Lecture 11: Graph Matrices

Adapted from the talk at RANDOM 2016

Lecture Outline

- Part I: Graph Matrix Definitions and Examples
- Part II: Rough Norm Bounds on Graph Matrices
- Part III: Open Problems

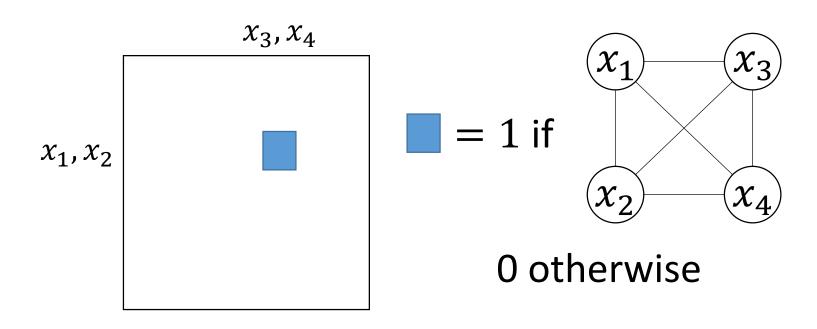
Part I: Graph Matrix Definitions and Examples

Motivation

- Graph matrices appear naturally when analyzing SOS at degree $d \ge 4$
- I have found understanding graph matrices to be very useful in analyzing SOS.

Example Matrix: 4-clique Indicator

- M has rows and columns indexed by pairs of vertices of an input graph G
- $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ if x_1, x_2, x_3, x_4 are all distinct and are a clique in G, 0 otherwise

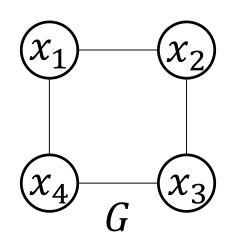


Clique Indicator Properties

- Matrix from previous slide: $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ if x_1, x_2, x_3, x_4 are all distinct and are a clique, 0 otherwise
- Entries are random but not independent.
- That said, the entries can be described in terms of a small graph.
- Moreover, the matrix is symmetric under permutations of [1, n] (as a function of the input graph)
- In this lecture, we analyze such matrices.

Fourier Characters χ_E

• Definition: Given a set E of possible edges of G, define $\chi_E(G) = -1^{|E \setminus E(G)|}$



Example: If $E = \{(x_1, x_2), (x_1, x_3), (x_1, x_4)\}$ then $\chi_E(G) = -1$ as $|E \setminus E(G)| = 1$

Structure of R_H

- For each graph H with distinguished ordered sets of vertices U, V, we will define a matrix R_H .
- The rows of R_H are indexed by ordered tuples A of |U| vertices and the columns of R_H are indexed by ordered tuples B of |V| vertices.
- H determines how $R_H(A, B)$ depends on G

Should *A*, *B* be in Ascending Order?

- Subtle question: Should we require A and B to be in ascending order?
- Benefit of this requirement: If *M* is indexed by monomials, we only have one *A* or *B* for each monomial, which is simpler.
- Example: x_1x_3 only corresponds to $A = \{1,3\}$ if A must be in ascending order. Without this requirement, x_1x_3 corresponds to $A = \{1,3\}$ and $A = \{3,1\}$.

Should *A*, *B* be in Ascending Order?

- Should we require A and B to be in ascending order?
- Not requiring A, B to be in ascending order makes the combinatorics more complicated but has its own benefits.
- This lecture: A, B need not be in ascending order.

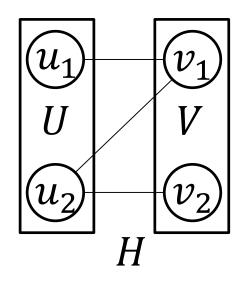
Definition of R_H (no middle vertices)

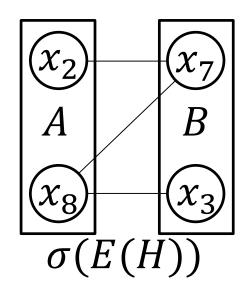
- We start with the case when $V(H) = U \cup V$
- Definition: If $V(H) = U \cup V$ then define $R_H(A,B) = \chi_{\sigma(E(H))}$ where σ : $V(H) \rightarrow V(G)$ is the injective map satisfying $\sigma(U) = A$, $\sigma(V) = B$ and preserving the ordering of U,V.

