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Part I: Semidefinite Programming
Relaxation for Sparsest Cut



Problem Reformulation

e Reformulation: Want to minimize

2
Zi)j;i<j}(i}j)eE(G)(Xj — xl-) over all cut
pseudo-metrics normalized so that

Zi,j:i<j (xj — xi)z =1

* More precisely, take d?(i, ) = (xj — xl-)z and
minimize ; i< i i )er(e) @° (i, j) subject to:
1. 3dc:Vi,x; € {—c, +c}
2. Yiju<j d?(@) =1



Problem Relaxation

e Reformulation: Minimize
2 2 : .

Zi}j;i<j’(i’j)eE(G)(xi — lex] + x] ) SUbJECt to:
1. 3dc:Vi,x; € {—c, +c}
2. Zi,j:i<j (xlz — lex] + XJZ) — 1

e Relaxation: Minimize
Zi,j:i<j,(i,j)EE(G)(Mii_ZMij + M]]) subject to:
1. Vi,j,Mii — M]]
2. Xijicj My—2M;j +M;;) =1
3. M>=0



Bad Example: The Cycle
* Consider the cycle of length n. The semidefinite

program can place the cycle on the unit circle
and assign each x; the corresponding vector v;.

) . @ v [



Bad Example: The Cycle

* Yiiici(d?(0,))) = 0(n?)

* Yiji<iperc)(@())) = 0(n - 1/n%)

e Gives sparsity ©(1/n3), true value is ©(1/n?%)
* Gapis (n), which is horrible!




Part Il: Combining Approaches



Adding the Triangle Inequalities

 Why did the semidefinite program do so much
worse than the linear program?

* Missing: Triangle inequalities
d<(i,k) < d*(i,j) + d*(j, k)
 What happens if we add the triangle inequalities
to the semidefinite program?



Geometric Picture

Let O be the angle between v; — v; and v, — v;

v — v;]|4 = vj—vi2+ vk—vjzifG):g
v — vil|% > vj—vi2+ vk—vjzif®>§
v, — v]|% < vj—vi2+ vk—vjzif®<§
Triangle inequalities <> no obtuse angles




Fixing Cycle Example

e Putting n > 4 vectors in a circle violates triangle
inequality, so the semidefinite program no
longer behaves badly on the cycle. In fact, it gets
very close to the right answer.




Goemans-Linial Relaxation

e Semidefinite program (proposed by Goemans
and Lineal): Minimize
Zi,j:i<j:(i,j)EE(G)(Mii — 2M;; + M;;) subject to:
1. Vi, j,My = M
2. Vi, j k,d*(i,k) <d*(i,j) + d*(j, k) where

d*(i,j) = My — 2M;; + M;;

3. Xijucj(My —2M;; + M) =1
4. M =0




Arora-Rao-Vazirani Theorem

e Theorem [ARV]: The Goemans-Linial
relaxation for sparsest cut gives an

0 (Jlogn)-approximation and has a
polynomial time rounding algorithm.



L5 Metric Spaces

Also called metrics of negative type

Definition: A metric is an L5 metric if it is possible
to assign a vector v, to every point x such that

dx,y) = [[vy = v

Last time: General metrics can be embedded into
L' with 0(logn) distortion.

Theorem [ALNO8]: Any L% metric embeds into L!
with O (w/logn(loglogn)) distortion.
[ARV] analyzes the algorithm more directly



Goemans-Linial Relaxation and SOS

* Degree 4 SOS captures the triangle inequality: if

x? = x? = x£ then

j
2 2
xZ(x, — x;)% < xf (xj —x;) +xf (% — xj)
& 2xf (xlz — xl-xk) < 2x7(2xf — XiXj — XiXj)
* Proof:
2 2
(xl- — xj) (xj — xk) = 4(xl-2 — xixj)(xiz — xjxk)
= 4xf(xf — xpx; — xpx3 + x;%3,) = 0

* Thus, degree 4 SOS captures the Goemans-Linial
relaxation



Part Ill: Arora-Rao-Vazirani Analysis
Overview



Well-Spread Case

Semidefinite program gives us one vector v; for
each vertex i.

