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Joint Work with David Steurer



Lecture Outline

* Part I: Matrix Completion Problem

* Part Il: Matrix Completion via Nuclear Norm
Minimization

e Part Ill: Generalization to Tensor Completion

e Part IV: SOS-symmetry to the Rescue

e Part V: Finding Dual Certificate for Matrix
Completion

* Part VI: Open Problems



Part I: Matrix Completion Problem



Matrix Completion

* Matrix Completion: Let ) be a set of entries
sampled at random. Given the entries
{M,,: (a,b) € Q} from a matrix M, can we
determine the remaining entries of M?

* Impossible in general, tractable if M is low rank
i.e. M = YT_, L;u;v{ where is not too large.



Netflix Challenge

e Canonical example of matrix completion:
Netflix Challenge

* Can we predict users’ preferences on other
movies from their previous ratings?



Netflix Challenge

? 5 6 ? 6
10 3 9 ? ?
? 9 ? 6 7.5




Solving Matrix Completion

* Current best method in practice: Alternating
minimization

e Idea: Write M = Y'7_, u; v/, alternate
between optimizing {u;} and {v;}

* Best known theoretical guarantees: Nuclear
norm minimization

* This lecture: We’ll describe nuclear norm
minimization and how it generalizes to tensor
completion via SOS.



Part IlI: Nuclear Norm Minimization



Theorem Statement

* Theorem [Rec11]: f M = ¥1_, A; u;v; is an
n X n matrix then nuclear norm minimization
requires O (nruy(logn)?) random samples to
complete M with high probability

* Note: g is a parameter related to how
coherent the {u;} and the {v;} (see appendix
for the definition)

* Example of why this is needed: If u; = e; then

u;v] = e;v/ can only be fully detected by

sampllng all of row j, which requires sampling
almost everything!



Nuclear Norm

* Recall the singular value decomposition (SVD)
of a matrix M

M =Y"_, Lju; vi where the {u;} are
orthonormal, the {v;} are orthonormal, and
A; = 0 foralli.

* The nuclear norm of M is ||M||, = Xi=1 4;



Nuclear Norm Minimization

* Matrix completion problem: Recover M given

ranc
* Nuc

omly sampled entries {M,;: (a, b) € Q}
ear norm minimization: Find the matrix

X W
Xab

nich minimizes || X ||, while satisfying
= M_;, whenever (a,b) € Q.

* How do we minimize || X]||,?



Semidefinite Program

* We can implement nuclear norm minimization
with the following semidefinite program:

yT )15) 7 0 where
X, = My, whenever (a,b) € Q)

* Why does this work? We'll first show that the
true solution is a good solution. We’'ll then
describe how to show the true solution is the

optimal solution

e Minimize the trace of (



True Solution

X
X v
where X,;, = M_;, whenever (a,b) € Q)
. U X U;
* True solution: (XT V) =Xk (Ui) (UT V;T)
(recall that M = Y., A; u;v])

e Since for all i, tr(uu] ) = tr(vv]) = 1,

U X
i (XT V) =22

* Program: Minimize the trace of ( ) =0



Dual Certificate

* Program: Minimize the trace of ( ) =0

U X
T
where X,;, = M,;, whenever (a, Z%S S K

* Dual Certificate: (_IjT ;&4) >0
* Recall that if My, M, = 0 then M{eM, = 0
(where ¢ is the entry-wise dot product)

Id -A U X
o ° =
(—AT Id) (XT V) =0

*If A, = 0 whenever (a, b) & (), this lower
bounds the trace.




True Solution Optimality

—-AT  Id
0 whenever (a, b) & )

u.
* True solution (;]T };) =Y. (v;) (ul' vl)
o ld ZA\ (U B

is optimal if (—AT Id) (XT V) =0

. f Id —A\[(Ui\ _ .
This occurs if (—AT Id)(vi) = O forall i

e Dual Certificate: ( Id _A) 7 0 where 4, =



Conditionson A

Id —-A
* We want 4 such that (—AT 1d

0 whenever (a, b) € (Q, and

Id —A\[(Ui\ _ .
(14, ) (&)= omran

* Necessary and sufficient conditions on A:
1. |IAll €1
2. A, = 0 whenever (a,b) & Q
3. Av; = u; forall i
4. ATu; = v; forall i

) >0, 4qy =



Dual Certificate with all entries

* Necessary and sufficient conditions on A:
1. Al <1
2. A,y = 0whenever (a,b) ¢ Q)
3. Av; = u; forall i
4. ATu; = v; forall i

* If we have all entries (so we can |gnore
condition 2), we can take A = ¥, u;v;

* Challenge: Find A when we don’t have all
entries

* Remark: This explains why the semidefinite
program minimizes the nuclear norm.