R_H example (no middle vertices)

• Recall: $R_H(A,B) = \chi_{\sigma(E(H))}$

Example:

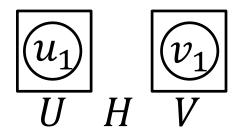




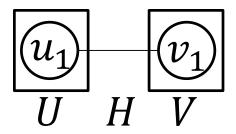
$$R_H(\{x_2, x_8\}, \{x_7, x_3\}) = \chi_{\{(x_2, x_7), (x_7, x_8), (x_3, x_8)\}}$$

Examples:

Example 1: All 1s matrix with 0s on the diagonal



Example 2: Symmetric ± 1 random matrix with 0s on the diagonal



Example: 4-clique indicator

- $M = \frac{1}{2^6} \sum_{H:V(H)=\{u_1,u_2,v_1,v_2\}} R_H$
- If x_1, x_2, x_3, x_4 form a clique, $R_H(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ for all of the H
- If any edge e between x_1, x_2, x_3, x_4 is missing, there is perfect cancellation between H where $e \in E(H)$ and H where $e \notin E(H)$.
- Thus, $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ if x_1, x_2, x_3, x_4 form a clique and is 0 otherwise.

In class exercises Part I

- Express the following matrices which are indexed by pairs of vertices (x_i, x_j) in terms of the matrices R_H :
 - 1. $M(\{x_1, x_2\}, \{x_3, x_4\}) = \#$ of edges between the vertices x_1, x_2, x_3, x_4 if x_1, x_2, x_3, x_4 are distinct and 0 otherwise
 - 2. $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ if there are at least 5 edges between the vertices x_1, x_2, x_3, x_4 and 0 otherwise.

- $M(\{x_1, x_2\}, \{x_3, x_4\}) = \#$ of edges between the vertices x_1, x_2, x_3, x_4 if x_1, x_2, x_3, x_4 are distinct and 0 otherwise:
- Answer: $M = \sum_{e} \frac{1}{2} \sum_{H:E(H) \subseteq \{e\}} R_H$
- The H with 0 edges has coefficient 3, the Hs with one edge have coefficient $\frac{1}{2}$, and all other coefficients are equal.

- $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ if there are at least 5 edges between the vertices x_1, x_2, x_3, x_4 and 0 otherwise.
- Answer: $M = \sum_{e} \frac{1}{32} (\sum_{H:e \notin E(H)} R_H) \frac{5}{64} \sum_{H} R_H$
- If H has m edges, H appears with coefficient $\frac{7-2m}{64}$.

Discrete Fourier Analysis Equations

- The Fourier character of M(A, B) on a set of edges E is $E_{G \sim G(n, \frac{1}{2})}[M(A, B)(G)\chi_E(G)]$
- $M(A,B) = \sum_{E} E_{G \sim G(n,\frac{1}{2})} [M(A,B)(G)\chi_{E}(G)] \chi_{E}$
- Can use this find the decomposition of M into R_H .

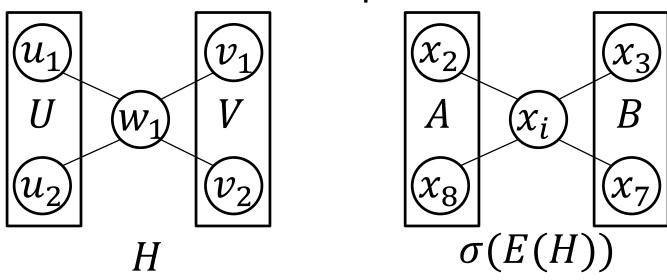
Definition of R_H with middle vertices

- So far: M(A, B) depended only on edges within $A \cup B$.
- Can also have dependence on the rest of G if H has middle vertices not in U or V
- Definition (up to a symmetry related constant): Define $R_H(A,B) = \sum_{\sigma} \chi_{\sigma(E(H))}$ where we sum over all injective maps $\sigma: V(H) \to V(G)$ satisfying $\sigma(U) = A$, $\sigma(V) = B$ and preserving the ordering of U, V.
- See appendix for an alternate definition.

