## Lecture 8: SOS Lower Bound for 3-XOR

#### Lecture Outline

- Part I: SOS Lower Bounds from Pseudoexpectation Values
- Part II: Random 3-XOR Equations and Pseudoexpectation Values
- Part III: Proving PSDness
- Part IV: Analyzing Parameter Regimes
- Part V: Gaussian Elimination and SOS
- Part VI: Further Work

# Part I: SOS Lower Bounds from Pseudo-expectation Values

#### Positivstellensatz Proofs Review

- Recall: a degree d Positivstellensatz proof that constraints  $s_1(x_1, ..., x_n) = 0, s_1(x_1, ..., x_n) = 0$ , etc. are infeasible is an expression of the form  $-1 = \sum_i f_i s_i + \sum_i g_i^2$  where:
  - 1.  $\forall i, \deg(f_i) + \deg(s_i) \leq d$
  - 2.  $\forall j, \deg(g_j) \leq \frac{d}{2}$
- How do we show that there is no degree d Positivstellensatz proof of infeasibility?

#### Positivstellensatz Proofs Review

- Recall: a degree d Positivstellensatz proof that  $h(x_1, ..., x_n) \ge c$  given constraints  $s_1(x_1, ..., x_n) = 0, s_1(x_1, ..., x_n) = 0$ , etc. is an expression of the form  $h = c + \sum_i f_i s_i + \sum_j g_j^2$  where:
  - 1.  $\forall i, \deg(f_i) + \deg(s_i) \leq d$
  - 2.  $\forall j, \deg(g_j) \leq \frac{d}{2}$
- How do we show that there is no degree d Positivstellensatz proof that  $h(x_1, ..., x_n) \ge c$ ?

### Pseudo-expectation Values Review

- Recall: Given constraints  $s_1(x_1, ..., x_n) = 0$ ,  $s_1(x_1, ..., x_n) = 0$ , etc., degree d Pseudo-expectation values consist of a linear map  $\tilde{E}$  from polynomials of degree  $\leq d$  to  $\mathbb{R}$  such that:
  - 1.  $\tilde{E}[1] = 1$
  - 2.  $\forall f, i, \tilde{E}[fs_i] = 0$  whenever  $\deg(f_i) + \deg(s_i) \le d$
  - 3.  $\forall g, \tilde{E}[g^2] \ge 0$  whenever  $\deg(g) \le \frac{d}{2}$
- The third condition is equivalent to  $M \geqslant 0$  where M is the moment matrix with entries  $M_{pq} = \tilde{E}[pq]$

#### SOS Lower Bound Strategy

- Recall: degree d pseudo-expectation values imply there is no degree d Positivstellensatz proof of infeasibility
- Analogously, degree d pseudo-expectation values with  $\tilde{E}[h] < c$  imply there is no degree d Positivstellensatz proof that  $h \ge c$ .
- Proof: can assume both exist and get the following contradiction:

$$c > \widetilde{E}[h] = \widetilde{E}[c] + \sum_{i} \widetilde{E}[f_{i}s_{i}] + \sum_{j} \widetilde{E}[g_{j}^{2}] \ge c$$

#### **SOS Lower Bound Strategy**

- To prove an SOS lower bound, we generally do the following:
  - 1. Come up with pseudo-expectation values  $\tilde{E}$  which obey the required linear equations
  - 2. Show that the moment matrix M is PSD
- In the examples we'll see, part 1 is relatively easy and the technical part is part 2.
- That said, for several very important problems, we're stuck on part 1!

