Lecture 13: SOS Lower Bounds
for Planted Clique Part Il



Lecture Outline
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Minimum Vertex Separators
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* Part V: Approximate PSD Decomposition
* Part VI: Further Work and Open Problems



Part I: Relaxed k-clique Equations
and Theorem Statement



Relaxed Planted Clique Equations

* Flaw in the current analysis: Need to relax the
k-clique equations slightly to make the
combinatorics easier to analyze

* Relaxed k-clique Equations:

x? = x; foralli.

(1 — E)k < Zixl- < (1 + E)k



Planted Clique SOS Lower Bound

e Theorem 1.1 of [BHK+16]: 3¢ > 0 such that if

1 d
k<nZ N logn with high probability degree d
SOS cannot prove that the relaxed k-clique
equations are infeasible.

* Note: For d = 4 there is a lower bound of
ﬁ(\/ﬁ) for the original k-cligue equations.



High Level Idea

* High level idea: Show that it is hard to

distinguish between the random distribution

G (n, %) and the planted distribution where we

put each vertex in the planted clique with
probability %

 Remark: We take this planted distribution to
make the combinatorics easier. If we could
analyze the planted distribution where the
cligue has size exactly k, we would satisfy the
constraint );; x; = k exactly.



Part II: Pseudo-Calibration/Moment
Matching



Choosing Pseudo-Expectation Values

e Last lecture, Pessimist disproved our first
attempt for pseudo-expectation values, the
MW moments.

* How can we come up with better pseudo-
expectation values?



Pseudo-Calibration/Moment Matching

e Setup: We are trying to distinguish between a
random distribution (G (n, %)) and a planted

distribution (G (n, %) + planted clique)

* Pseudo-calibration/moment matching: The
pseudo-expectation values over the random
distribution should match the actual expected
values over the planted distribution in
expectation for all low degree tests.




Review: Discrete Fourier Analysis

* Requirements for discrete Fourier analysis
1. Aninner product

2. An orthonormal basis of Fourier characters

* This gives us Fourier decompositions and
Parseval’s Theorem



Fourier Analysis over the Hypercube

* Example: Fourier analysis on {—1,1}"

* Inner product: f - g = Zinzxf(x)g(x)

* Fourier characters: y4(x) = [l;e4 x;

* Fourier decomposition: f = ), fA X4 Where
fA =1 Xa

* Parseval’'s Theorem: Y., f2 = f - f = ||f]|?



Fourier Analysis over G (n, %)

* Inner product: f - g = EGNG(n%)f(G)g(G)

» Fourier characters: yz(G) = (—1)!F\E(G)I



Pseudo-Calibration Equation

* Pseudo-Calibration Equation:
EG~G(n1) [E[XV] ' XE] — EG~planted dist [XV ' )(E]
2

 We want this equation to hold for all small V
and E



Pseudo-Calibration Calculation

To calculate Egpianted aise |Xv - Xg], first
choose the planted clique and then choose
the rest of the graph

xy = 0ifanyi € Vis not in the planted clique

Elxz(G)] = 0 whenever E is not fully
contained in the planted clique

Def: Define V(E) = {endpoints of edges in F'}
If VUV(E) € planted clique then xy, gz = 1

E)lVUV(E)l

EG~planted dist [Xv - Xgl = (n



Calculation Picture

O o
OO
ol £ O
V4

 |f all the vertices are in the planted clique then
xy xg(G) = 1. Otherwise, either x;;, = 0 (because
ani € VV)is missing or E[xz] = 0 because each
1

edge outside the clique is present with probability >




Fourier Coefficients of E[xy/]

* From the pseudo-calibration calculation,
Elxylg = E ) [E[xv] 'XE] — (E)'VUV(EN
6~G(n3)

n

i i\ VUV (E)]
 We take E[Xv] — ZE:|VUV(E)|SD (5)

where D is a truncation parameter and then
normalize so that E[xg] = E[1] = 1

* Good exercise: What happens if we don’t
truncate at all?



Graph Matrix Decomposition

[V (H)|
* Ignoring the normalization, M = ), (%)

where we sum over ALL H with at most D
vertices which have no isolated vertices outside
of U and V.

