinite Programming: Want to optimize a 
linear function, can now have matrix positive 
semidefiniteness (PSD) constraints as well as 
linear equalities and inequalities

• Example: Maximize 𝑥 subject to 
1 𝑥
𝑥 2 + 𝑥

≽ 0

• Answer: 𝑥 = 2



Example: Goemans-Williamson

• First approximation algorithm using a 
semiefinite program (SDP)

• MAX-CUT reformulation: Have a variable 𝑥𝑖 for 
each vertex i, will set 𝑥𝑖 = ±1 depending on 
which side of the cut 𝑖 is on.

• Want to maximize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)

1−𝑥𝑖𝑥𝑗

2
where 

𝑥𝑖 ∈ {−1, +1} for all 𝑖.



Example: Goemans-Williamson

• Idea: Take 𝑀 so that 𝑀𝑖𝑗 = 𝑥𝑖𝑥𝑗

• Want to maximize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)

1−𝑀𝑖𝑗

2
where 

𝑀𝑖𝑖 = 1 for all 𝑖 and 𝑀 = xxT. 

• Relaxation: Maximize σ𝑖,𝑗:𝑖<𝑗, 𝑖,𝑗 ∈𝐸(𝐺)

1−𝑀𝑖𝑗

2

subject to

1. ∀𝑖, 𝑀𝑖𝑖 = 1

2. 𝑀 ≽ 0



Example: SOS Hierarchy

• Goal: Minimize a polynomial ℎ(𝑥1, … , 𝑥𝑛)
subject to constraints 𝑠1 𝑥1, … , 𝑥𝑛 = 0, 
𝑠2 𝑥1, … , 𝑥𝑛 = 0, etc.

• Relaxation: Minimize Ẽ[ℎ] where Ẽ is a linear 
map from polynomials of degree ≤ 𝑑 to ℝ 
satisfying:
1. Ẽ 1 = 1

2. Ẽ 𝑓𝑠𝑖 = 0 whenever deg 𝑓 + deg 𝑠𝑖 ≤ 𝑑

3. Ẽ 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2



The Moment Matrix

• Indexed by monomials of degree ≤
𝑑

2

• 𝑀𝑝𝑞 = ෨𝐸[𝑝𝑞]

• Each 𝑔 of degree ≤
𝑑

2
corresponds to a vector

• ෨𝐸 𝑔2 = 𝑔𝑇𝑀𝑔

• ∀𝑔, ෨𝐸 𝑔2 ≥ 0 ⇔ 𝑀 is PSD

𝑞

𝑝 Ẽ[pq]

𝑀

p,q are monomials of 

degree at most 
𝑑

2
.



Semidefinite Program for SOS

• Program: Minimize Ẽ[ℎ] where Ẽ satisfies:
1. Ẽ 1 = 1

2. Ẽ 𝑓𝑠𝑖 = 0 whenever deg 𝑓 + deg 𝑠𝑖 ≤ 𝑑

3. Ẽ 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2

• Expressible as semidefinite program using 𝑀:
1. ∀ℎ, Ẽ[ℎ] is a linear function of entries of 𝑀

2. Constraints that Ẽ 1 = 1 and Ẽ 𝑓𝑠𝑖 = 0 give 
linear constraints on entries of 𝑀

3. Ẽ 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2
⬄𝑀 ≽ 0

4. Also have SOS symmetry constraints



SOS symmetry

• Define 𝑥𝐼 = ς𝑖∈𝐼 𝑥𝑖 where 𝐼 is a multi-set

• SOS symmetry constraints: 𝑀𝑥𝐼𝑥𝐽
= 𝑀𝑥

𝐼′𝑥
𝐽′

whenever 𝐼 ∪ 𝐽 = 𝐼′ ∪ 𝐽′

• Example:

1 𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 𝑐 𝑑 𝑓 𝑔 ℎ
𝑏 𝑑 𝑒 𝑔 ℎ 𝑖
𝑐 𝑓 𝑔 𝑗 𝑘 𝑙
𝑑 𝑔 ℎ 𝑘 𝑙 𝑚
𝑒 ℎ 𝑖 𝑙 𝑚 𝑛