# Part II: Random 3-XOR Equations and Pseudo-expectation Values

### **Equations for Random 3-XOR**

- Want each  $x_i \in \{-1,1\}$
- 3-XOR constraint:  $x_i x_j x_k = 1$  or  $x_i x_j x_k = -1$
- We will take m 3-XOR constraints at random
- Problem equations:
  - 1.  $\forall i, x_i^2 = 1$
  - 2.  $\forall a \in [1, m], x_{i_a} x_{j_a} x_{k_a} = c_a \text{ where } \forall a \in [1, m], i_a, j_a, k_a \in [1, n] \text{ and } c_a \in \{-1, 1\}$

#### SOS Lower Bound for Random 3-XOR

- Problem equations:
  - 1.  $\forall i, x_i^2 = 1$
  - 2.  $\forall a \in [1, m], x_{i_a} x_{j_a} x_{k_a} = c_a \text{ where } \forall a \in [1, m], i_a, j_a, k_a \in [1, n] \text{ and } c_a \in \{-1, 1\}$
- Theorem [Gri02], rediscovered by [Sch08]: If

 $m \leq \frac{n^{\frac{3}{2}-\epsilon}}{\sqrt{d}}$  then w.h.p., degree d SOS does not refute these equations.

## Choosing Pseudo-expectation Values

- How do we choose the pseudo-expectation values?
- Many choices are fixed.
- Example: If  $x_1x_2x_3 = 1$  and  $x_1x_4x_5 = -1$  then  $x_1^2x_2x_3x_4x_5 = x_2x_3x_4x_5 = -1$
- However, we only want to make these deductions at low degrees...

## Choosing Pseudo-expectation Values

- Def: Define  $x_I = \prod_{i \in I} x_i$
- Proposition:  $\forall I, J, x_I x_J = x_{I\Delta J}$  where  $I \Delta J = (I \cup J) \setminus (I \cap J)$  is the disjoint union of I and J.
- To decide which  $x_I$  have fixed values:
  - 1. Keep track of a collection of equations  $\{x_I = c_I\}$  starting with the problem constraints.
  - 2. If we have equations  $x_I = c_I$  and  $x_J = c_J$  where I, J, and  $I \Delta J$  all have size at most d, then we add the equation  $x_{I\Delta J} = c_I c_J$  (if we don't have it already)

## Choosing Pseudo-expectation Values

- Set  $\tilde{E}[x_I] = c_I$  if our collection has  $x_I = c_I$
- What if we don't have an equation for  $x_I$ ?
- If we have no equation for  $x_I$ , set  $\tilde{E}[x_I] = 0$
- Set  $\tilde{E}[x_i^2 f] = \tilde{E}[f]$  for all f of degree  $\leq d-2$
- These pseudo-expectation values are well-defined as long as we never have both the equations  $x_I = 1$  and  $x_I = -1$ .

## Part III: Proving PSDness

#### To-Do List

- Here we assume that  $\tilde{E}$  is well defined. We will analyze when this holds w.h.p. in the next section.
- Need to check linear equations. This follows from the definitions:
  - Whenever we have a constraint  $x_I = c_I$ , for all J of size  $\leq d-3$ , either  $\tilde{E}[x_Ix_J] = c_Ic_J = c_I\tilde{E}[x_J]$  or  $\tilde{E}[x_Ix_J] = c_I\tilde{E}[x_J] = 0$
  - $-\forall i, f: \deg(f) \leq d 2, \tilde{E}[x_i^2 f] = \tilde{E}[f]$
- Need to check moment matrix is PSD.

#### Restriction to Multilinear Indices

- Observation: Whenever we have constraints  $x_i^2 = x_i$  or  $x_i^2 = 1$ , it is sufficient to consider the entries of M indexed by multilinear monomials.
- Reason: Given any g of degree  $\leq \frac{a}{2}$ ,  $\exists$  multilinear g' such that  $\tilde{E}[g'^2] = \tilde{E}[g^2]$ .
- Proof idea: Any non-multilinear term  $x_i^2 f$  in g can be replaced by f.
- Corollary:  $\tilde{E}[g^2] \ge 0$  for all g of degree  $\le d/2$   $\Leftrightarrow \tilde{E}[g^2]$  for all multilinear g of degree  $\le d/2$ .

