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Part |: SOS Lower Bounds from
Pseudo-expectation Values



Positivstellensatz Proofs Review

* Recall: a degree d Positivstellensatz proof that
constraints s; (x4, ..., x,,) = 0,5:(x4, ..., x,,) = 0,
etc. are infeasible is an expression of the form

—1=2fisi+2; g]2 where:
1. Vi, deg(f;) + deg(s;) <d

. d
2. VJ,deg(gj) =7

* How do we show that there is no degree d
Positivstellensatz proof of infeasibility?



Positivstellensatz Proofs Review

* Recall: a degree d Positivstellensatz proof that
h(xq, ..., X,;) = C given constraints
S1(x1, .o, ) = 0,5:(xq, ..., x,) = 0, etc. is an
expression of the formh = ¢ + %; fis; + X g]2
where:
1. Vi, deg(f;) + deg(s;) <d

. d
2. VJ,deg(gj) s 7
* How do we show that there is no degree d
Positivstellensatz proof that h(x4, ..., x,) = c?



Pseudo-expectation Values Review

 Recall: Given constraints s;(xq, ..., X,) =
0,s:(xq,...,x,) = 0, etc., degree d Pseudo-
expectation values consist of a linear map E
from polynomials of degree < d to R such that:
1. E[1]=1

2. Vf,i,E[fs;] = 0 whenever deg(f;) + deg(s;) < d

3. Vg,E|g?| = 0 whenever deg(g) S%

* The third condition is equivalentto M = 0
where M is the moment matrix with entries

Mpq — E[pCI]



SOS Lower Bound Strategy

* Recall: degree d pseudo-expectation values
imply there is no degree d Positivstellensatz

proof of infeasibility

* Analogously, degree d pseudo-expectation
values with E[h] < ¢ imply there is no degree d
Positivstellensatz proof that h > c.

* Proof: can assume both exist and get the
following contradiction:

c > E[h] = E[c] + X, Elfisi] + 5, E|g?| = c




SOS Lower Bound Strategy

* To prove an SOS lower bound, we generally do

the following:

1. Come up with pseudo-expectation values E which
obey the required linear equations

2. Show that the moment matrix M is PSD

* [n the examples we’ll see, part 1 is relatively
easy and the technical part is part 2.

* That said, for several very important problems,
we’re stuck on part 1!



Part Il: Random 3-XOR Equations
and Pseudo-expectation Values



Equations for Random 3-XOR

Want each x; € {—1,1}

3-XOR constraint: x;xjx; = 1 or x;xjx, = —1

We will take m 3-XOR constraints at random

Problem equations:

1.
2.

Vi, xf =1
Va € [1,m],x;_x; x, = c, where Va € [1,m],
lg,Jar kg € |1,n]and ¢, € {—1,1}



SOS Lower Bound for Random 3-XOR

* Problem equations:
1. Vixf =1
2. Va € [1,m],xiaxjaxka = c, where Va € [1,m],
ig,Joo kg € [1,n] and ¢, € {—1,1}
 Theorem [Gri02], rediscovered by [Sch08]: If
3

nz" ¢

Vd
refute these equations.

m < then w.h.p., degree d SOS does not



Choosing Pseudo-expectation Values

* How do we choose the pseudo-expectation
values?

 Many choices are fixed.

* Example: If x;x,x3 = 1 and x;x,x5 = —1 then
XEXpX3X4Xs = XpX3XeXs = —1

* However, we only want to make these
deductions at low degrees...



Choosing Pseudo-expectation Values

 Def: Define x; = |];¢; xi

* Proposition: VI, J, x;x; = x;p; where I A ] =
(1 U J)\ (IN])isthe disjoint union of I and J.

* To decide which x; have fixed values:

1. Keep track of a collection of equations {x; = ¢;}
starting with the problem constraints.

2. If we have equations x; = ¢; and x; = ¢; where
I,], and I A ] all have size at most d, then we add
the equation x;5; = ¢;¢; (if we don’t have it

already)



Choosing Pseudo-expectation Values

* Set E[x;] = c; if our collection has x; = ¢;

* What if we don’t have an equation for x;?

* If we have no equation for x;, set E[x;] = 0

> Set E|x?f| = E[f] for all f of degree < d — 2

* These pseudo-expectation values are well-
defined as long as we never have both the
equations x; = 1 and x; = —1.




Part Ill: Proving PSDness



To-Do List

 Here we assume that E is well defined. We will
analyze when this holds w.h.p. in the next

section.

* Need to check linear equations. This follows
from the definitions:
— Whenever we have a constraint x; = ¢;, for all J of

size < d — 3, either E|x;x;| = ¢;¢; = ¢;E[x;] or
Elx;x;| = ¢;E|x;] =0
— Vi, f:deg(f) < d — 2, E[x?f]| = E[f]
* Need to check moment matrix is PSD.



Restriction to Multilinear Indices

Observation: Whenever we have constraints

x? = x; or x7 = 1, it is sufficient to consider the

entries of M mdexed by multilinear monomials.

Reason: Given any g of degree < g, 3 multilinear
g’ such that E|g"?| = E[¢?].

Proof idea: Any non-multilinear term x7f in g
can be replaced by f.

Corollary E|g?| = 0 forall g of degree < d/2
& E[g?] for all multilinear g of degree < d/2.