R_H example with middle vertices

• Recall: $R_H(A, B) = \sum_{\sigma} \chi_{\sigma(E(H))}$

Example:



$$R_H(\{x_2, x_8\}, \{x_3, x_7\}) = \sum_{i \notin \{2, 3, 7, 8\}} \chi_{\{(x_2, x_i), (x_3, x_i), (x_7, x_i), (x_8, x_i)\}}$$

Example: Counting 5-cliques

•
$$M = \frac{1}{2^{10}} \sum_{H:V(H)=\{u_1,u_2,v_1,v_2,w_1\}} R_H$$

• $M(\{x_1, x_2\}, \{x_3, x_4\}) = \# \text{ of 5-cliques}$ containing x_1, x_2, x_3, x_4 .

Intersection of *U* and *V*

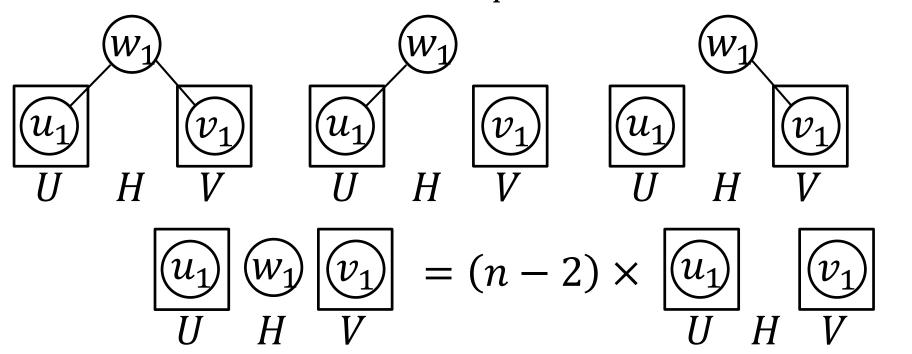
- Thus far, we've only considered examples where U and V are disjoint.
- In general, U and V can intersect arbitrarily, this determines how the indices A and B must intersect in non-zero terms.
- Example: The $n \times n$ identity matrix is

$$egin{aligned} H \ \hline igg| u_1 = v_1 \ U = V \end{aligned}$$

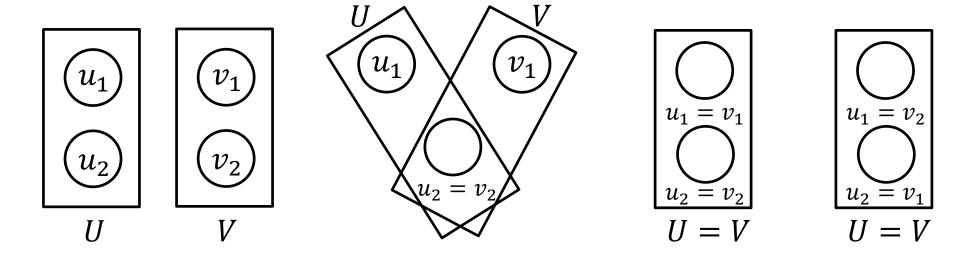
In class exercises Part 2

- Express the following matrices in terms of the matrices R_H :
 - 1. $M(\{x_1\}, \{x_2\}) = \#$ of paths of length 2 between x_1 and x_2 if x_1, x_2 are distinct and 0 otherwise.
 - 2. $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ for all x_1, x_2, x_3, x_4 .

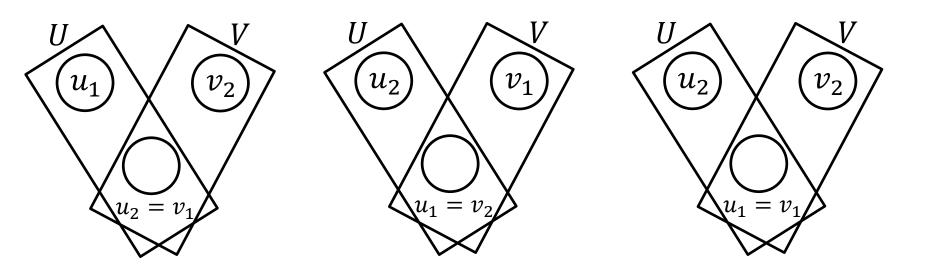
- $M(\{x_1\}, \{x_2\}) = \#$ of paths of length 2 between x_1 and x_2 if x_1, x_2 are distinct and 0 otherwise.
- Answer: M is the sum of $\frac{1}{4}$ times the following R_H



