Lecture 9: SOS Lower Bound for
Knapsack

Part I: Knapsack Egations and Pseudo-

Lecture Outline

expectation Values

Part
Part

Part

|: Johnson Scheme
II: Proving PSDness
V: Further Work

Part I: Knapsack Egations and
Pseudo-expectation Values

Knapsack Problem

Knapsack problem: Given weights wy, ..., w,
and a knapsack with total capacity C, what is
the maximum weight that can be carried?

In other words, defining w; = }.;; w; for each
subset I € |1,n], what is

max{w;:I € [1,n],w; < C}?

Here we’ll consider the simple case where

w; = 1foralliand C € [0,n] is not an integer.

Answer is |C], but can SOS prove it?

Knapsack Equations

Want x; = 1ifi € I and x; = 0 otherwise.
Knapsack equations:

1. Vi, x? =x;

2. YL x;i=k

Here we take k € [0, n] to be a non-integer.
Equations are infeasible because)./ x; € Z

SOS Lower Bound for Knapsack

* Theorem[GriO1]: SOS needs degree at least
2min{k,n — k} to refute these equations

 We’ll follow the presentation of [MPW15] and
show a lower bound of min{k,n — k}

* Note: This presentation was already in the
retracted paper [MW13]

Review: SOS Lower Bound Strategy

e Recall: To prove an SOS lower bound, we
generally do the following:

1. Come up with pseudo-expectation values E which
obey the required linear equations

2. Show that the moment matrix M is PSD

 Here we’ll use symmetry for part 1 and some
combinatorics for part 2.

Pseudo-expectation Values

* Define x; = [1;¢; x;

° VI’ (Z?:lxj)xl p— ZjEIxij + Z]%I xjxl — kxl

o If E[x,] only depends on
vI,j &I |I|E[x;] + (n —

VIj &1 E[x;] = —

|
|

k—|I| -

~ _ k(k—1)..(k—|I]+1) (llfl)

* ThUS, E[XI] —

n(n—1)..(n—|I|+1) (ln)

Viewing E as an Expectation

E[x] =(|_II(|)

(i)

Could have predicted this as follows: If we had

a set A of 1s of size k, then of the (I?I)

possible sets of size |I], (IIICI) of them will be
contained in A.

Bayesian view: E[x;] is the expected value of
x; given what we can compute (in SOS).

Here it is a true expectationif k € Z

Reduction to Multilinear Indices

* Recall from last lecture: If we have
constraints x7 = x; or x7 = 1, it is sufficient
to consider E[g?] for multilinear g.

* Reason: For every polynomial g, thereis a
multilinear polynomial g’ with deg(g’) <
deg(g) such that E|g"?| = E[g?].

 Thus, it is sufficient to consider the restriction
of M to multilinear indices.

Reduction to Degree > Indices

e Lemma: If we also have the constraint
* 1 x; =k, for every polynomial g of degree

d
at most —, there is a homogeneous multilinear

ponnomlaI g of degree exactly — such that
Elg"?| = E[g?].

* Proof |dea. Use the following reductions:
1. Vi,x?f = x;if

Yie

2. vic|[1,n]:|I| <= x, ‘ilxltlj{l} To see this,

note that (X7, x;)x, = kx; = |Ix; + Xigr X1ugi)

Reduction to Degree > Indices

e Corollary: To prove that M = 0, it is sufficient to
prove that the submatrix of M with multilinear

entries of degree exactly% is PSD.

Part ll: Johnson Scheme

Johnson Scheme

* Algebra of matrices M such that:

1. The rows and columns of M are indexed by
subsets of [1, n| of size r for some .

2. M;j; only depends on |I N J|
* Equivalently, the Johnson Scheme is the algebra

of matrices which are invariant under
permutations of |1, n].

* Claim: The matrices M in the Johnson scheme
are all symmetric and commute with each other

Johnson Scheme Claim Proof

e Claim: For all 4, B in the Johnson scheme, AT =
A, AB is in the Johnson scheme as well, and
AB = BA

* Proof: For the first part, VI,], A;; = A;; because
I nJ| =|J NnI|.Forthe second part, AB;x =
Z]E(?) A;;B;k. Now observe that for any

permutation o of [1,n], AB;x = Z]E(;}) A B =
Y ye(r) AoyBjoky = ABotyo(xy
* For the third part, AB = (AB)" = BTA" = BA

Johnson Scheme Pictureforr = 1

112 |3 |4 |5]6

Injl=1

O iInjl=0

AUV IWIN|EF

Johnson Scheme Picture forr = 2

INnj| =2

Basis for Johnson Scheme

* Natural basis for Johnson Scheme: Define
D, € R()*() to have entries (D) = 11if
Inj|=aand (D) =0if[InJ| # a.

