
Lecture 11: Graph Matrices

Adapted from the talk at RANDOM 2016



Lecture Outline

• Part I: Graph Matrix Definitions and Examples

• Part II: Rough Norm Bounds on Graph Matrices

• Part III: Open Problems



Part I: Graph Matrix Definitions 
and Examples



Motivation

• Graph matrices appear naturally when 
analyzing SOS at degree 𝑑 ≥ 4

• I have found understanding graph matrices to 
be very useful in analyzing SOS.



Example Matrix: 4-clique Indicator

• M has rows and columns indexed by pairs of 
vertices of an input graph G

•𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 if 𝑥1, 𝑥2, 𝑥3, 𝑥4 are 
all distinct and are a clique in 𝐺, 0 otherwise

𝑥1 𝑥3

𝑥4𝑥2

𝑥1, 𝑥2

𝑥3, 𝑥4

= 1 if

0 otherwise



Clique Indicator Properties

• Matrix from previous slide:   
𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 if 𝑥1, 𝑥2, 𝑥3, 𝑥4 are 
all distinct and are a clique, 0 otherwise

• Entries are random but not independent.

• That said, the entries can be described in 
terms of a small graph.

• Moreover, the matrix is symmetric under 
permutations of [1, 𝑛] (as a function of the 
input graph)

• In this lecture, we analyze such matrices.



Fourier Characters 𝜒𝐸

• Definition: Given a set 𝐸 of possible edges of 𝐺, 

define 𝜒𝐸 𝐺 = −1|𝐸∖𝐸(𝐺)|

𝑥1 𝑥2

𝑥3𝑥4

Example: If 𝐸 = { 𝑥1, 𝑥2 , 𝑥1, 𝑥3 , (𝑥1, 𝑥4)}
then 𝜒𝐸 𝐺 = −1 as 𝐸 ∖ 𝐸 𝐺 = 1

𝐺



Structure of 𝑅𝐻

• For each graph 𝐻 with distinguished ordered 
sets of vertices 𝑈, 𝑉, we will define a matrix 𝑅𝐻.

• The rows of 𝑅𝐻 are indexed by ordered tuples 𝐴
of |𝑈| vertices and the columns of 𝑅𝐻 are 
indexed by ordered tuples 𝐵 of |𝑉| vertices.

• H determines how 𝑅𝐻(𝐴, 𝐵) depends on 𝐺



Should 𝐴, 𝐵 be in Ascending Order?

• Subtle question: Should we require 𝐴 and 𝐵 to 
be in ascending order?

• Benefit of this requirement: If 𝑀 is indexed by 
monomials, we only have one 𝐴 or 𝐵 for each 
monomial, which is simpler.

• Example: 𝑥1𝑥3 only corresponds to A = {1,3} if 
𝐴 must be in ascending order. Without this 
requirement, 𝑥1𝑥3 corresponds to 𝐴 = {1,3}
and 𝐴 = {3,1}.



Should 𝐴, 𝐵 be in Ascending Order?

• Should we require 𝐴 and 𝐵 to be in ascending 
order?

• Not requiring 𝐴, 𝐵 to be in ascending order 
makes the combinatorics more complicated but 
has its own benefits.

• This lecture: 𝐴, 𝐵 need not be in ascending 
order.



Definition of 𝑅𝐻 (no middle vertices)

• We start with the case when 𝑉 𝐻 = 𝑈 ∪ 𝑉

• Definition: If 𝑉 𝐻 = 𝑈 ∪ 𝑉 then define 
𝑅𝐻 𝐴, 𝐵 = 𝜒𝜎(𝐸(𝐻)) where 𝜎: V H → 𝑉(𝐺) is 

the injective map satisfying 𝜎 𝑈 = 𝐴, 𝜎 𝑉 = 𝐵
and preserving the ordering of 𝑈, 𝑉.