- $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ for all x_1, x_2, x_3, x_4
- Answer: M is the sum of the following R_H (continued on next page)



- $M(\{x_1, x_2\}, \{x_3, x_4\}) = 1$ for all x_1, x_2, x_3, x_4
- Answer continued:



R_H as a basis

- Claim: The matrices R_H where H has no isolated vertices outside of U, V are a basis for matrices which are symmetric with respect to permutations of [1,n]
- Remark: This is one advantage of not requiring that A, B are in ascending order.
- Good exercise: What is the basis if we do require A, B to be in ascending order?

Part II: Norm Bounds

Rough Norm Bound

- Theorem [MP16]: If H has no isolated vertices then with high probability, $||R_H||$ is $\tilde{O}(n^{(|V(H)|-s_H)/2})$ where s_H is the minimal size of a vertex separator between U and V (S is a vertex separator of U and V if every path from U to V intersects S)
- Note: The \tilde{O} contains polylog factors and constants related to the size of H.

Techniques

• Use the trace power method:

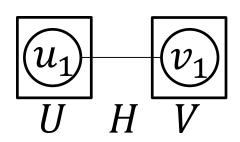
$$||M||^{2q} \le tr\left(\left(MM^T\right)^q\right)$$

- Bound number of terms in $tr\left(\left(MM^T\right)^q\right)$ with nonzero expected value, use this to bound $E\left[tr\left(\left(MM^T\right)^q\right)\right]$.
- Use Markov's inequality $\Pr[X \ge a] \le \frac{E[x]}{a}$ (if X is always non-negative) to probabilistically bound $tr\left(\left(MM^T\right)^q\right)$ and thus $\|M\|$.

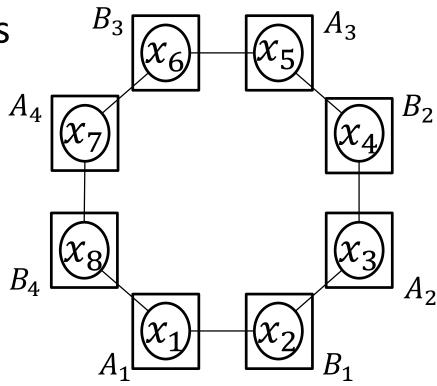
Graphs for Matrix Powers

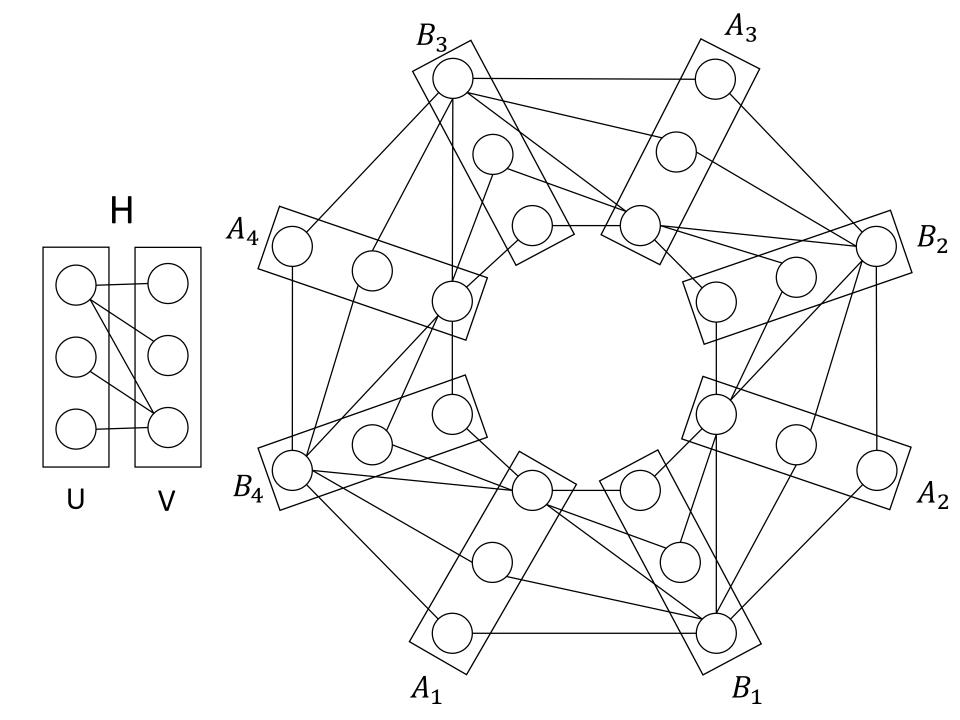
• $tr\left(\left(MM^{T}\right)^{q}\right) = \sum_{A_{1},B_{1},\dots,A_{q},B_{q}} \prod_{i=1}^{q} M(A_{i},B_{i})M^{T}(B_{i}A_{i+1})$ where $A_{q+1} = A_{1}$