We first consider the case when these vectors
are spread out.

Definition: We say that a set of n vectors {v;} is
well-spread if it can be scaled so that:

1. Vi |vll <1

1

2. i< d2 is (1(1) (the average squared distance
between vectors is constant)

We will assume we are using this scaling.



Structure Theorem

* Theorem: Given a set of n vectors {v;} which
are well-spread and obey the triangle
inequality, there exist well-separated subsets X
and Y of these vectors of linear size. In other
words, there exist X, Y such that:

1. XandY areAfarapart(i.e. Vv; € X,v; €

Y, dl-zj > A) where A'is () (ﬁ)

2. |X|and |Y] are both Q(n)



Finding a Sparse Cut

* |dea: If we have well-separated subsets X, Y,
take a random cut of the form (S, S;-) where

S, ={i:d?*(v;,X) = min d% <r}andr € [0, A]

jvjEY L =

2

d;
* All (i,j) € E(G) contribute at most —= ! to the

expected number of edges cut and d

Qi ji<j (i./)EE(G) d?; 7 (the number of edges the
SDP “thinks” are cut)



Finding a Sparse Cut Continued

* Since X, Y have size ((n) and are always on
opposite sides of the cut, we always have that

S| - S| is ©(n?). This matches Qi i< dizj up
to a constant factor. (this is why we need X and
Y to have linear size!)

* Thus, the expected ratio of the sparsity to the

. 1
SDP value is at most o= O (w/logn), as
heeded.



Tight Example: Hypercube

1 1 logr, n

Jlog, n’ \/log, n}

e X = {x:Zixi < —1} and Y = {y:Zixi = 1}
have the following properties:

* Take the hypercube {

1. X and Y have linear size

2. Vx € X,y €Y,x,y differin > 2,/log, n

. 2,/1 2
coordinates. Thus, d2(x, y) = 222" =

— logyn J91ogo n




Finding Well-Separated Sets

* Let d be the dimension such that Vi, v; € R%.

e Algorithm (Parameterso > 0, A, d)

1. Choose arandom u € R%.
2. Find a value a such that there are (0(n) vectors v;
with v; - u < a and Q(n) vectors v; with v; - u =

a + %. Let X' and Y’ be these two sets of vectors

3. Aslongasthereisapairx € X',y € Y' such that
d(x,y) < A, delete x from X" and y from Y'. The
resulting sets will be the desired X, Y.

* Need to show: P[X,Y have size 0(n)] is (1)



Finding Well-Separated Sets

* Will first explain why step 1,2 succeed with
probability 26 > 0.

* Will then show that the probability step 3
deletes a linear number of pointsis < ¢

* Together, this implies that the entire algorithm
succeeds with probability at least 6 > 0.



Behavior of Gaussian Projections

What happens if we project a vector v of length
L in a random direction in R4?

Without loss of generality, assume v = ¢4
To pick a random unit vector in R%, choose
. . 1
each coordinate according to N (O, E) (the
normal distribution with mean 0 and standard
.1
deviation \/_E)’ then rescale.

If d is not too small, w.h.p. very little rescaling
will be needed.



Behavior of Gaussian Projections

 What happens if we project a vector of length [
in a random direction in R%?

* Resulting value has a distribution which is =
normal distribution of mean 0, standard

deviation \/__ (difference comes from the

rescaling step)



Success of Steps 1,2

e If we take a random u € R%, with probability
: n?
Q1), Yicj|(j —vi) - ulis Q (\/_H)
* Note: this can fail with non-negligible
probability, consider the case when Vi, v; = +v.

If u is orthogonal to v then everything is
projected to 0.

* For arbitrarily small € > 0, with very high
probability, |v; - u| is O (\/_) for (1 — €)n of the
€ [1,n]




Success of Steps 1,2

* Together, these facts imply that if we choose a
random unit vector u, with probability (1),
there exist X', Y’, a, a, such that

X', Y have size Q(n)
Vvxe X, u-x<a
VvyeY,u-y=a,
a, —aq is Q(1)

= W



Remaining Steps

 We need to show that the probability step 3
min{|X|,|Y|}

eliminates pairs of points is at most 0

 We also need to show how the general case can
be reduced to the well-spread case.