## Key Idea: Equivalence Classes

- Definition: For sets I, J of size  $\leq \frac{a}{2}$ , we say  $x_I \sim x_I$  if  $x_I x_I = x_{I\Delta I}$  is determined
- Proposition: If  $x_I \sim x_J$  and  $x_J \sim x_K$  then  $x_I \sim x_K$ .
- Proof: If  $x_I \sim x_J$  and  $x_J \sim x_K$  then  $x_{I\Delta J}$  and  $x_{J\Delta K}$  are determined. Now  $x_{I\Delta J}x_{J\Delta K}=x_Ix_J^2x_K=x_{I\Delta K}$  is determined. Thus,  $x_I \sim x_K$
- Remark: We carefully chose which deductions to make so that this would work.

#### **PSD** Decomposition

- Proposition:  $\tilde{E}[x_I x_I] \neq 0$  if and only  $I \sim J$ .
- Choose a representative  $I_E$  from every equivalence class E.
- Take  $v_E(x_I) = \tilde{E}[x_I x_{I_E}]$
- $v_E(x_I) = c_{I\Delta I_E}$  if  $x_I \in E$ . Otherwise,  $v_E(x_I) = 0$
- $v_E(x_I)v_E(x_J) = c_{I\Delta I_E}c_{J\Delta I_E} = c_{I\Delta J}$  if  $I,J \in E$ . Otherwise,  $v_E(x_I)v_E(x_I) = 0$

#### **PSD** Decomposition

- $v_E(x_I)v_E(x_J) = c_{I\Delta I_E}c_{J\Delta I_E} = c_{I\Delta J}$  if  $I, J \in E$ . Otherwise,  $v_E(x_I)v_E(x_J) = 0$
- Corollary:  $\forall I, J, \sum_E v_E(x_I) v_E(x_J) = \tilde{E}[x_I x_J]$
- Corollary:  $M = \sum_{E} v_{E} v_{E}^{T} \ge 0$

# Part IV: Analyzing Parameter Regimes

#### Parameter Regimes

- How large does m have to be before the random 3-XOR constraints are unsatisifable w.h.p.?
- For which m will the pseudo-expectation values be well-defined w.h.p., giving us the SOS lower bound?

## Unsatisfiability of 3-XOR Constraints

- For any given possible solution  $(x_1, ..., x_n)$ , the probability it is valid if there are m random 3-XOR constraints is  $2^{-m}$ .
- Using a union bound,  $P[\exists solution] \leq 2^{n-m}$
- Equations are unsatisfiable w.h.p. if  $m\gg n$
- In fact, not hard to show that  $\forall \epsilon > 0, \exists C, n_0 > 0 \text{: if } m \geq Cn, n \geq n_0 \text{ then} \\ \text{w.h.p. there is no solution satisfying } \frac{1}{2} + \epsilon \text{ of} \\ \text{the constraints}$

### **Local Consistency**

- If  $\tilde{E}$  is not well-defined then we must be able to derive the contradiction -1=1 without going to degree higher than 2d.
- Multiplying all of the constraints involved in such a contradiction, every variable appears an even number of times.

#### **Local Contradiction Picture**

- Draw a triangle  $(x_{i_a}, x_{j_a}, x_{k_a})$  for each constraint  $x_{i_a}x_{j_a}x_{k_a}=c_a$  involved in the contradiction.
- Every vertex is covered an even number of times
- Example: If we have the constraints  $x_1x_2x_3=1$ ,  $x_4x_5x_6=1$ ,  $x_1x_2x_4=1$ ,  $x_3x_5x_6=1$ , we get the following picture:



## **Probabilistic Analysis**

- What is the probability that there is some contradiction involving D vertices where each variable appears twice?
- There are  $\binom{n}{D} \le \left(\frac{en}{D}\right)^D$  ways to choose the D vertices.
- Now choose the triangles one by one, starting at any vertex which has not yet been covered twice and choosing the other two vertices. This gives  $\leq D^2$  choices for each of the  $\frac{2D}{3}$  triangles.