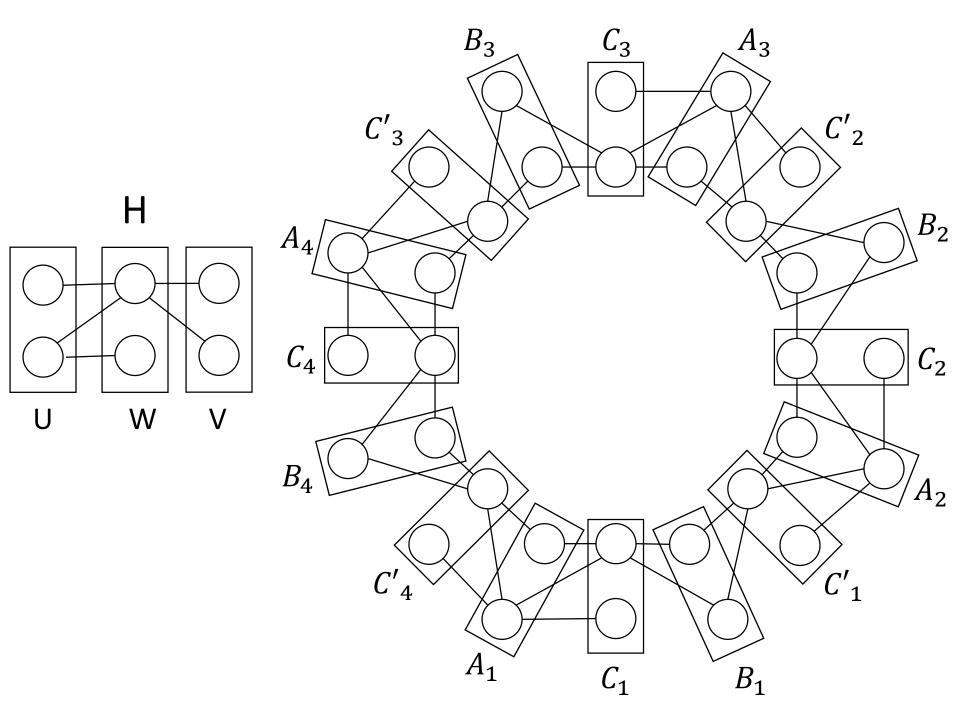
 Useful to draw graphs for these terms



Example: q = 4







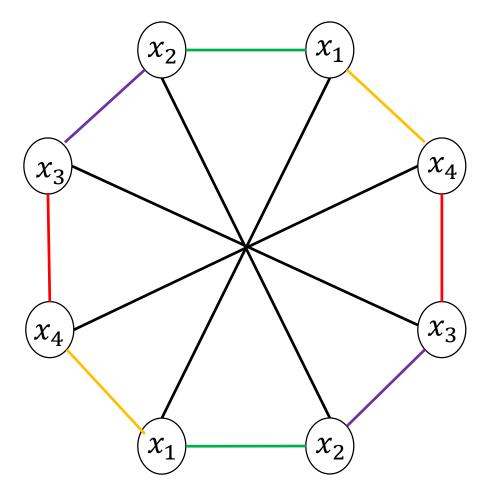
Bounding # of non-zero terms

- Key idea: A given term has zero expected value unless every edge appears an even number of times.
- Key question: For a term with non-zero expected value, what is the maximum possible number of distinct indices?