* Easy to express matrices in this basis, but not
so easy to show PSDness

PSD Basis for Johnson Scheme

Want a convenient basis of PSD matrices.

Building block: Define v, so that (v,); = 1 if
A € | and O otherwise

PSD basis for Johnson Scheme: Define P, €
R(T)X(r) tO be Pa —_ ZAE[l,nHA =a UAUZ;

P, has entries (P,);; = (“n”) necause

a

v,vi = lifandonlyif A €1 N J and there
are (“2”) such A € [1,n] of size a.

Basisforr =1

112 |3 |4 |5]6

AUV IWIN|EF

(Do)u =0

- (DO)I] =1

Basisforr =1

112 |3 |4 |5]6

AUV IWIN|EF

(D1)1] =1

- (D1)1] =0

PSD Basisforr = 1

112 |3 |4 |5]6

AUV IWIN|EF

1
(Po)lj — O)
0
- (Po)lj = (O)

—

p—

PSD Basisforr = 1

112 |3 |4 |5]6

AUV IWIN|EF

1
(P1)1] — (1)
0
- (P1)1] = (1>

-

PSD Basis forr = 2

PSD Basis forr = 2

PSD Basis forr = 2

Shifting Between Bases

Basis for Johnson Scheme: (D), = 84110

PSD Basis for Johnson Scheme : (F,);; = (Ilﬂll

a
Want to shift between bases.

Lemma:
1. B = 7l;=a(Z)Db

2. Dy =Xph_o(-1)"7%(2)P,

First part is trivial, second part follows from a
bit of combinatorics.

)

Shifting Between Bases Proof

* Lemma:
1. P=Yhoa(2)Ds
2. Dy =Yhoo(-1"%(%)P,
* Proof of the second part: Observe that
p—a(=1P7(2)Py = X Xa(—1P74(2) D,
* Must show that foralla’ > q,
_ "\ (b
a7 (5) (2) = ora

* |In-class exercise: Prove this

Shifting Between Bases Proof

* Need to show: Y¢__(—1)P~¢ (3‘9) (Z) =4,
 Answer: Observe that

(a’) (b) B 'Ip! ~al (a'-a)!
b)\a) bl(a'-b)lal(b-a)! al(a’'-a)! (a’'-b)!(b-a)!
* QOur expression is equal to

izo(— 1)1()Wherem—a —a

a'l

al(a’'—a)!

* Now note that ijo(—l)f (T) = (1 + (—1))m,
whichequals1ifm =0and 0ifm > 0.

Part Ill: Proving PSDness

Decomposition of M

Recall that E[x;] = (|_:’i|)
(in)
(11621)
M,, =
U ()

PSD Decomposition

 To prove M = 0, it is sufficient to express M
as a non-negative linear combination of the
matrices P,.

Example: Decomposition forr =1

k k(k—1)

¢ M=;D1+TL(TL—1) (PO_Pl)

. _(k __ k(k—1) k(k—1) __k(n—-k) k(k—1)
M= (n n(n—l)) Pl t n(n—1) PO - n(n-1) Pl t n(n—-1) PO

k(k—1)
n(n—1)

D0=%P1+

112 |3 (4 |56
1 k
2 MI] —_- =
3 n
4 k(k—1)
L] —
Z D" nm-1

PSD Decomposition

e Claim: M = Za OE 2 (k(fzc_;ﬂ_l_)a) Pa

* For the proof, see the appendix

e Corollary: M =0ifk = 2randn—k =>r
(where d = 2r)

Improving Degree Lower Bound

{P,} is a nice basis to work with because it is
relatively easy to go between {D,} and {P, }.

However, in some sense, it’s not the right
basis to use.

Want a basis {P,} such that all symmetric PSD
matrices are a non-negative linear
combination of the {P,}.

With the right basis, can get a higher degree
lower bound.

Example

* Let] be the all ones matrix.
* Forthecased =2,r=1,Py=Jand P, = Id

* Better basis: Py = J, P{ = nT_lld —%]

Part IV: Further Work

Using Symmetry

* Can we take advantage of symmetry in the
problem more generally?

 Yesl!

Using Symmetry

* Proposition: Whenever there are valid pseudo-
expectation values, there are valid pseudo-
expectation values which are symmetric.