1 𝑥 𝑦 𝑥2 𝑥𝑦 𝑦2

1
𝑥
𝑦

𝑥2

𝑥𝑦

𝑦2



Canonical Form

• Def: Define 𝑋⦁𝑌 = σ𝑖,𝑗 𝑋𝑖𝑗𝑌𝑖𝑗 = 𝑡𝑟(𝑋𝑌𝑇) to be 

the entry-wise dot product of 𝑋 and 𝑌

• Canonical form: Minimize 𝐶⦁𝑋 subject to 

1. ∀𝑖, 𝐴𝑖⦁𝑋 = 𝑏𝑖 where the 𝐴𝑖 are symmetric

2. 𝑋 ≽ 0



Putting Things Into Canonical Form

• Canonical form: Minimize 𝐶⦁𝑋 subject to 

1. ∀𝑖, 𝐴𝑖⦁𝑋 = 𝑏𝑖 where the 𝐴𝑖 are symmetric

2. 𝑋 ≽ 0

• Ideas for obtaining canonical form:

1. 𝑋 ≽ 0, 𝑌 ≽ 0⬄
𝑋 0
0 𝑌

≽ 0

2. Slack variables: 𝐴𝑖⦁𝑋 ≤ 𝑏𝑖 ⬄𝐴𝑖⦁𝑋 = 𝑏𝑖 + 𝑠𝑖 , 𝑠𝑖 ≥ 0

3. Can enforce 𝑠𝑖 ≥ 0 by putting 𝑠𝑖 on the diagonal of 
𝑋



Semidefinite Programming Dual

• Primal: Minimize 𝐶⦁𝑋 subject to 

1. ∀𝑖, 𝐴𝑖⦁𝑋 = 𝑏𝑖 where the 𝐴𝑖 are symmetric

2. 𝑋 ≽ 0

• Dual: Maximize σ𝑖 𝑦𝑖𝑏𝑖 subject to 

1. σ𝑖 𝑦𝑖𝐴𝑖 ≼ 𝐶

• Value for dual lower bounds value for primal:

𝐶⦁𝑋 = 𝐶 − σ𝑖 𝑦𝑖𝐴𝑖 ⦁𝑋 + σ𝑖 𝑦𝑖𝐴𝑖 ⦁𝑋 ≥ σ𝑖 𝑦𝑖𝑏𝑖



Explanation for Duality

• Primal: Minimize 𝐶⦁𝑋 subject to 

1. ∀𝑖, 𝐴𝑖⦁𝑋 = 𝑏𝑖 where the 𝐴𝑖 are symmetric

2. 𝑋 ≽ 0

• = min
𝑋≽0

max
𝑦

𝐶⦁𝑋 + σ𝑖 𝑦𝑖 𝑏𝑖 − 𝐴𝑖⦁𝑋

• = max
𝑦

min
𝑋≽0

σ𝑖 𝑦𝑖𝑏𝑖 + (𝐶 − σ𝑖 𝑦𝑖𝐴𝑖)⦁𝑋

• Dual: Maximize σ𝑖 𝑦𝑖𝑏𝑖 subject to 

1. σ𝑖 𝑦𝑖𝐴𝑖 ≼ 𝐶



In class exercise: SOS duality

• Exercise: What is the dual of the semidefinite 
program for SOS?

• Primal: Minimize Ẽ[ℎ] where Ẽ is a linear map 
from polynomials of degree ≤ 𝑑 to ℝ such 
that:

1. Ẽ 1 = 1

2. Ẽ 𝑓𝑠𝑖 = 0 whenever deg 𝑓 + deg 𝑠𝑖 ≤ 𝑑

3. Ẽ 𝑔2 ≥ 0 whenever deg 𝑔 ≤
𝑑

2



In class exercise solution

• Definition: Given a symmetric matrix 𝑄 indexed 
by monomials 𝑥𝐼, we say that 𝑄 represents the 
polynomial