Cycle Lemma

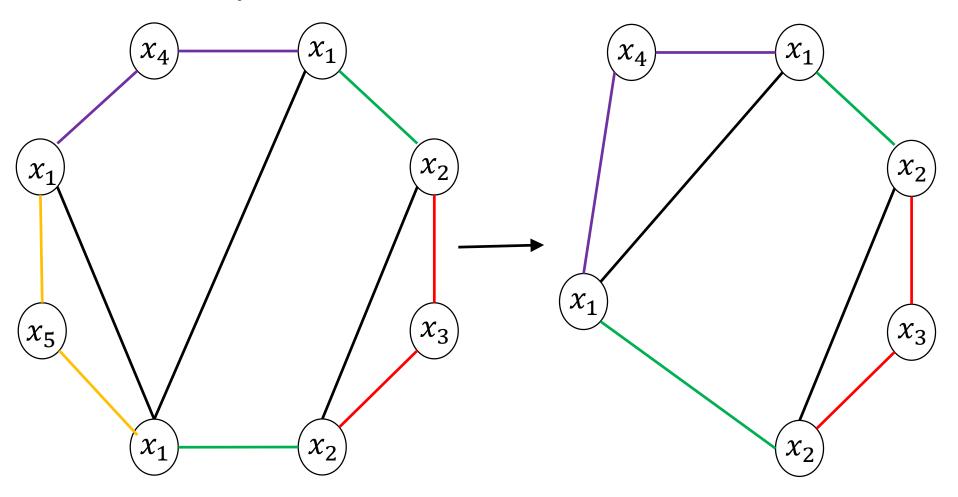
- Lemma: For a cycle of length 2q, have at most q+1 distinct indices
- Proof: By induction. Base case $q \le 1$ is immediate.
- If no index is unique, $\leq q$ distinct indices
- If index x_i is unique, its two neighbors must be the same. Contract its two neighbors together and delete x_i , reducing the number of indices by 1 and the cycle length by 2.

Cycle Lemma Picture #1



Case 1: No unique indices

Cycle Lemma Picture #2



Case 2: Unique index

±1 Random Matrix Norm Bound

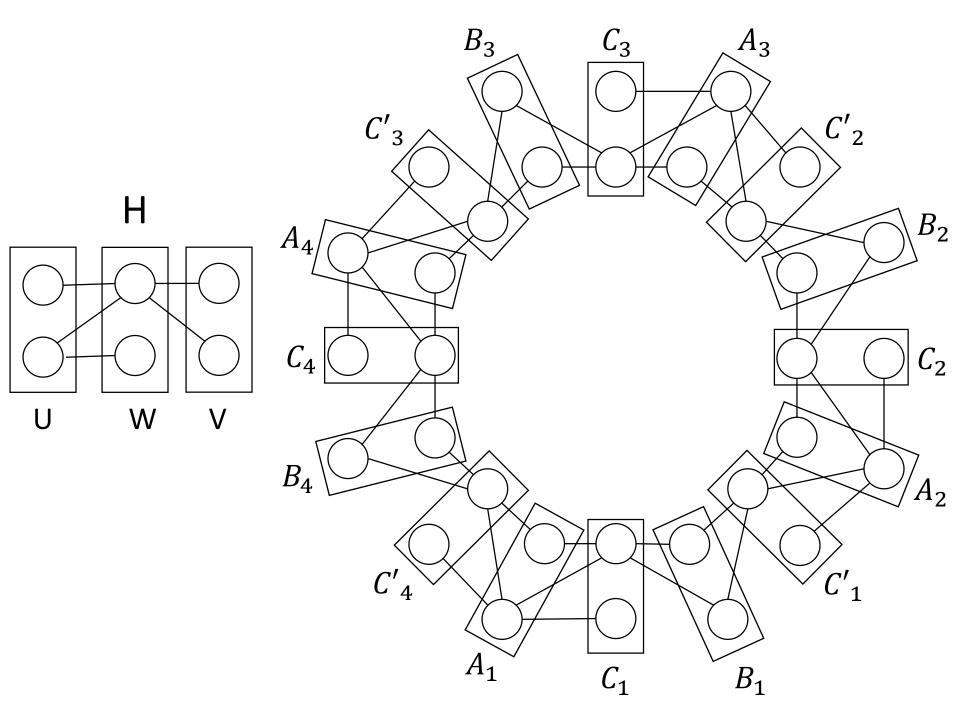
- $E\left[tr\left(\left(R_HR_H^T\right)^q\right)\right]$ is $O(n^{q+1})$ (constant depends on q)
- With high probability, $||R_H||$ is $O(n^{(q+1)/2q})$
- Taking q to be sufficiently large, w.h.p. $\|R_H\|$ is $\tilde{O}(\sqrt{n})$
- Not as precise as Wigner's semicircle law [Wig55,Wig58], but relatively easy to generalize.

