Lecture 12: SOS Lower Bounds
for Planted Clique Part |



Lecture Outline

* Part |: Planted Clique and the Meka-Wigderson
Moments

* Part II: MPW Analysis Preprocessing
e Part lll: MPW Analysis with Graph Matrices
* Part IV: The Pessimist Strikes Back




Part I: Planted Cligue and the
Meka-Wigderson Moments



Review: Planted Clique

* Recall the planted cliqgue problem: Given a
random graph G where a clique of size k has
been planted, can we find this planted clique?

e Variant we’ll analyze: Can we use SOS to prove

that a random G (n,%
size k where k > 2logn (the expected size of
the largest clique in a random graph)?

) graph has no clique of



Review: Planted Clique Equations

Variable x; for each vertexiin G.
Want x; = 1 ifiisin the clique.
Want x; = 0 if i is not in the clique.

Equations:

x? = x; foralli.

Zl’xi >k



First SOS Lower Bound

e Theorem [MPW15]: 3C > 0 such that whenever
1

k < C@ ((zo;n)z)d’ with high probability degree

d SOS cannot prove the k-clique equations are
infeasible.




Review: SOS Lower Bound Strategy

* To prove an SOS lower bound:

1. Come up with pseudo-expectation values E which
obey the required linear equations

2. Show that the moment matrix M is PSD



MW Moments

ldea: Give each d-clique the same weight

Define x; = [1;¢; x;

Define N;(I) to be the number of d-cliques

containing I.

MW moments: take E[x;] =

(IIICI) Ng(I)

(

d
I

) Na(®)



Checking ).; x; = k

k
(1) . Na@
* MW moments: take E[xl] (Icli|) NZ(Q))

* MW moments obey the equation },; x; = k

* Proof: )¢ Ng(I U i) = (d — |I[)Ng(I) as each
d-clique containing I contains d — |I| of the i & I

C (ua) _ = ()
() 1 ()

» % Elxpui] = IIE[x] + (k — [IDE[x;] = kE[x]

—



Part Il: MPW Analysis Preprocessing



Analysis Outline

* For the MPW analysis, we do the following:

1. Preprocess the moment matrix M to make it
easier to analyze. More specifically, we find a
matrix M’ which is easier to analyze such that if

d
Amin(M') = k—zdthen M = 0 with high probability
4n2
2. Decompose M’ = E[M']| + R and show that
d d

E[M'] = k—zdld and w.h.p., ||R]| < k—zd

2n2 4n2



. . d
Restriction to Multilinear, Degree >

* Preprocessing Step #1: As we’ve seen from the
3XOR and knapsack lower bounds, since we

have the constraints that x;* = x; for all i and

Y. X; = k, it is sufficient to consider the

. . . d
submatrix of M with multilinear, degree >

indices



Approximating E[x;]

* Preprocessing Step #2: Approximate E[x;]

* Intuition: One view of E[x;] is that E[x;] is the
expected value of x; given what we can
compute.

 Remark: This is connected to pseudo-
calibration/moment matching which we’ll see

next lecture.



Approximating E[x;] Continued

e A priori, if we choose a clique of size k at
random, |I| is part of the clique with

() _ sl

probability —% =~ —
(IT}I)

e If [ is not aclique, E[x;] = 0. 1f I is a clique, I is
2@) times more likely to be part of the clique.
Thus, E[x;] = 2(“') i
otherwise.

* See appendix for calculations confirming this.

—nif I isaclique and is 0



Approximation Error

* Let Mypprox b€ the matrix where
TUJ1Y g 11UJ]
(Mapprox)]] = 2( ‘ )n|1U1|

and (Mappmx)lj = 0 otherwise.

if I U Jisa clique

* Can show that the difference A = M — Mgypr0x
is small (see [MPW15] for details).



The matrix M’

Preprocessing Step #3: Fill in zero rows and
columns of Mypprox

If I or ] is not a clique then (Mgypr0x)17= 0.

These zero rows and columns make Mgyprox
harder to analyze.