𝑅𝐻 example (no middle vertices)

𝑢1 𝑣1

𝑣2𝑢2
𝐻

𝑥2 𝑥7

𝑥3𝑥8

𝜎(𝐸(𝐻))

𝑈 𝑉 𝐴 𝐵

𝑅𝐻 𝑥2, 𝑥8 , {𝑥7, 𝑥3} = 𝜒{ 𝑥2,𝑥7 , 𝑥7,𝑥8 ,(𝑥3,𝑥8)}

• Recall: 𝑅𝐻 𝐴, 𝐵 = 𝜒𝜎(𝐸(𝐻))

Example:



Examples:

𝑢1 𝑣1

𝑈 𝑉

𝑢1 𝑣1

𝑈 𝑉𝐻

Example 1: All 1s matrix with 0s on the diagonal

Example 2: Symmetric ±1 random matrix with 
0s on the diagonal

𝐻



Example: 4-clique indicator

• 𝑀 =
1

26
σ𝐻:𝑉 𝐻 = {𝑢1,𝑢2,𝑣1,𝑣2}

𝑅𝐻

• If 𝑥1, 𝑥2, 𝑥3, 𝑥4 form a clique, 
𝑅𝐻 {𝑥1, 𝑥2 , {𝑥3, 𝑥4}) = 1 for all of the 𝐻

• If any edge 𝑒 between 𝑥1, 𝑥2, 𝑥3, 𝑥4 is missing, 
there is perfect cancellation between 𝐻 where 
𝑒 ∈ 𝐸(𝐻) and 𝐻 where 𝑒 ∉ 𝐸 𝐻 .

• Thus, 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 if 𝑥1, 𝑥2, x3, x4
form a clique and is 0 otherwise.



In class exercises Part I

• Express the following matrices which are 
indexed by pairs of vertices (𝑥𝑖 , 𝑥𝑗) in terms of 

the matrices 𝑅𝐻:

1. 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = # of edges between the 
vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4 if 𝑥1, 𝑥2, 𝑥3, 𝑥4 are distinct 
and 0 otherwise

2. 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 if there are at least 5 
edges between the vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 0 
otherwise.



Answers

• 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = # of edges between the 
vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4 if 𝑥1, 𝑥2, 𝑥3, 𝑥4 are distinct 
and 0 otherwise:

• Answer: 𝑀 = σ𝑒
1

2
σ𝐻:𝐸 𝐻 ⊆{𝑒}𝑅𝐻

• The 𝐻 with 0 edges has coefficient 3, the 𝐻s 

with one edge have coefficient 
1

2
, and all other 

coefficients are equal.



Answers

• 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 if there are at least 5 
edges between the vertices 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 0 
otherwise. 

• Answer: 𝑀 = σ𝑒
1

32
(σ𝐻:𝑒∉𝐸(𝐻)𝑅𝐻) −

5

64
σ𝐻𝑅𝐻

• If 𝐻 has 𝑚 edges, 𝐻 appears with coefficient 
7−2𝑚

64
.



Discrete Fourier Analysis Equations

• The Fourier character of 𝑀(𝐴, 𝐵) on a set of 
edges 𝐸 is 𝐸

𝐺∼𝐺 𝑛,
1

2

[𝑀 𝐴, 𝐵 𝐺 𝜒𝐸(𝐺)]

• 𝑀 𝐴,𝐵 = σ𝐸 𝐸𝐺∼𝐺 𝑛,
1

2

[𝑀 𝐴, 𝐵 𝐺 𝜒𝐸(𝐺)] 𝜒𝐸

• Can use this find the decomposition of 𝑀 into 
𝑅𝐻.



Definition of 𝑅𝐻 with middle vertices

• So far: 𝑀(𝐴, 𝐵) depended only on edges 
within 𝐴 ∪ 𝐵.

• Can also have dependence on the rest of 𝐺 if 
𝐻 has middle vertices not in 𝑈 or 𝑉

• Definition (up to a symmetry related 
constant): Define 𝑅𝐻 𝐴, 𝐵 = σ𝜎 𝜒𝜎(𝐸(𝐻))
where we sum over all injective maps 
𝜎: V H → 𝑉(𝐺) satisfying 𝜎 𝑈 = 𝐴, 𝜎 𝑉 =
𝐵 and preserving the ordering of 𝑈, 𝑉.