Technical Step: Matrix Preprocessing

- Technical step: For general H, instead of analyzing R_H , we analyze submatrices R_H' where each vertex of H maps into a different subset of $\lceil 1, n \rceil$ and these subsets are disjoint
- This allows us to assume that we only have equalities between copies of the same vertex in H, making it easier to prove norm bounds on R_H'
- We then use probabilistic norm bounds on R'_H to prove a probabilistic norm bound on R_H

of Unique Indices: Upper Bound

- Key idea: If we are analyzing $(R'_H(R'_H)^T)^q$, there are at most q distinct values for any vertex x of H.
- Case 1: If $x \in U$ or $x \in V$ then there are only q copies of x to begin with.
- Case 2: If $x \notin U$ and $x \notin V$, then since x is not isolated, each copy of x must be equal to some other copy of x as otherwise any edge incident to this copy of x would only appear once.



Cycles

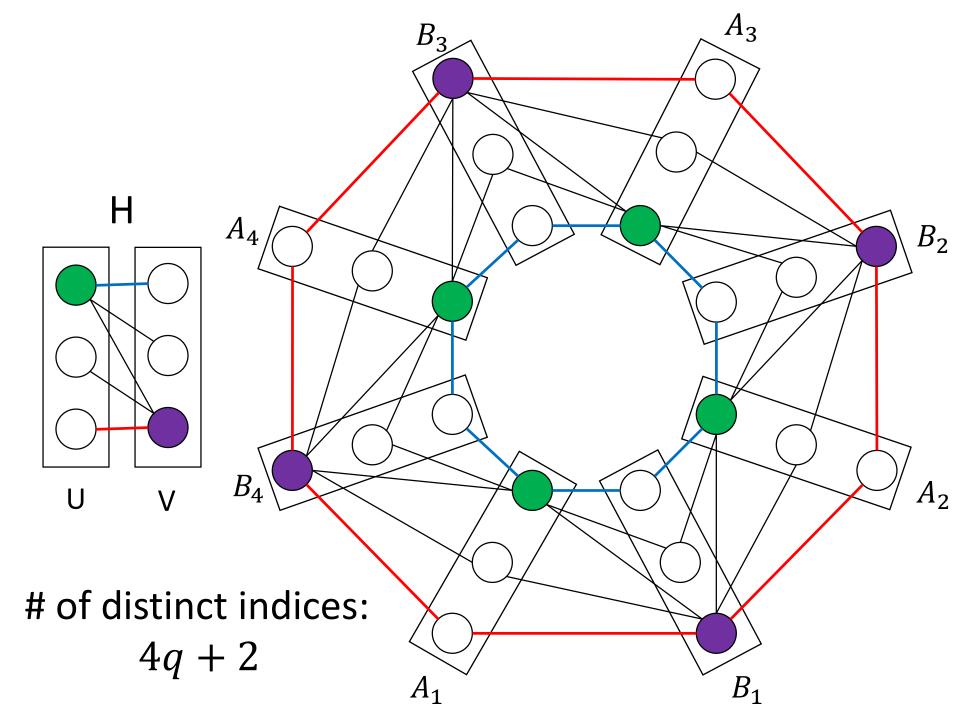
- Each path in H from U to V of length l creates a cycle of length 2ql.
- Prior bound: There are l+1 distinct vertices of H, each of which could have q distinct values.
- Cycle lemma bound: At most ql+1 distinct values.
- Each disjoint path in H from U to V lowers our bound by q-1