Part Ill: Generalization to Tensor
Completion



Tensor Completion

* Tensor Completion: Let () be a set of entries
sampled at random. Given the entries
{T,pc: (a,b,c) € Q} from atensor T, can we
determine the remaining entries of T?

* More difficult problem: tensor rank is much
more complicated



Exact Tensor Completion Theorem

* Theorem [PS17]: f T = Y7, Liu; Q v; Q wy,

the {u;} are ort

nogonal, the {v;} are

orthogonal, and the {w;} are orthogonal then
with higgh probability we can recover T with

O (runzpolylog(n)) random samples
* First algorithm to obtain exact tensor

completion

* Remark: The orthogonality condition is very
restrictive but this result can likely be extended.

* See appendix for the definition of u.



Semidefinite Program: First Attempt

* Won’t quite work, but we’ll fix it later.

X

>
¥T VW) 0 where
Xgpe = Type Whenever (a, b, c) € Q

e Minimize the trace of (

* Here the top and left blocks are indexed by a

and the bottom and right blocks are indexed
by b, c.



True Solution

X

NESN
X VW
where X, = T, Whenever (a, b,c) € ()

* Program: Minimize trace of (

. Uu X
* True solution: (XT VW) =

2i A (Vi g Wi) (u‘T (v & Wi)T)
(recaII that T = Zi/li Uj (Ul' ® Wl')T)

U X
e (r (XT VW) — ZZi/li



Dual Certificate: First Attempt

X

NESN
X VW
where X, = T, Whenever (a, b,c) € ()

* Dual Certificate: (_IZT ;&4) > 0 where

A pc = 0 whenever (a, b, c) & Q

. Id -A U; )_ .
Wewant(_AT Id)(vi®wi = O foralli

* Program: Minimize trace of (



Conditionson A

Id —-A
* We want 4 such that (—AT 1d

0 whenever (a, b,c) & (, and

(Id _A)( B )=Ofora|li
AT I1d ) \vi & w;

* Necessary and sufficient conditions on A:
1. ||All £1
2. Agpe = 0 whenever (a,b,c) € Q)
3. A(v; Q@ w;) = u; forall i
4. ATu; = v; @ w; foralli TOO STRONG, requires
Q(n?) samples!

) 70, A4 =



Part IV: SOS-symmetry to the
Rescue



SOS Program

X

>
¥T VW) 0 where
Xape = Type Whenever (a,b,c) € Qand VW is

SOS-symmetric (i.e. VW 1.0 = VW1 o1 fOr
allb,c,b’,c")

e Minimize the trace of (



Review: Matrix Polynomial q(Q)

* Definition: Given a symmetric matrix Q
indexed by monomials, define

q(Q) — ZK(ZI,]:K=IU](CLS multisets) QI])xK
*ldea: M- Q = E[q(Q)]



Dual Certificate

X

>
xr i) 70
where X, = T, Whenever (a, b, c) € Q and

VIV is SOS-symmetric

* Program: Minimize trace of (

_AT B 7 0 where

A pc = 0 whenever (a,b,c) € Q and q(B) =
q(Id)

Id -A U; - .
We want (—AT B )(Vi Q Wi) = 0 for all i

* Dual Certificate: ( ld -4



Dual Certificate Tightness Condition

e Write B=ATA+Id — R

. Id —A )
[ . ?
Dual Certificate: ( T aT 1d— P 0
where A, = 0 whenever (a, b, c) & Q and

q(B) = q(Id)
* This dual certificate is tight for the true solution
if
(Id —4 )( o )=0fora|li
—AT ATA+1d—R)\vi Qw;



Dual Certificate Conditions

* This gives us the following conditions on A4, R
1. Agp. = 0 whenever (a,b,c) & Q)
2. Vi,A(Ui® Wi) = U;
3. [IRII<1
4, Vi,R(Ui® Wi) = V; ® Wi
5. gq(R) = q(ATA) (so that g(B) = q(Id) =
Zb,c ngCZ)
 Remark: These conditions are sufficient even if
T is not orthogonal. We only prove the theorem
for orthogonal tensors because that’s what our
current analysis can handle.