Part IV: Analyzing Matchings of
Close Points



Matching Covers

 |f part 3 of the algorithm causes it to fail with
probability 0, then for 0 fraction of the
directions u there is a matching M,, of points of

size ¢'n such that for each pair (v;, ;) in the
matching:

1. dz(vi,vj) <A
2. ‘(vj—vi)-u‘z%
where 8, ¢’, 0 > 0 are constants

* Note: Corresponds to Definition 4 in [ARV]
* Define the matching graph M tobe M =U,, M,,



. B 1
Analyzing A = () (logn>

* Assume that d(vi, vj) < /A for some v;, V;

2

40 2

e P ‘(U — U') 'u‘ > 29| . e_dz(”i'”f) < 8_42
j Vi = Jd. =
. . . 1
* If Ais a sufficiently small constant times oan”

with high probability there are no pairs of close
points at all between X' and Y’!



Key ldea for Larger A

* When the algorithm fails in step 3, this gives us
pairs of points (v;, v;) which are edges of the

matching graph M, implying that dz(vi, vj) <A

and |(vj — vl-) -u‘ = \2/—%

* We will use this to find pairs of points (v;, v;)
which are k steps apart in the matching graph

ko

where ‘(vj — vi) -u‘ =G



Key ldea for Larger A Continued

We will find pairs of points (v;, v;) which are k

steps apart in the matching graph where
ko

‘(vj — vi) u‘ > =
Using triangle inequality, dz(vi, Uj) < kA

B o ka?
P ”(v] o vi) ) u‘ 2 %‘ ~ e dz(vi,vj) S e_T

ForA = () (\@), if we can apply this with k =

@) (Jlog n), we again obtain a contradiction.




Average Degree to Minimal Degree

e Lemma: If a graph G has average degree d, we

can find a non-empty subgraph of G which has

. d
minimal degree "

* Proof: Iteratively delete vertices which have

degree < %. The total number of edges deleted

. d
is at most nT. However, 2|E(G)| = nd, so there

nd .
must be = ” edges remaining.




Minimal Probability Guarantee

Average probability that a vertex is matched is
at least ¢'6

Can apply a similar idea and delete any vertex
which is matched with probability < %
By similar logic, at least half the edges are

preserved.

This implies that there are at least ¢'n vertices
remaining (otherwise more than half of every
matching of = ¢'n edges is deleted)

Note: Corresponds to Lemma 4 of [ARV09]



Minimal Probability Guarantee

* Corollary: There is a set of vertices X of size =
¢'n such that
Vx € X, P|x is matched withan x’ € X| = §'
/
o)
where §' = CT



Building Up Projection Distances

* How can we find pairs of points whose
projected distance is larger and larger by taking
steps in the matching graph?

e Let’'s assume we have a very convenient
inductive setup.



Setup

* Have a set of points X of size > ¢'n
Vx € X, P|x is matched withan x’ € X| > §’

* Inductive setup: Assume we also have a subset

Z € X of points of size 7|X| such that

ko &'
VvzeZ P|3zZ €eX:dy(z,z)<k,(z—-2Z) - u=2—|=21——

Jd 4
where dy;(z, z") is the number of steps required to
reach z' from z in the matching graph

* Note: This corresponds to Definitions 6,8 of
[ARV]



Setup Rephrased

X is a set of points where every x € X is
matched to another x’ € X for > &' fraction of
the directions

* Have a subset Z € X of size = 7| X| where each

. U n 6’ .
z € Zis“covered”in>1 — " fraction of the
directions by points which are < k steps away in

the matching graph whose projected distance is
ko

=73



Composition Step




Composition Step

* Given a direction u, for each point z € Z:

1.
2.

Check if z is matched in M,, = M_,,
If so, let x’ be the point z is matched with.