Ry



Part Ill: Decomposition of Graph
Matrices via Minimum Vertex
Separators



Proof Sketch

* How can we show M = 0 with high probability?
* High level idea:

1. Find an approximate PSD decomposition M/ %¢t of
M

2. Handle the error M/%¢t — M. Unfortunately, this
error is not small enough to ignore, so we carefully
show that M/ 2t — M < M/t with high
probability. We briefly sketch the ideas for this in
Appendix I. For the full details, see [BHK+16]



Technical Minefield

Not quite correct,
see Appendix Il

This analysis is a technical minefield

Mine handled

* Warning
4

correctly

O Al A A ] A -
—- Al MM MM |0 0 NN
M oA Al =M A AT M A N A
MmN A H A1 AWM N (N M
N AlMM AT NM AN [N
0 vl 0w M AN |-

v vl v - v N[N (-
M= e vt | O | [ OO A DN
AT N A e ANN AN
ﬁﬂlii v NN M
AT [0 o [ 0 A M A
N - W A NM AT MN AN
hadhalhal OO M oA A A A AN

v MM (MmN -
E el [l et et | N[ O[O N A O [t | - |
A D A D A M A N
AlM || M| [ | e A M m
AAlM|N v v v M A
O A O [ O N w v M Alm
v v OO AL M A O [ ) A

0N vl AT AN AN | AN

N A M N | NN N
I IEITE SR IR
e R R I e )
vl | O[O OO0 N AN

ol vl Al [N A M-

O O OO NN N M [N [ M
|- w oA N A M A -
- N - vl | [m|ov My o[
AN AN -




Decomposition via Separators

* How can we handle all of the different Ry?

* Keyidea: Decompose each H into three parts
g,7,0'T based on the leftmost and rightmost
minimum vertex separators S and T of H
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Separator Definitions

* Definition: Given a graph H with
distinguished sets of vertices U and V, a
vertex separator S is a set of vertices such
that any path from U to I/ must intersect S.

e Definition: A leftmost minimum vertex
separator § is a set of vertices such that for
any vertex sepator S’ of minimum size, any
path from U to S’ intersects S.

* Arightmost minimum vertex separator is
defined analogously.



Existence of Minimum Separators

* Lemma 6.3 of [BHK+16]: Leftmost and
rightmost minimum vertex separators
always exist and are unique.



Left, Middle, and Right Parts

* Let S, T be the leftmost and rightmost
minimum vertex separators of H

* Definition: We take the left part o of H to be
the part of H between U and S, we take the
middle part 7 of H to be the part of H
between S and T, and we take the right part
o'! of H to be the part of H between T and V



Conditions on Parts

o,7,0'! satisfy the following:
The unique minimum vertex separator of o is
V, = S (where V; is the right side of o)

The leftmost and rightmost minimum vertex
separatorsof tare U; = S and V, = T (where
U, and I/, are the left and right sides of 7)

The unique minimum vertex separator of o' is
U ;- =T (whereU ,ris the left side of o'l



Approximate Decomposition

.- Claim: If r is the size of the minimum vertex
separator of H,

Ry = RgReR 1

* Idea: There is a bijection between injective
mappings ¢: V(H) — V(G) and injective
mappings ¢,: V(o) = V(G), ¢,:V(z) - V(G),
and ¢5: V(o'") - V(G) such that

1. ¢4,¢, agree on S and ¢,, o5 agreeon T

2. Collectively, ¢4, d,, p3 don’t map two different
vertices of H to the same vertex of




Approximate Decomposition

.- Claim: If r is the size of the minimum vertex
separator of H,

Ry = RgReR 1

* Corollary:

(%)W(H)l R~ ((S)W(m—g Ra> ((S)IV(H)I—T RT> ((%)IV(H)I—E RJJ)
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Intersection Terms

ll- Warning! There will be terms where ¢, ¢,, ¢5
map multiple vertices to the same vertex. We
call these intersection terms.

e We sketch how to handle intersection terms in

Appendix I. For now, we sweep this under the
rug.



Part IV: Attempt #1: Bounding With
Square Terms




Bounding With Square Terms
 How can we handle all of the RJRTRg,T terms?

T
* Oneidea: Can bound RO-RTRO_,T + (RO-RTRO_,T)

as follows.

. (aR(, — bR" 7 RT ) (aR(, — bR" 7 RT )T >0



Bounding With Square Terms
T
. (aR(, — bRT +RT ) (aRG — bRT +RT ) >0
o) )

T
* Rearranging, ab (RO-RTRO_,T + (RGRTR(;,T) ) <

a’RyR% + b*R rRIRR ;v < a’RyRE +
o

bZHRZer RZ,TRG,T




Example

 What square terms would the following Ry be
bounded by (ignoring intersection terms)?

A
RER

S

@

[ NAN

\/\/

@ @
@ @

Ry



Example Answer

* Answer: Take the left part and its mirror
image and take the right part and its mirror
image
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Bounding With Square Terms Failure

* Unfortunately, the coefficients on the square
terms aren’t high enough for this idea to work.

* We need a more sophisticated analysis.