## Probabilistic Analysis Continued

• We have  $\leq (D^2)^{\frac{2D}{3}} \left(\frac{en}{D}\right)^D$  choices for the structure of the constraints. For a given structure, the probability it appears is  $\left(\frac{m}{n^3}\right)^{\frac{2D}{3}}$ . Thus, the probability of such a contradiction is at  $\left(\frac{mD^2}{n^3}\right)^{\frac{2D}{3}} \left(\frac{en}{D}\right)^D = \frac{m^{\frac{2D}{3}}D^{\frac{D}{3}}e^D}{n^D} = e^{\sqrt[3]{m^2D/n^3}}$ 

• This is much less than 1 if  $m \ll \frac{n^{\frac{3}{2}}}{\sqrt{D}}$ 

### **Analysis Subtleties**

- Note: Can have D > d variables involved in a contradiction without going to degree more than d (by ignoring vertices which have already been covered twice)
- However, must have a constraint graph on  $\geq \frac{\nu}{3}$  vertices where at most d vertices appear an odd number of times.
- Can take D = O(d) and show w.h.p. this does not happen.

### **Analysis Subtleties**

- Note: Also have to consider the cases where variables appear more than twice in the clauses.
- These cases can be analyzed in a similar way.

## Part V: Gaussian Elimination and SOS

## Disproving Perfect Completeness

- As stated, the 3-XOR problem is actually easy, it's a system of linear of linear equations mod 2
- Map  $\{-1,1\}$  to  $\{1,0\}$  and multiplication to addition mod 2. Example:  $x_ix_jx_k=-1$  becomes  $x_i+x_j+x_k=1\ mod\ 2$
- Can use Gaussian elimination!

#### Noise Gives NP-hardness

- While disproving perfect completeness is easy, it is NP-hard to distinguish between the case when  $(1 \epsilon)$  of the constraints can be satisfied and the case when at most  $\left(\frac{1}{2} + \epsilon\right)$  of the constraints can be satisfied.
- Problem reformulation: Given constraints  $\{x_{i_a}x_{j_a}x_{k_a}=c_a\colon a\in[1,m]\}$ , problem becomes: Maximize  $\sum_{a=1}^m c_ax_{i_a}x_{j_a}x_{k_a}$  subject to

1. 
$$\forall i, x_i^2 = 1$$

#### **SOS** Robustness

- Why doesn't SOS capture Gaussian elimination?
- One explanation: SOS is inherently robust to noise, so it cannot capture techniques which are not robust, like Gaussian elimination.
- This explanation has merit, though the fact remains that Gaussian elimination is an algorithm not captured by SOS.

Part VI: Further Work

## k-wise Independent Distributions

• Definition: A distribution of solutions for a clause is balanced k-wise independent if for all indices  $i_1, ..., i_k$  and all  $b_1, ..., b_k \in [0,1]$ ,  $P\left[\forall j \in [1,n], x_{i_j} = b_j\right] = 2^{-k}$ 

• Example: For a 3-XOR clause  $x_i + x_j + x_k = b$  mod 2, the uniform distribution of solutions is balanced 2-wise independent.

#### Further Work

- These ideas have been vastly generalized to show tight SOS upper and lower bounds on CSPs with balanced k-wise independent distributions [BCK15], [KMDW17].
- Note: Balanced pairwise independence implies UGC-hardness [AM08], NP-hardness is only known if there is a balanced pairwise independent subgroup [Cha13].

#### References

- [AM08] P. Austrin, E. Mossel. Approximation Resistant Predicates From Pairwise Independence. https://arxiv.org/abs/0802.2300 . 2008
- [BCK15] B. Barak, S. O. Chan, and P. Kothari. Sum of squares lower bounds from pairwise independence. STOC 2015.
- [Cha13] S. O. Chan. Hardness of Maximum Constraint Satisfaction. Ph.D. thesis at Berkeley.
- [KMDW17] P. Kothari, R. Mori, R. O'Donnell, D. Witmer. Sum of squares lower bounds for refuting any CSP. STOC 2017.