𝑝𝑄 = σ𝐽 σ𝐼,𝐼′:𝐼∪𝐼′=𝐽 𝑄𝑥𝐼𝑥
𝐼′ 𝑥𝐽

• Proposition 1: If 𝑄 ≽ 0 then 𝑝𝑄 is a sum of 

squares. Conversely, if 𝑝 is a sum of squares 
then ∃𝑄 ≽ 0: 𝑝 = 𝑝𝑄

• Proposition 2: If 𝑀 is a moment matrix then 

𝑀⦁𝑄 = Ẽ 𝑝𝑄



In class exercise solution continued

• 𝐶 = 𝐻 where 𝑝𝐻 = ℎ

• Constraint that ෨𝐸 1 = 1 gives matrix 

𝐴1 =
1 0 ⋯
0 0 ⋯
⋮ ⋮ ⋱

and 𝑏1 = 1

• Constraints that ෨𝐸 𝑓𝑠𝑖 = 0 give matrices 𝐴𝑗

where 𝑝𝐴𝑗
= 𝑓𝑠𝑖 and 𝑏𝑗 = 0

• SOS symmetry constraints give matrices 𝐴𝑘
such that 𝑝𝐴𝑘

= 0 and 𝑏𝑘 = 0



In class exercise solution continued

• Recall dual: Maximize σ𝑖 𝑦𝑖𝑏𝑖 subject to 

1. σ𝑖 𝑦𝑖𝐴𝑖 ≼ 𝐶

• Here: Maximize 𝑐 such that

𝑐𝐴1 + σ𝑗 𝑦𝑗𝐴𝑗 + σ𝑘 𝑦𝑘𝐴𝑘 ≼ 𝐻

• This is the answer, but let’s simplify it into a 
more intuitive form.

• Let 𝑄 = 𝐻 − 𝑐𝐴1 + σ𝑗 𝑦𝑗𝐴𝑗 + σ𝑘 𝑦𝑘𝐴𝑘

• 𝑄 ≽ 0



In class exercise solution continued

• 𝐻 = 𝑐𝐴1 + σ𝑗 𝑦𝑗𝐴𝑗 + σ𝑘 𝑦𝑘𝐴𝑘 + 𝑄, 

A1 =
1 0 ⋯
0 0 ⋯
⋮ ⋮ ⋱

, 𝑄 ≽ 0

• View everything in terms of polynomials.

• 𝑝𝐻 = ℎ, 𝑝𝐴1
= 1, 𝑝(σ𝑗 𝑦𝑗𝐴𝑗) = σ𝑖 𝑓𝑖𝑠𝑖 for some 

𝑓𝑖, 𝑝σ𝑘 𝑦𝑘𝐴𝑘
= 0, 𝑝𝑄 = σ𝑗 𝑔𝑗

2 for some 𝑔𝑗

• ℎ = 𝑐 + σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2



In class exercise solution continued

• Simplified Dual: Maximize 𝑐 such that

ℎ = 𝑐 + σ𝑖 𝑓𝑖𝑠𝑖 + σ𝑗 𝑔𝑗
2

• This is a Positivstellensatz proof that ℎ ≥ 𝑐 (see 
Lectures 1 and 5)



Part II: Strong Duality Failure 
Examples



Strong Duality Failure

• Unlike linear programming, it is not always the 
case that the values of the primal and dual are 
the same.

• However, almost never an issue in practice, 
have to be trying in order to break strong 
duality.

• We’ll give this issue its due here then ignore it 
for the rest of the seminar.



Non-attainability Example

• Primal: Minimize 𝑥2 subject to 
𝑥1 1
1 𝑥2

≽ 0

• Dual: Maximize 2𝑦 subject to 

1.
0 𝑦
𝑦 0

≼
0 0
0 1

• Duality demonstration: 

0 0
0 1

−
0 𝑦
𝑦 0

⦁
𝑥1 1
1 𝑥2

= 𝑥2 − 2𝑦 ≥ 0

• Dual has optimal value 0, this is not attainable 
in the primal (we can only get arbitrarily close)



Duality Gap Example

• Primal: Minimize 𝑥2 + 1 subject to 

1 + 𝑥2 0 0
0 𝑥1 𝑥2

0 𝑥2 0
≽ 0

• Dual: Maximize 2𝑦 subject to 
2𝑦 𝑦1 𝑦2

𝑦1 0 −𝑦
𝑦2 −𝑦 𝑦3

≼
1 0 0
0 0 0
0 0 0

• Duality demonstration
1 0 0
0 0 0
0 0 0

−
2𝑦 𝑦1 𝑦2

𝑦1 0 −𝑦
𝑦2 −𝑦 𝑦3

⦁
1 + 𝑥2 0 0

0 𝑥1 𝑥2

0 𝑥2 0
= 𝑥2 + 1 − 2𝑦 ≥ 0



Duality Gap Example

• Primal: Minimize 𝑥2 + 1 subject to 
1 + 𝑥2 0 0

0 𝑥1 𝑥2

0 𝑥2 0
≽ 0

• Has optimal value 1 as we must have 𝑥2 = 0

• Dual: Maximize 2𝑦 subject to 
2𝑦 𝑦1 𝑦2

𝑦1 0 −𝑦
𝑦2 −𝑦 𝑦3

≼
1 0 0
0 0 0
0 0 0

• Has optimal value 0 as we must have 𝑦 = 0.