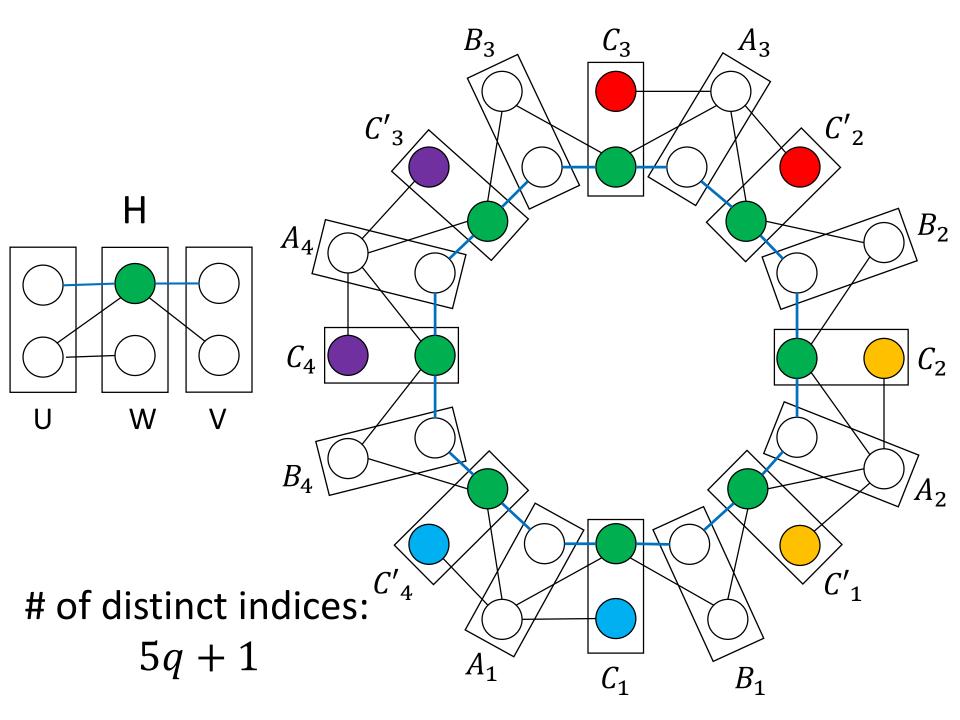
Final Upper Bound

- Maximum # of disjoint paths = s_H (the size of the minimal vertex separator between U and V)
- Final upper bound on # of distinct indices: $q|V(H)| s_H(q-1) = q(|V(H)| s_H) + s_H$
- Choosing q appropriately, we can prove our probabilistic norm bound.

Achieving the Upper Bound

- Upper bound is tight
- Can be obtained by choosing a minimal vertex separator, making all copies of the separator the same, and pairing up all remaining vertices which are not in an A or B appropriately.





Part III: Open Problems

Open Problems

- With more careful analysis, can we tighten the norm bounds and remove the logarithmic factors?
- More ambitiously, can we determine the spectrum of these matrices?

References

- [MP16] D. Medarametla, A. Potechin. Bounds on the Norms of Uniform Low Degree Graph Matrices. RANDOM 2016. https://arxiv.org/abs/1604.03423
- [Wig55] E. Wigner. Characteristic Vectors of Bordered Matrices with Infinite Dimensions. Ann. of Math. 62, p. 548-564. 1955
- [Wig58] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices. Ann. of Math. 67, p. 325-328, 1958.

Appendix: Definition of R_H with Correct Constant

Definition of R_H with Correct Constant

Define

$$R_H(A,B) = \sum_{G': \exists \sigma: V(H) \to V(G): \sigma(H) = G'} \chi_{E(G')}$$

where G' is a graph on a subset of the vertices of G and we require that σ is injective, $\sigma(U) = A$, $\sigma(V) = B$, and σ respects the orderings on U, A, V, B.

• Remark: This definition avoids counting the same Fourier character multiple times for a given matrix entry $R_H(A,B)$.