Part V: Approximate PSD
Decomposition



LQL" factorization

- . Al
.- Definition: Define L, = X,y =1 (;) R,
_ k V(D)|-r
and define Q, = X1y |=v.|=r (E) R;

where we require that V; is the unique
minimum vertex separator of o and U, I> are

the leftmost and rightmost mlmm;lm Vertex

separators of 7. Define M/t = 32_ L QL]
d

* Claim: M ~ M7t =32 [,.Q,L7



Claim Justification

d
+ Claim: M ~ M7t =32 1,.Q,L7
* This follows from the decomposition of each

. . . T
H into left, middle, and right parts g,7,06" and
the claim that up to intersection terms,

. (S)W(H)l - ( (%)wmn—g Ra> <(%)|V<H)|—r RT> ((S)W(Hn—g RG,T>




Analysis of Q.

k V(T)|-r
° QT — ZT:|U1|:|VT|=T (E)

* Probabilistic norm bounds: With high
- V@|-r
probability, [|R;||isO(n 2 ) becauser is

the size of the minimum vertex separator of H

Ry

1

e Corollary: If k < nz™© then with high
probability, ;. > ~Id as the identity is the

dominant term of Q..



Summary

1

» If k < nz"° then with high probability,
d  d
M7 act = 72~=0 LrQrLz 7 > «,2ﬂ=0 LrL?r:
d

o The oLy LT allows us to deal with the
error Mf““ M.



Part VI: Further Work and Open
Problems



Further Work

* The techniques used for planted clique can be
generalized to other planted problems where
we are trying to distinguish a planted

distribution from a random distribution
|[HKP+17]



Open Problems

* Can we prove the full lower bound for planted
clique with the exact constraint that
N = k7
=1 X; = K-
* How close to y/n can we make the lower
bound?

* [t turns out that the current machinery
doesn’t work as well for random sparse
graphs. What bounds can we prove for
problems such as densest k-subgraph and
independent set on sparse graphs?
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Appendix |I: Handling Intersection
Terms



High Level Idea

e [fthere are intersections between the left,
middle, and right parts, this creates a new

graph H,.
 We can decompose H, into new left, middle,
and right parts!






Choosing New Separators

* How do we choose the new separators S’ and
T'?
* We take S’ to be the leftmost minimum vertex

separator between U and
{intersected vertices} U S.

» Similarly, we take T’ to be the rightmost
minimum vertex separator between
{intersected vertices} U T and V.



Key ldea

* This decomposition works the same

regardless of what o, and O'Z’T look like (see
Claim 6.11 of [BHK+16])!

* Thus, we get a new approximate
da

decomposition of the form Zz o Lyt Qpr Ly

e This can be bounded by%ZEzO L.LL aslong as

we always have that ||Q//|| « 1



Bounding New Middle Parts

 We need to show that the new middle parts
don’t have norms which are too high.

 This is done with the intersection tradeoff
lemma (Lemma 7.12 of [BHK+16])



Appendix lI: Technical Mines



Approximate Decomposition Mine

.~ Claim: If r is the size of the minimum vertex

separator of H,
Ry = RO-RTRO_,T

* There are subtle issues related to the ordering
of S and T, the leftmost and rightmost
minimum vertex separators of H

* How these issues should be handled depends
on whether we require matrix indices to be in
ascending order.



Approximate Decomposition Mine

ll- [f we require matrix indices to be in ascending
order, what we actually have is Ry =

T
Y . 1mRsRR ;v wherec Ut U0’

is the graph formed by gluing o, 7,0'" together.

* In fact, this equation is precisely what is

needed for the approximate PSD
d

decomposition M ~ M/t = ¥2_ [, Q, L.



Approximate Decomposition Mine

AI- Remark: [BHK+16] navigates this issue by
keeping everything in terms of the individual
ribbons (Fourier characters for a given matrix
entry) until it is time to use the matrix norm
bounds (see Definition 6.1 and subsection 6.4
of [BHK+16])



Approximate Decomposition Mine

il- [f we do not require matrix indices to be in
ascending order, we actually have the following

two equations
1. Ry = ‘Aut (0, T,O"T) RGRTRU,TWhere

‘Aut (a, T, O"T)‘ is the number of different ways

. T
to decompose H into g, 7,0’ .

1
2. Rp= (SH)!; o106 :H=0UTUG' .
ocUTUog' isthe graph formed by gluing o, 7,0’
together.

T RO-RTRO_,T where



Truncation Mine

. . K\ V(@)1
Definition: Define L, = X5y =1 (;) R,
| i\ IV (@©I-r

and define Q‘I‘ — ZT!|U1|=|VT|=7‘ (g) RT

where we require that V; is the unique
minimum vertex separator of o and U, > are

the leftmost and rightmost minimélm vertex

separators of 7. Define M7t = 32_ L,.Q,L}

Actually, we need to truncate L, and R, by only
taking o, T with at most D vertices



Truncation Mine

;I- Warning: There is a mismatch between H

which have at most D vertices and triples
T . .
o,7,0 which each have at most D vertices.

* This truncation error turns out to have very
small total norm, see Lemma 7.4 of [BHK+16]