• Note: This example was taken from Lecture 13, 
EE227A at Berkeley given on October 14, 2008.



Part III: Conditions for strong 
duality



Sufficient Strong Duality Conditions

• How can we rule out such a gap?

• Slater’s Condition (informal): 

– If the feasible region for the primal has an interior 
point (in the subspace defined by the linear 
equalities) then the duality gap is 0. Moreover, if 
the optimal value is finite then it is attainable in the 
dual.

• Also sufficient if either the primal or the dual is 
feasible and bounded (i.e. any very large point 
violates the constraints)



Recall Minimax Theorem

• Von Neumann [1928]: If 𝑋 and 𝑌 are convex 
compact subsets of 𝑅𝑚 and 𝑅𝑛 and 𝑓: 𝑋 × 𝑌 →
𝑅 is a continuous function which is convex in 𝑋
and concave in 𝑌 then 

max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦) = min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• Issue: 𝑋 and 𝑌 are unbounded in our setting.



Minimax in the limit

• Idea: Minimax applies for arbitrarily large 𝑋, 𝑌 so 
long as they are bounded

• Can take the limit as 𝑋, 𝑌 get larger and larger

• Question: Do we bound 𝑋 or 𝑌 first?

• If 𝑋 is bounded first, get primal: min
𝑥∈𝑋

max
𝑦∈𝑌

𝑓(𝑥, 𝑦)

• If 𝑌 is bounded first, get dual: max
𝑦∈𝑌

min
𝑥∈𝑋

𝑓(𝑥, 𝑦)

• If we can show it doesn’t matter which is 
bounded first, have duality gap 0.



Formal Statements

• Def: Define 𝐵 𝑅 = {𝑥: 𝑥 ≤ 𝑅}

• Minimax Theorem: For all finite 𝑅1, 𝑅2
max

𝑦∈𝑌∩𝐵(𝑅2)
min

𝑥∈𝑋∩𝐵(𝑅1)
𝑓(𝑥, 𝑦) = min

𝑥∈𝑋∩𝐵(𝑅1)
max

𝑦∈𝑌∩𝐵(𝑅2)
𝑓(𝑥, 𝑦)

• Let’s call this value 𝑜𝑝𝑡(𝑅1, 𝑅2)

• Primal value: lim
𝑅1→∞

lim
𝑅2→∞

𝑜𝑝𝑡(𝑅1, 𝑅2)

• Dual value: lim
𝑅2→∞

lim
𝑅1→∞

𝑜𝑝𝑡(𝑅1, 𝑅2)

• Sufficient for 0 gap: Show that 
∃𝑅: ∀𝑅1, 𝑅2 ≥ 𝑅, 𝑜𝑝𝑡 𝑅1, 𝑅2 = 𝑜𝑝𝑡(𝑅, 𝑅2)



Boundedness Condition Intuition

• Assume ∃ feasible 𝑥 ∈ 𝐵(𝑅) but when 𝑥 > 𝑅, 
constraints on primal are violated.

• Want to show that ∃𝑅′
∀𝑅1, 𝑅2 ≥ 𝑅′, 𝑜𝑝𝑡 𝑅1, 𝑅2 = 𝑜𝑝𝑡(𝑅′, 𝑅2)

• We are in the finite setting, so we can assume 𝑥
player plays first.

• Intuition: 𝑦 player can heavily punish 𝑥 player 
for violated constraints, so 𝑥 player should 
always choose an 𝑥 ∈ 𝐵(𝑅′).

• Similar logic applies to the dual.



Slater’s Condition Intuition

• Idea: Strictly feasible point 𝑥 shows it is bad for 
𝑦 player to play a very large 𝑦.

• Primal: Minimize ℎ(𝑥) subject to  {𝑔𝑖 𝑥 ≤ 𝑐𝑖}
where the 𝑔𝑖 are convex.