• See appendix for an alternate definition.



𝑅𝐻 example with middle vertices

• Recall: 𝑅𝐻 𝐴, 𝐵 = σ𝜎 𝜒𝜎(𝐸(𝐻))

𝑢1 𝑣1

𝑣2𝑢2

𝐻 𝜎(𝐸(𝐻))

𝑈 𝑉𝑤1

𝑥2 𝑥3

𝑥7𝑥8

𝐴 𝐵𝑥𝑖

𝑅𝐻 𝑥2, 𝑥8 , {𝑥3, 𝑥7} = ෍

𝑖∉{2,3,7,8}

𝜒{ 𝑥2,𝑥𝑖 , 𝑥3,𝑥𝑖 , 𝑥7,𝑥𝑖 ,(𝑥8,𝑥𝑖)}

Example:



Example: Counting 5-cliques

• 𝑀 =
1

210
σ𝐻:𝑉 𝐻 = {𝑢1,𝑢2,𝑣1,𝑣2,𝑤1}

𝑅𝐻

• 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = # of 5-cliques 
containing 𝑥1, 𝑥2, 𝑥3, 𝑥4.



Intersection of 𝑈 and 𝑉

• Thus far, we’ve only considered examples 
where 𝑈 and 𝑉 are disjoint.

• In general, 𝑈 and 𝑉 can intersect arbitrarily, 
this determines how the indices 𝐴 and 𝐵 must 
intersect in non-zero terms.

• Example: The 𝑛 × 𝑛 identity matrix is

𝑈 = 𝑉

𝐻

𝑢1 = 𝑣1



In class exercises Part 2

• Express the following matrices in terms of the 
matrices 𝑅𝐻:

1. 𝑀 𝑥1 , {𝑥2} = # of paths of length 2 between 𝑥1
and 𝑥2 if 𝑥1, 𝑥2 are distinct and 0 otherwise.

2. 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 for all 𝑥1, 𝑥2, 𝑥3, 𝑥4.



Answers

• 𝑀 𝑥1 , {𝑥2} = # of paths of length 2 between 
𝑥1 and 𝑥2 if 𝑥1, 𝑥2 are distinct and 0 otherwise.

• Answer: 𝑀 is the sum of 
1

4
times the following 𝑅𝐻

𝑢1 𝑣1

𝑈 𝑉𝐻

𝑤1

𝑢1 𝑣1

𝑈 𝑉𝐻

𝑤1

𝑢1 𝑣1

𝑈 𝑉𝐻

𝑤1

𝑢1 𝑣1

𝑈 𝑉𝐻

𝑤1 = 𝑛 − 2 × 𝑢1 𝑣1

𝑈 𝑉𝐻



Answers

• 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 for all 𝑥1, 𝑥2, 𝑥3, 𝑥4
• Answer: 𝑀 is the sum of the following 𝑅𝐻

(continued on next page)

𝑈

𝑢1

𝑢2

𝑉

𝑣1

𝑣2

𝑈 = 𝑉

𝑢1 = 𝑣2

𝑢2 = 𝑣1

𝑈 = 𝑉

𝑢1 = 𝑣1

𝑢2 = 𝑣2

𝑢1

𝑢2 = 𝑣2

𝑣1

𝑈 𝑉



Answers

• 𝑀 𝑥1, 𝑥2 , {𝑥3, 𝑥4} = 1 for all 𝑥1, 𝑥2, 𝑥3, 𝑥4
• Answer continued:

𝑢1

𝑢2 = 𝑣1

𝑣2

𝑈 𝑉

𝑢2

𝑢1 = 𝑣2

𝑣1

𝑈 𝑉

𝑢2

𝑢1 = 𝑣1

𝑣2

𝑈 𝑉



𝑅𝐻 as a basis

• Claim: The matrices 𝑅𝐻 where 𝐻 has no 
isolated vertices outside of 𝑈, 𝑉 are a basis 
for matrices which are symmetric with 
respect to permutations of [1,n]

• Remark: This is one advantage of not 
requiring that 𝐴, 𝐵 are in ascending order.