Part V: Finding Dual Certificate
for Matrix Completion



Conditionson A

* Necessary and sufficient conditions on A:
1. |4l <1
2. Ag, = 0whenever (a,b) & Q
3. Av; =u; foralli
4. ATu; = v; forall i
* How can we find such an A?

* |[dea: Alternate between satisfying condition 2
and conditions 3,4, converging to a final
solution.



Definition of Py, Py, Py

* Define Py to be the projection to span{u;}.
The equation for this is Py(x) = X;(x - u;)y;

* Define Py to be the projection to span{v;}.
The equation for this is P, (y) = X.;(y - v;)v;

* Define Py to be the projection (on the space of
matrices) to span{xv,,u; y} (for arbitrary
x,y). The equation for this is

PTszuM‘l'PvM_PuMPV



Restatement of Conditions 3,4

* Necessary and sufficient conditions on A:
1. |4l <1
2. A,y = 0whenever (a,b) € Q)
3. Av; = u; foralli
4. ATu; = v; forall i

* Without loss of generality, assume M =
D uiviT (the values of the A; don’t affect the
dual certificate)

* Assuming M = ), uivf, conditions 3,4 are
equivalentto PrA = M



Definition of R and R

» Definition: Define Rq(X) = =22 X, .. if
(a,b,c) € Q) and 0 otherwise where ny X n, X

n, are the dimensions of the tensor and each
en;gr[y is sampled indepently with probability

Nn{Nn,ng
* Define R (X) = ( 1) X if
(a,b,c) € Qand ~X,,. if (a,b,c) & Q
* Ra(X)gpe = 0 whenever (a, b, c) & ()
. E[}?Q(X)] = (0 (over the choice of Q)

ninpns




First [teration

e Start with M. PrM = M but M has nonzero
entries outside the sampled entries

* Ro(M) is zero outside the sampled entries,
but P,Roa(M) # M

* We take A; = Rq(M) as the first
approximation, we’ll need to correct for the

difference ~
PrRoM — M = PrRqoM



Technical Note

* For the analysis, actually need to resample
independently for each iteration, obtaining
sets of samples ()4, (),, .... This is the source of

the (logn)? in the upper bound (the lower
bound only has log n (reference to be added))



[terative Equation

. Take
= Y¥23(=1)Rq +1(PrRq) ... (PrRq )M
* Claim:
PrA*¥ =M + (=1)*"'(PrRq,) ... (PrRq,)M

* Proof idea: Use the facts that R, = 1 + R,
P,IZW =PT,andPTM:M-



Convergence and Final Step

. Take
= 3¢ 0(=1)/Rq +1(PrRq) ... (PrRq, )M
* Claim:
PrA*¥ =M + (=1)*"'(PrRq,) ... (PrRq,)M

* To show that P+A* converges to M w.h.p., itis
sufficient to show that the PrRy operation
makes matrices “smaller” with high probability.

* Once the error is small enough, we then take
one final step to satisfy all conditions
simultaneously. For details, see [Rec11].



Part VI: Open Problems



Open Problems

* For which tensors T can we show that SOS
gives exact tensor completion? We've shown it
when T is orthogonal, but this can very likely
be extended.

* Important subproblem: When can we find A
such that A(v; @ w;) = u; forall i and
|A(u, v,w)| < 1 for all unit u, v, w?

* Barak and Moitra [BM16] show that SOS solves
the approximate tensor completion problem in

a somewhat broader setting with a different
analysis. Can these analyses assist each other?
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Appendix: iy and u Definitions



Lo and u Definitions

* Definition:

Ho = - - max{maxq||Pyeqal|?, max||Pye,|1*)
* Definition:

i =n-max{max; , us,, max Vi, max wi .}