Key ldea: Equivalence Classes

Definition: For sets I, ] of size < g, we say

x; ~ x; if x;x; = x5 is determined
Proposition: If x; ~ x; and x; ~ xg then x; ~
X

Proof: If x; ~ x; and x; ~ xi then x;5; and

Xjai are determined. Now Xja ;XA =
xlszxl{ = x;ak IS determined. Thus, x; ~ xg

Remark: We carefully chose which
deductions to make so that this would work.



PSD Decomposition

Proposition: E[x,x]] # 0ifandonlyl ~ J.

Choose a representative I from every
equivalence class E.

Take vg (x;) = E|x;x;, ]
UE(XI) — CIAIE if X7 eE. OtherWise,
vg(x;) =0

UE(XI)UE(.X']) — CIAIEC]AIE — CIA] if I,] e L.
Otherwise, vE(x,)vE(x]) =0



PSD Decomposition

» vg(xDvE(x)) = clargCiar, = ciay if 1] € E.
Otherwise, vE(x,)vE(x]) =0

° CorO”ary: VI,], ZE UE(XI)UE(XJ) — E[xlx]]

* Corollary: M = Yo vpvi =0



Part IV: Analyzing Parameter
Regimes



Parameter Regimes

* How large does m have to be before the
random 3-XOR constraints are unsatisifable
w.h.p.?

* For which m will the pseudo-expectation
values be well-defined w.h.p., giving us the
SOS lower bound?



Unsatisfiability of 3-XOR Constraints

* For any given possible solution (x4, ..., x3,),
the probability it is valid if there are m
random 3-XOR constraints is 27,

* Using a union bound, P|3solution] < 2"™™
* Equations are unsatisfiable w.h.p. ifm > n
* In fact, not hard to show that
Ve > 0,3C,nyg > 0:ifm = Cn,n = ny then
w.h.p. there is no solution satisfying % + € of
the constraints



Local Consistency

e If E is not well-defined then we must be able
to derive the contradiction —1 = 1 without
going to degree higher than 2d.

 Multiplying all of the constraints involved in
such a contradiction, every variable appears
an even number of times.



Local Contradiction Picture

* Draw a triangle (xl-a, Xj xka) for each constraint
X; X; X3, = C, involved in the contradiction.
la™a” Kq a

* Every vertex is covered an even nhumber of times

* Example: If we have the constraints x;x,x3; = 1,
XaXcXe = 1, X1X2x4 = 1, Xx3X:5Xxg = 1, we get
the following picture:

N ®) ©
&) (&) &)




Probabilistic Analysis

 What is the probability that there is some
contradiction involving D vertices where each
variable appears twice?

e

D
* There are (g) < (En) ways to choose the D
vertices.

* Now choose the triangles one by one, starting at
any vertex which has not yet been covered twice
and choosing the other two vertices. This gives

. 2D . .
< D? choices for each of the > triangles.



Probabilistic Analysis Continued

2D
en

e We have < (Dz)? (F)D choices for the

structure of the constraints. For a given .
2

m

structure, the probability it appears is (—) >

n3
Thus, the probability of such a contradiction is at
2D 2D D

mD2\ 3 [fen\P m3 D3P 3
—_ — 2 3
most( ) (—) =—5 = eyym2D/n

n3 D
3

* Thisis much lessthan1ifm « ne
VD



Analysis Subtleties

* Note: Can have D > d variables involved in a
contradiction without going to degree more
than d (by ignoring vertices which have already
been covered twice)

. D
* However, must have a constraint graph on > 3

vertices where at most d vertices appear an odd
number of times.

* Cantake D = 0(d) and show w.h.p. this does
not happen.



Analysis Subtleties

* Note: Also have to consider the cases where
variables appear more than twice in the clauses.

 These cases can be analyzed in a similar way.



Part V: Gaussian Elimination and
SOS



Disproving Perfect Completeness

* As stated, the 3-XOR problem is actually easy,
it’s a system of linear of linear equations mod 2

 Map {—1,1}to {1,0} and multiplication to
addition mod 2. Example: x;xjx; = —
becomes x; + x; + x;, = 1 mod 2

e Can use Gaussian elimination!



Noise Gives NP-hardness

* While disproving perfect completeness is easy, it
is NP-hard to distinguish between the case
when (1 — €) of the constraints can be satisfied

1
and the case when at most (E + e) of the
constraints can be satisfied.

* Problem reformulation: Given constraints
X Xj X = Cq:a € [1,m|}, problem becomes:
Maximize },5—1 CqX; Xj X Subject to

1. Vi,xf =1



SOS Robustness

* Why doesn’t SOS capture Gaussian elimination?

* One explanation: SOS is inherently robust to
noise, so it cannot capture techniques which are
not robust, like Gaussian elimination.

* This explanation has merit, though the fact
remains that Gaussian elimination is an
algorithm not captured by SOS.



Part VI: Further Work



k-wise Independent Distributions

* Definition: A distribution of solutions for a
clause is balanced k-wise independent if for all
indices iy, ..., [ and all by, ..., by, € [0,1],

P [Vj S [1,n],xij= bj] =27k
* Example: Fora 3-XOR clause x; + xj + x, = b

mod 2, the uniform distribution of solutions is
balanced 2-wise independent.



Further Work

 These ideas have been vastly generalized to
show tight SOS upper and lower bounds on CSPs
with balanced k-wise independent distributions
[BCK15], [KMDW17].

* Note: Balanced pairwise independence implies
UGC-hardness [AMOS8], NP-hardness is only
known if there is a balanced pairwise
independent subgroup [Chal3].
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