Definition: Take M’ to be the matrix such that

, (IIUJI) KVl
M, =2\ 2 V] if all edges are present

between I \ J and J \ I and M'}; = 0 otherwise




M 70 = Mgyprox 7 0

* Can view Mg, @s a submatrix of M'.

e This immediately implies that if M’ > 0 then
Mapprox 7z 0

* Because of the error matrix A = M — Mgppr0x
we need the stronger statement that with high
probability, A,i,(M') is significantly bigger
than 0.



Summary

d
kZ
* We want to show that w.h.p. M’ > —; where
4nz2
.. . , (IIU]I) kIl
M" is the matrix such that M'j; = 2\ 2 / ——if
n

all edges are present between/ \ Jand ] \ I
and M';; = 0 otherwise




M' Picture ford = 4

Mty = 27

B My =—5if
j~kand0
otherwise

j~landisO
otherwise




Part Ill: MPW Analysis with Graph
Matrices



Recall Definition of Ry

Definition: Definition: If V(H) = U U V then

define Ry (A, B) = Xg(gm)) Where o: V(H) —
V(G) is the injective map satisfying a(U) = A,
o(V) = B and preserving the ordering of U, V.

Last lecture: Did not require A, B to be in
ascending order.

This lecture: Will require A, B to be in
ascending order.

Note: This only reduces our norms, so the
probabilistic norm bounds still hold.



Review: Rough Norm Bound

e Theorem [MP16]: If H has no isolated
vertices then with high probability, ||Ry|| is
O (nVUI=s1)/2) where sy is the minimal
size of a vertex separator between U and V

(S is a vertex separator of U and V if every
path from U to V intersects S)

 Note: The O contains polylog factors and
constants related to the size of H.



Decomposition of Mgy, and M’

. k|UUV|

sum over H which have no middle vertices.

i = 3, 2D

where we sum over H which have no
middle vertices and which have no edges
within U or within I/.

U] VI _(lUNV]
* |dea: Each of the 2( 2 )+( 2 ) ( 2 ) edges
within U or V are given for free.



Entries of E[M']

= g 2D

we sum over H which have no middle
vertices and which have no edges within U
or within V.
| , I (1N (HOTT) gl
e Claim: E[M ]1] — 2(2) (2) ( 2 )nIIUJI

* |dea: For any H which has an edge,
E|Ry] = 0. Otherwise, E|Ry| = Ry

Ry where




E[M'] Picture ford = 4

, 2k?2
EIMlgpnun =7

, 4k3
B EIM iy = -5
4K+

B EIM gy = —5




Analysis of E[M']

» E[M'] belongs to the Johnson Scheme of
matrices A whose entries A;; only depend on

|II N J| (See Lecture 9 on SOS Lower Bounds
for Knapsack)

e Can decompose E[M'] as a sum of PSD

matrices, one of which is the identity matrix
d

which has coefficient > k—zdld.
2n2



One Piece of M' — E[M'] (d = 4)

] o

4
[] 2% if all edges

n4-
between I and |
are present.
4k*

— Fotherwise




Piece of M' — E[M'] Decomposition
4k4
* This piece has coeff|C|ent in Ry for all H

which have the following form (and O for all
other Ry):

N
\ /’
1 4
N, 4
A4
\
/ N
4 ‘\
/ hJ

U %
Where E(H) is non-empty and is
a subset of the dashed lines




Piece of M’ — E[M'] Analysis

* All H here have minimum separator size sy at
least 1.

kv 21
* This gives a norm bound of 0 (— n 2 ) =
_ kZ kZ
0(% )
2 1

e This is much less than f? when k < na,




General Analysisof R = M' — E[M']

* DefineR =M"— E[M']

. |U| VI\_(1UNV] k|UUV|
e Claim: R = ZHZ( 2 )+( 2) ( 2 )n|UUV| -
where we sum over H which have no middle
vertices, which have no edges within U or

within V, and which have at least one edge.




