Lecture 11: Graph Matrices

Adapted from the talk at RANDOM 2016
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Part I: Graph Matrix Definitions
and Examples



Motivation

* Graph matrices appear naturally when
analyzing SOS at degree d = 4

* | have found understanding graph matrices to
be very useful in analyzing SOS.



Example Matrix: 4-cligue Indicator

* M has rows and columns indexed by pairs of
vertices of an input graph G

* M({x1, %23 {x3,x4}) = 1if xq, x5, X3, x4 are
all distinct and are a clique in G, O otherwise

X3, Xy

X1, X2

0 otherwise




Cligue Indicator Properties

* Matrix from previous slide:
M({xll xZ}l {XB,X4_}) =1if X1,X2,X3, X4 al€
all distinct and are a clique, 0 otherwise

* Entries are random but not independent.

* That said, the entries can be described in
terms of a small graph.

* Moreover, the matrix is symmetric under
permutations of |1, n] (as a function of the
input graph)

* In this lecture, we analyze such matrices.



Fourier Characters yr

* Definition: Given a set E of possible edges of G,
define yz(G) = —1IEN\EG)I

Example: If E = {(xq, x5), (x1,x3), (x1,%4)}
then yg(G) = —1as|E\E(G)| =1



Structure of Ry

* For each graph H with distinguished ordered
sets of vertices U, V, we will define a matrix Ry.

* The rows of Ry are indexed by ordered tuples A
of |U| vertices and the columns of Ry are
indexed by ordered tuples B of || vertices.

* H determines how Ry (4, B) depends on G



Should A4, B be in Ascending Order?

* Subtle question: Should we require A and B to
be in ascending order?

* Benefit of this requirement: If M is indexed by
monomials, we only have one A or B for each
monomial, which is simpler.

* Example: x{x3 only corresponds to A = {1,3} if
A must be in ascending order. Without this
requirement, x, x5 corresponds to A = {1,3}
and A = {3,1}.



Should A4, B be in Ascending Order?

* Should we require A and B to be in ascending
order?

* Not requiring A, B to be in ascending order
makes the combinatorics more complicated but
has its own benefits.

* This lecture: A, B need not be in ascending
order.



Definition of Ry (no middle vertices)

* We start with the case when V(H) = U UV

* Definition: If V(H) = U U V then define
Ry (A, B) = Xsew)) Whereo: V(H) - V(G) is
the injective map satisfyingo(U) = 4,0(V) =B
and preserving the ordering of U, V.



Ry example (ho middle vertices)

* Recall: Ry(A,B) = Xo(E(H))

Example:
U V A B
H o(E(H))

Ry ({x2, X8}, {x7, X3}) = X{(px7),067.28),(x3,%8)}



Examples:

Example 1: All 1s matrix with Os on the diagonal

W @

U H V

Example 2: Symmetric +1 random matrix with
Os on the diagonal

W@

U HV




Example: 4-clique indicator

1
M — ;ZH:V(H)= {ul:u2'v1'v2} RH

If x4, x5, X3, x4 form a clique,

Ry({x{, x5}, {x3,x,}) = 1forall of the H

If any edge e between x4, x5, X3, X4 iS missing,
there is perfect cancellation between H where
e € E(H) and H wheree & E(H).

ThUS, M({xli xZ}l {X3, x4}) =1if X1, X2,X3, X4
form a clique and is 0 otherwise.



In class exercises Part |

* Express the following matrices which are
indexed by pairs of vertices (x;, x;) in terms of
the matrices Ry:

1.

M ({xq,x,},{x3,x,}) = # of edges between the
vertices X1, X5, X3, X4 if X1, X5, X3, X, are distinct
and 0 otherwise

M ({xq,x,},{x3,x,}) = 1if there are at least 5
edges between the vertices x4, x,, x3,x, and 0
otherwise.