• 𝑓 𝑥, 𝑦 = σ𝑖 𝑦𝑖 𝑔𝑖 𝑥 − 𝑐𝑖 + ℎ(𝑥) (we’ll 
restrict ourselves to non-negative 𝑦)

• Dual: Doesn’t seem to have a nicer form than 

max
𝑦≥0

min
𝑥

σ𝑖 𝑦𝑖 𝑔𝑖 𝑥 − 𝑐𝑖 + ℎ 𝑥



Slater’s Condition Intuition

• Primal: Minimize ℎ(𝑥) subject to  {𝑔𝑖 𝑥 ≤ 𝑐𝑖}

• Dual: max
𝑦≥0

min
𝑥

σ𝑖 𝑦𝑖 𝑔𝑖 𝑥 − 𝑐𝑖 + ℎ 𝑥

• Key observation: If ∀𝑖, 𝑔𝑖 𝑥 < 𝑐𝑖, 𝑥 punishes 
very large 𝑦. Thus, 𝑦 is effectively bounded.



Strong Duality Conditions Summary

• Strong duality may fail for semidefinite 
programs.

• However, strong duality holds if the program is 
at all robust (Slater’s condition is satisfied) or 
either the primal or dual is feasible and 
bounded (any very large point violates the 
constraints)

• Note: working over the hypercube satisfies 
boundedness.



Part III: Solving convex 
optimization problems



Solving Convex Optimization Problems

• In practice: simplex methods or interior point 
methods work best

• First polynomial time guarantee: ellipsoid 
method

• This seminar: We’ll use algorithms as a black-
box and assume that semidefinite programs of 
size 𝑛𝑑 can be solved in time 𝑛𝑂(𝑑).

• Note: Can fail to be polynomial time in 
pathological cases (see Ryan O’Donnell’s note), 
almost never an issue in practice



Usefulness of Convexity

• Want to minimize a convex function 𝑓 over a 
convex set 𝑋.

• All local minima are global minima: If 𝑓 𝑥 <
𝑓(𝑦) then 𝑓(𝑦) is not a local minima as

∀𝜖 > 0, 𝑓 𝜖𝑥 + 1 − 𝜖 𝑦 ≤ 𝜖𝑓 𝑥 + 1 − 𝜖 f(y)

• Can always go from the current point 𝑥 towards 
a global minima.



Reduction to Feasibility Testing

• Want to minimize a convex function 𝑓 over a 
convex set 𝑋

• Testing whether we can achieve 𝑓 𝑥 ≤ 𝑐 is 
equivalent to finding a point in the convex set 
Xc = 𝑋 ∩ {𝑥: 𝑓 𝑥 ≤ 𝑐}

• If we can solve this feasibility problem, we can 
use binary search to approximate the optimal 
value.



Cutting-plane Oracles

• Let 𝑋 be a convex set. Given a point 𝑥0 ∉ 𝑋, a 
cutting-plane oracle returns a hyperplane 𝐻
passing through 𝑥0 such that 𝑋 is entirely on 
one side of 𝐻.

• Intuition for obtaining a cutting-plane oracle: If 
𝑥0 ∉ 𝑋 then there is a constraint 𝑥0 violates. 
This constraint is of the form 𝑓 𝑥0 < 𝑐 where 
𝑓 is convex. 𝑋 must be inside the half-space 

𝛁𝑓 ⋅ 𝑥 − 𝑥0 ≤ 0



Ellipsoid Method Sketch

• Algorithm: Let 𝑋 be the feasible set
1. Keep track of an ellipsoid 𝑆 containing 𝑋

2. At each step, query center 𝑐 of 𝑆

3. If 𝑐 ∈ 𝑋, output 𝑐. Otherwise, cutting-plane oracle 
gives a hyperplane 𝐻 passing through c and 𝑋 is on 
one side of 𝐻. Use 𝐻 to find a smaller ellipsoid 𝑆′.

• Initial Guarantees:
1. 𝑋 ⊆ 𝐵(𝑅) where 𝐵 𝑅 = {𝑥 ∈ 𝑅𝑛: 𝑥 ≤ 𝑅}

2. 𝑋 contains a ball of radius 𝑟.

• Note: Not polynomial time if 
𝑅

𝑟
is 2(𝑛𝜔(1))
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