• Good exercise: What is the basis if we do 
require 𝐴, 𝐵 to be in ascending order?



Part II: Norm Bounds



Rough Norm Bound

• Theorem [MP16]: If 𝐻 has no isolated 
vertices then with high probability, 𝑅𝐻 is 
෨𝑂 𝑛( 𝑉 𝐻 −𝑠𝐻)/2 where 𝑠𝐻 is the minimal 

size of a vertex separator between 𝑈 and 𝑉
(S is a vertex separator of U and V if every 
path from U to V intersects S)

• Note: The ෨𝑂 contains polylog factors and 
constants related to the size of 𝐻.



Techniques

• Use the trace power method: 

𝑀 2𝑞 ≤ 𝑡𝑟 𝑀𝑀𝑇 𝑞

• Bound number of terms in 𝑡𝑟 𝑀𝑀𝑇 𝑞
with 

nonzero expected value, use this to bound 

𝐸 𝑡𝑟 𝑀𝑀𝑇 𝑞
.

• Use Markov’s inequality Pr 𝑋 ≥ 𝑎 ≤
𝐸[𝑥]

𝑎
(if X 

is always non-negative) to probabilistically 

bound 𝑡𝑟 𝑀𝑀𝑇 𝑞
and thus 𝑀 .



Graphs for Matrix Powers

𝑢1 𝑣1

𝑈 𝑉𝐻

𝑥1 𝑥2

𝑥3

𝑥4

𝑥5𝑥6

𝑥7

𝑥8

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4
Example: 𝑞 = 4

• 𝑡𝑟 𝑀𝑀𝑇 𝑞
=

σ𝐴1,𝐵1,…𝐴𝑞,𝐵𝑞
ς𝑖=1
𝑞

𝑀 𝐴𝑖 , 𝐵𝑖 𝑀
𝑇(𝐵𝑖𝐴𝑖+1) where 

𝐴𝑞+1 = 𝐴1
• Useful to draw graphs 

for these terms



U V

H

𝐴1 𝐵1

𝐴2

𝐵2

𝐴3

𝐴4

𝐵3

𝐵4



U V

H

W

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4

𝐶1

𝐶2

𝐶3

𝐶4

𝐶′1

𝐶′2𝐶′3

𝐶′4



Bounding # of non-zero terms

• Key idea: A given term has zero expected 
value unless every edge appears an even 
number of times.

• Key question: For a term with non-zero 
expected value, what is the maximum 
possible number of distinct indices?



Cycle Lemma

• Lemma: For a cycle of length 2𝑞, have at 
most 𝑞 + 1 distinct indices

• Proof: By induction. Base case 𝑞 ≤ 1 is 
immediate.

• If no index is unique, ≤ 𝑞 distinct indices

• If index 𝑥𝑖 is unique, its two neighbors must 
be the same. Contract its two neighbors 
together and delete 𝑥𝑖, reducing the number 
of indices by 1 and the cycle length by 2.



Cycle Lemma Picture #1

𝑥1

𝑥3

𝑥1

𝑥2

𝑥4

𝑥3

𝑥2

𝑥4

Case 1: No unique indices



Cycle Lemma Picture #2

Case 2: Unique index

𝑥1

𝑥1

𝑥1

𝑥2

𝑥2

𝑥3

𝑥4

𝑥5
𝑥1

𝑥1

𝑥2

𝑥2

𝑥3

𝑥4



±1 Random Matrix Norm Bound

• 𝐸 𝑡𝑟 𝑅𝐻𝑅𝐻
𝑇 𝑞

is 𝑂(𝑛𝑞+1) (constant 

depends on 𝑞)

• With high probability, 𝑅𝐻 is 𝑂(𝑛(𝑞+1)/2𝑞)

• Taking 𝑞 to be sufficiently large, w.h.p. 𝑅𝐻
is ෨𝑂( 𝑛)

• Not as precise as Wigner’s semicircle law 
[Wig55,Wig58], but relatively easy to 
generalize.