Answers

e M({xq1,x,},{x3,x,}) = # of edges between the
vertices xq, X,, X3, X4 if X1, X>, X3, x4 are distinct
and O otherwise:

1
* Answer: M = 20> D p(r)crey R
 The H with 0 edges has coefficient 3, the Hs

. L. 1
with one edge have coefficient = and all other
coefficients are equal.



Answers

e M({xq1,x,},{x3,x,}) = 1if there are at least 5
edges between the vertices x4, x5, X3, x4 and O
otherwise.

1 5
e Answer: M = ZBB_Z(ZH:eéE(H) RH) — aZH RH

* |f H has m edges, H appears with coefficient
7—2m

64




Discrete Fourier Analysis Equations

* The Fourier character of M(A4, B) on a set of
edges E is EG~G(n 1) IM(A,B)(G)xr(G)]

2
* M(AB) = BpE g, [MA, BY(G)xe(6)] e
2
* Can use this find the decomposition of M into
Ry.



Definition of Ry with middle vertices

So far: M(A, B) depended only on edges
within A U B.

Can also have dependence on the rest of G if
H has middle vertices notin U or VV

Definition (up to a symmetry related
constant): Define Ry (A, B) = X6 Xo(E(H))
where we sum over all injective maps

o:V(H) - V(G) satisfyingo(U) = A, a(V) =
B and preserving the ordering of U, V.

See appendix for an alternate definition.



@)

U

@)

Example:

@

@y

V

@)

Ry ({xz, xg}, {x3,x7}) = 2 X {(o2,%), (23,20, (27,%0), (x5.%1)}

H

i¢{2,3,7,8}

e Recall: RH(A; B) — ZO‘XO'(E(H))

2)

A

R;; example with middle vertices

@)

x5

B

)

o(E(H))




Example: Counting 5-cliques

1
* M = ZTOZH:V(H)= {U1,Up,V1,V2,W1} RH

o M({xq1,x,},{x3,x4}) = # of 5-cliques
containing x4, X5, X3, X4.



Intersection of U and V

* Thus far, we’ve only considered examples
where U and I/ are disjoint.

* In general, U and V can intersect arbitrarily,
this determines how the indices A and B must
Intersect iIn non-zero terms.

 Example: The n X n identity matrix is
H

U=V




In class exercises Part 2

* Express the following matrices in terms of the
matrices Ry:

1. M({x},{x,}) = # of paths of length 2 between x;
and x, if x4, x, are distinct and 0 otherwise.

2. M({xq,x,},{x3,x4}) = 1forall xq,x,,x3,x4.



Answers

« M({x; },{x,}) = # of paths of length 2 between
x1 and x5 if x1, x, are distinct and 0 otherwise.

. 1. .
* Answer: M is the sum of Z times the following Ry

5 B ool

U H V H V U H V

g0 -0-<[@ [

H



Answers

o M({xq1,x,},{x3,x,}) = 1forall xq, x5, %3, %4
* Answer: M is the sum of the following Ry

(continued on next page)

U V




Answers

o M({xq1,x,},{x3,x,}) = 1forall xq, x5, %3, %4

e Answer continued:




R, as a basis

* Claim: The matrices Ry where H has no
isolated vertices outside of U, V are a basis
for matrices which are symmetric with
respect to permutations of [1,n]

* Remark: This is one advantage of not
requiring that A, B are in ascending order.

e Good exercise: What is the basis if we do
require A, B to be in ascending order?



Part Il: Norm Bounds



Rough Norm Bound

e Theorem [MP16]: If H has no isolated
vertices then with high probability, ||Ry|| is
O (nVUI=s1)/2) where sy is the minimal
size of a vertex separator between U and V

(S is a vertex separator of U and V if every
path from U to V intersects S)

 Note: The O contains polylog factors and
constants related to the size of H.



Techniques

e Use the trace power method:
M2 < o ((MmT)?)