* Proof: Let S be the group of symmetries of the
problem. If we have pseudo-expectation values

E,thenforany o € S, E'[f] = E[o(f)] is also
valid. Since the conditions for pseudo-
expectation values are convex, Eg,4f] =

E[Z"Tgla(f)] is valid as well and is symmetric.

Using Symmetry

 Gatermann and Parrilo [GP04] show how
symmetry can be used to drastically reduce
the search space for finding pseudo-
expectation values.

* Recently, Raymond, Saunderson, Singh, and
Thomas [RSST16] showed that if the
problem is symmetric, it can be solved with
a semidefinite program whose size is
independent of n.

Obtaining Lower Bounds Directly

* One way to give intuition for the lower bound:
SOS “thinks” that we are choosing k elements
out of n and takes the corresponding pseudo-
expectation values.

e SOS is very bad at determining functions must
be integers and needs degree = k to detect a
problem.

Obtaining Lower Bounds Directly

* |s there a way to say that this intuition is good
enough to obtain a lower bound without going
through the combinatorics?

* Unless I’'m mistaken, yes (this is work in
progress).

References

[GPO4] K. Gatermann and P. Parrilo. Symmetry groups, semidefinite programs, and
sums of squares. J. Pure Appl. Algebra, 192(1-3):95-128, 2004.

[GriO1] D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack.
Computational Complexity 10(2):139-154, 2001

[MW13] R. Meka and A. Wigderson Association schemes, non-commutative
polynomial concentration, and sum-of-squares lower bounds for planted clique.
https://arxiv.org/abs/1307.7615v1

[MPW15] R. Meka, A Potechin, A. Wigderson, Sum-of-squares lower bounds for
planted clique. STOC p.87-96, 2015

[RSST16] A. Raymond, J. Saunderson, M. Singh, R. Thomas. Symmetric sums of
squares over k-subset hypercubes. https://arxiv.org/abs/1606.05639, 2016

Appendix: PSD Decomposition
Calculations

Picture forr = 2

Decomposition forr = 2

, Gy Gy G
M =G Dz + () Do+ (@ Do

e w=8p, + Wp2p) + B pyop, 4 1)

BRERNG (%)
e B (-) B

o (5) _ keenee-2)k-3)
() nm-1)(n-2)(n-3)

(B Q) _ kk-nee-2@-n-(k=3) _ kk-Dk-2)(n=k)
G @) n(n-1)(n—2)(n-3) n(n-1)(n-2)(n-3)

 Proof: Consider

Decomposition forr = 2

o (G J6), G)
Claim: (QT)_ 2(2) + ™

__ k(k-1)(n—-k)(n—k-1)
 n(n-1)(n-2)(n-3)

nn-nm-2m-3 ((5) () ()Y -
(D) <(,21) —2@+@ . This
equals(n—2)(n—-3)—2(k—-2)(n—3) + (k—2)(k —3)
which equals

(n=2—-(k—-2)(n=3)—(k—2)(n—3 — (k—23))

=(n—k)((n—3)—(k—2))=(n—k)(n—k—1)

General Pattern

k(k—1)(n—-k)(n—k—-1)

M= e hmomes f2 T
k(=) (k=2)(n=K) p, | k(e=1)(k=2)(k=3)
1 |

n(n-1)(n-2)(n-3) n(n-1)(n-2)(n-3)
* Can you see the pattern?

* General Pattern: M = (k)(o= ((n;k) P)

() \ a0 (Fzrie) @

Py

General Pattern Proof

e = 8(- <k(n2§?a> Pa>

s - 8 21 ()

a

M= 8(skt (2)2)
* Need to show: Y.2_, (k(:ir)a) (Z) = Ez:zbr+b§

a

General Pattern Proof
(n;k) . (n—%:+b)
(k—2;+a) (a) (k—zbr+b)
(k—zbr+b) _ (k—bz_rc-ll-b)
(k—i{+a) (3)

equivalent to the following:

b n—~k k-=2r+b\ _ (n—-2r+b
a=0\ ¢ b—a — b

e Claim: Y2_,

* Proof: Note that . so this is

General Pattern Proof

. C|aim222=o(n;k) (k_bz—r;b) _ (n—zbr+b)

* Proof: One way to choose b elements out of
|1,n — 2r + b] elements is to first choose the
number a of elements which will be in [1,n — k].
We then choose a elements from [1,n — k] and
choose the remaining b — a elements from
In—k + 1,n — 2r + b], which gives

(n—k)(k‘bz_’”;b) choices for each a € [0, b].

a