Technical Step: Matrix Preprocessing

• Technical step: For general 𝐻, instead of 
analyzing 𝑅𝐻, we analyze submatrices 𝑅𝐻

′

where each vertex of 𝐻 maps into a different 
subset of [1, 𝑛] and these subsets are disjoint

• This allows us to assume that we only have 
equalities between copies of the same vertex in 
𝐻, making it easier to prove norm bounds on 
𝑅𝐻
′

• We then use probabilistic norm bounds on 𝑅𝐻
′

to prove a probabilistic norm bound on 𝑅𝐻



# of Unique Indices: Upper Bound

• Key idea: If we are analyzing 𝑅′𝐻 𝑅′𝐻
𝑇 𝑞

, 
there are at most 𝑞 distinct values for any 
vertex 𝑥 of 𝐻.

• Case 1: If 𝑥 ∈ 𝑈 or 𝑥 ∈ 𝑉 then there are only 𝑞
copies of 𝑥 to begin with.

• Case 2: If 𝑥 ∉ 𝑈 and 𝑥 ∉ 𝑉, then since 𝑥 is not 
isolated, each copy of 𝑥 must be equal to some 
other copy of 𝑥 as otherwise any edge incident 
to this copy of 𝑥 would only appear once.



U V

H

W

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4

𝐶1

𝐶2

𝐶3

𝐶4

𝐶′1

𝐶′2𝐶′3

𝐶′4



Cycles

• Each path in 𝐻 from 𝑈 to 𝑉 of length 𝑙 creates a 
cycle of length 2𝑞𝑙.

• Prior bound: There are 𝑙 + 1 distinct vertices of 
𝐻, each of which could have 𝑞 distinct values.

• Cycle lemma bound: At most 𝑞𝑙 + 1 distinct 
values.

• Each disjoint path in 𝐻 from 𝑈 to 𝑉 lowers our 
bound by 𝑞 − 1



Final Upper Bound

• Maximum # of disjoint paths = 𝑠𝐻 (the size of 
the minimal vertex separator between 𝑈 and 𝑉)

• Final upper bound on # of distinct indices: 
𝑞 𝑉 𝐻 − 𝑠𝐻 𝑞 − 1 = 𝑞 𝑉 𝐻 − 𝑠𝐻 + 𝑠𝐻

• Choosing 𝑞 appropriately, we can prove our 
probabilistic norm bound.



Achieving the Upper Bound

• Upper bound is tight

• Can be obtained by choosing a minimal vertex 
separator, making all copies of the separator 
the same, and pairing up all remaining vertices 
which are not in an 𝐴 or 𝐵 appropriately.



U V

H

𝐴1 𝐵1

𝐴2

𝐵2

𝐴3

𝐴4

𝐵3

𝐵4

# of distinct indices:
4𝑞 + 2



U V

H

W

𝐴1

𝐴2

𝐴3

𝐴4

𝐵1

𝐵2

𝐵3

𝐵4

𝐶1

𝐶2

𝐶3

𝐶4

𝐶′1

𝐶′2𝐶′3

𝐶′4# of distinct indices:
5𝑞 + 1



Part III: Open Problems



Open Problems

• With more careful analysis, can we tighten 
the norm bounds and remove the 
logarithmic factors?

• More ambitiously, can we determine the 
spectrum of these matrices?
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Appendix: Definition of 𝑅𝐻 with 
Correct Constant



Definition of 𝑅𝐻 with Correct Constant

• Define 

𝑅𝐻 𝐴, 𝐵 = σ𝐺′:∃𝜎:𝑉 𝐻 →𝑉 𝐺 :𝜎 𝐻 =𝐺′ 𝜒𝐸(𝐺′)

where 𝐺′ is a graph on a subset of the vertices of 
𝐺 and we require that 𝜎 is injective, 𝜎 𝑈 = 𝐴, 
𝜎 𝑉 = 𝐵, and 𝜎 respects the orderings on 
𝑈, 𝐴, 𝑉, 𝐵.

• Remark: This definition avoids counting the same 
Fourier character multiple times for a given 
matrix entry 𝑅𝐻 𝐴, 𝐵 .