* Bound number of terms in tr ((MMT)q) with
nonzero expected value, use this to bound

E |er ((Mm7)")]
* Use Markov’s inequality Pr|X = a] < — (|fX
is always non-negative) to probablllstlcally

bound tr ((MMT)q) and thus [|M]].




Graphs for Matrix Powers

. tr ((MMT)q)
2. A4,B1,..Aq.By

Ag+1 = 41

_, M(A;, B{))M" (B;A; 1) where

e Useful to draw graphs

for these terms

W@

U HV

Example: g = 4

Ag

B3

&9

2

2

)

A

Az

&

ol










Bounding # of non-zero terms

* Key idea: A given term has zero expected
value unless every edge appears an even
number of times.

e Key question: For a term with non-zero
expected value, what is the maximum
possible number of distinct indices?



Cycle Lemma

* Lemma: For a cycle of length 2g, have at
most g + 1 distinct indices

* Proof: By induction. Base caseq < 1 is
immediate.

* If no index is unique, < q distinct indices

* If index x; is unique, its two neighbors must
oe the same. Contract its two neighbors
together and delete x;, reducing the number
of indices by 1 and the cycle length by 2.




Cycle Lemma Picture

X2 X1

Case 1: No unique indices




Cycle Lemma Picture

Y &

Case 2: Unique index




+1 Random Matrix Norm Bound

) [tr ((RHRHT)Q)] is O(n9*1) (constant
depends on q)

» With high probability, ||Ry|| is O (n(2t1)/24)

* Taking q to be sufficiently large, w.h.p. || Ry||
is O(1/n)

* Not as precise as Wigner’s semicircle law

[Wig55,Wig58], but relatively easy to
generalize.



Technical Step: Matrix Preprocessing

* Technical step: For general H, instead of
analyzing Ry, we analyze submatrices Ry,
where each vertex of H maps into a different
subset of [1, n] and these subsets are disjoint

* This allows us to assume that we only have
equalities between copies of the same vertex in
H, making it easier to prove norm bounds on
Ry

 We then use probabilistic norm bounds on Ry
to prove a probabilistic norm bound on Ry



of Unigue Indices: Upper Bound

* Key idea: If we are analyzing (R’H(R’H)T)q,
there are at most g distinct values for any
vertex x of H.

*Case l:If x € U orx € V then there are only g
copies of x to begin with.

eCase 2:If x € U and x € V, then since x is not
isolated, each copy of x must be equal to some
other copy of x as otherwise any edge incident
to this copy of x would only appear once.






Cycles

e Each path in H from U to V of length [ creates a
cycle of length 2¢gl.

e Prior bound: There are [ + 1 distinct vertices of
H, each of which could have g distinct values.

* Cycle lemma bound: At most gl + 1 distinct
values.

* Each disjoint path in H from U to V lowers our
bound by g — 1



Final Upper Bound

* Maximum # of disjoint paths = sy (the size of
the minimal vertex separator between U and V)

* Final upper bound on # of distinct indices:
qlV(H)| —sp(qg — 1) = q([V(H)| —sy) + sy

* Choosing q appropriately, we can prove our
probabilistic norm bound.




Achieving the Upper Bound

* Upper bound is tight

* Can be obtained by choosing a minimal vertex
separator, making all copies of the separator
the same, and pairing up all remaining vertices
which are not in an A or B appropriately.
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# of distinct indices:
5g + 1




Part Ill: Open Problems



Open Problems

* With more careful analysis, can we tighten
the norm bounds and remove the
logarithmic factors?

* More ambitiously, can we determine the
spectrum of these matrices?
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Appendix: Definition of Ry with
Correct Constant



Definition of Ry with Correct Constant

e Define

Ry(A,B) = X' 300>V (6):0()=6" XE(G")

where G’ is a graph on a subset of the vertices of
G and we require that o is injective, a(U) = A4,

o(VV) = B, and o respects the orderings on
UAV,B.

 Remark: This definition avoids counting the same
Fourier character multiple times for a given
matrix entry Ry (4, B).