General Analysisof R = M' — E[M']

c R=), 2('12]')"'('12/')_('”9”) E:ZSZ: Ry where we

sum over H which have no middle vertices,
which have no edges within U or within V, and
which have at least one edge

* Norm bound: For any such Ry, w.h.p. ||Ry|| is
|lUUV|—-|UNnV]|-1

0(n 2 ) as the minimal separator size
sy between U and Visatleast [UNV| + 1

k|UUV|

o~ k|UUV|
n|UUV] RH is 0 \/ﬁlUUV|+|UﬂV|+1

e Corollary: w.h.p.



General Analysisof R = M' — E[M']

* Risasum of terms which w.h.p. have norm

- k|UUV|
0 \/ﬁlUUV|+|UﬂV|+1
e lUUV|<dand|UUV|+|UNV|=d, so
d d
.~ k2 k2 .
w.h.p. ||R]|| is O (nczl : \/ﬁ). This is much less than
d
k2 1

—aslongas k K nd
4nz



Part IV: The Pessimist Strikes Back



Limitations of MW moments

* Can we prove a stronger lower bound with the
MW moments?

 With a more careful analysis, a slightly stronger
lower bound can be shown. Ford = 4, [DM15]

~ 1
proved an ()(n3) lower bound. [HKPRS16]
2

generalized this to Q(nd+2)
* By an argument of Jonathan Kelner, this is tight!



Pessimist’s Query

Kelner’s argument: Pessimist can query the
following polynomial:

Takep = Cx; — ),

J1=5 ey 1AV 2 where

N (1) is the set of neighbors of I

What is E|p?|?

Key idea: Cross terms will all be negative, but
there will be cancellation in the square terms.



Pessimist’s Query Analysis

e p = Cx; Z] 12 651(— )U\N(‘)'x where

N (i) is the set of nelghbors of I
pz — szi o ZCZ];]u{i} is a clique XJU{i} +
Z]J,(_l)l(JAJ \N (D) X0

We expect E[C?x;] to be © (C k)

n

* We expect E [2C Z] JU(i} is a clique x]U{l}] to be

Cr(d/2)+1
o(“5—)
n




Pessimist’s Query Analysis Continued

o pz — szi — 2C Z];]u{i} s a clique x]U{i} T

Z],],(_1)|(]A] N (D) X0

Allterms of 3, 1 E [(—1)|(1Af’)\N(’)|x]U]r_ have
expected value = 0 except for the ones where
] =]

* These terms contribute ©(k9/?) and it turns
out that w.h.p. these terms are dominant




Pessimist’s Query Analysis Continued

~ C2k CR(%)“
* We expect E[p?] to be © ( - ) ® +
@(kd/Z)

d 1

e Taking C = k+ z/n, thisis
(ﬁ)+1 (ﬂ)
d/2y _ k42)= d/2< k4)
O(k““) @( N k4“0\1 N
2
which is negative if k > nd+2




Back to the Drawing Board

* Pessimist has disproven our (Optimist’s) first
attempt at bluffing, but perhaps we can come
up with a better bluff.

e Let’s see what went wrong.



Graphical Picture

* Can represent the polynomial Pessimist is
querying as follows:

/ Xj1 /769\
C| () &

\ d _/

times its transpose




* Multiplying graph matrices is tric
that next lecture!). Some terms t

)

Graphical Picture
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Potential Fix

 What if we add an appropriate multiple of

&

to our moment matrix?



Potential Fix Analysis

This fix does work for d = 4 [HKPRS16]
However, it seems rather ad-hoc.

Remark: It is related to giving more weight to
cliques which have more common neighbors,
but that’s not quite what it does...

Can we find a more principled general fix? Yes,
see next lecture!
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Appendix



Approximating E[x;] Calculation

) (I;) Nq(I)
P =) o

* If I'isaclique then Ny (1) = 2(@)_(?) (n_“l)

* As a special case, N; (@) = 2_(621) (Z)

e |f ] is aclique then

st = 2O o ()
Elx;] ()2 ()(n) -