/ 20
|(Z—X)°u|2\/—a

If (z—x") -u > 0, check if z is covered in direction

u. If (z—x") - u < 0 check if z is covered in
direction —u. With probability = 1 — %, Z is

covered in both directions. Let z' = covering point.
ko+20

75 and

Observe that [(z' — x') - u| =
dy(x',z)Y<k+1



Composition Step

* Have that the density of the new covering edges

/

. T
is at least -

* Following the same kind of logic we used to go

from average to minimal degree, can find a

. 5'
subset Z' € X of size > % | X| where every

. . 76’
vertex z' € Z' is covered in > = of the

directions.
* Note: Corresponds to Lemma 11 of [ARV]



Boosting Lemma

* How can we recover the inductive hypothesis?

* Can boost the covering probability to almost 1
with a small loss in the projection length!

* Corollary 12 of [ARV] rephrased: If the covering
vectors have length at most 2 then
16 /10g£§)+8 log(%)
if z is covered with probability % with projection

ko+2o0
\/H )/
&' /4 with projection length

it is covered with probability 1 —
(k+1)o
Vd

length




Bound on k and A

* |f we apply this directly:
—7~(8")7F

— Need covering vectors to have length O ( - ) =

Jlogr
0 (%)

— Guaranteed to have length < VkA

1
— We can take k = Q(A 2). We want % to be a large

constant times log(n), which means we can take
A = Q((logn)~*/3)



Reaching k = () (\/logn)

* Toreach k = (Q (w/logn), a more careful
argument is needed, see [ARV].

* Note: We should not expect k to be any higher
than O (,/logn). Recalling that the projection

\/_, ifd = 0(logn)
(matching the hypercube example) and k is

w (w/logn) then thisis w(1), which is too

large!

length with k steps is <2



Part V: Reduction to the Well-
Separated Case



Two Cases

» Take the scaling where ¥; . d*(i, ) = (g)
(i.e. the average squared distance between pairs
of points is 1)

* One of the following two cases holds:
1. There exists a point x, such that 130 other points

_ . 1
are within squared distance - of x,

2. For all points x, less than 110 other points are within

. 1
squared distance 70 of x



Case #1

Assume there exists a point x, such that 1% other

. L . 1
points are within squared distance 0 of x,

et X = {x:d*(x,%o) < =}

Key idea: Take the Fréchet embedding with
respect to X!

In particular, take
dx(y,z) = |d*(y,X) — d*(z,X)|



Case #1 Continued

We will show that
2 jii<jieE) 9x (L)) Xi ji<j(ipeE) 42 @)
— is O ——
Zi,j:i<j dx (i,j) Zi,j:i<j d=(i,j)
dy is an L! metric, so this gives an 0(1)-
approximation!

First note that .; i< (i j)er(g) dx (i, ]) is less
than or equal to ¥%; ;i< (i heE(e) d* (i,))

We just need to show that %;; ;i dx (i,)) is
Q(n?)




Case #1 Continued

* Proposition: The average squared distance of
. . . 1
points outside of X from X is at least c

* Proof: If this were not the case then the average
squared distance between points would be < 1
as for all y, z,

1
d?(y,z) < d*(y,X) + d*(z, X) + z

* Corollary: 2; j.j<j dx (i,)) is ©(n?). To show
this, it is sufficient to consider the pairs where
exactly one of i, j are in X.



Case #2

Assume that for all points x, there are fewer than

1% other points which are within squared

. 1
distance 0 of x

Proposition: There is a point x4 such that at least

% other points are within distance 2 of x

Proof: If this were not the case then the average
distance between points would be > 1.

Let X be the set of points within distance 2 of x,.



Case #2 Continued

* Key idea: Subtract xy from all vectors!

e After this translation:
— All points in X have length < 2

2
— For all points x € X, there are at Ieast ==

10 5
points in X which have squared dlstance more than
1 .

0 from x. Thus, the average squared distance

between points in X is Q(1)

e Restricting to X and scaling down by a factor of
2, we are now in the well-spread case



Part VI: Open Problems



Lower Bounds

Lower Bounds have been shown for this
semidefinite program

Khot and Vishnoi [KVO5] proved the first super-
constant lower bound.

For weighted graphs, Naor and Young [NY17]

showed an () (Jlagn) lower bound (which is

tight up to a loglogn factor).

However, these lower bounds don’t apply even
to degree 4 SOS!



Open Questions

* |s this also true for unweighted graphs?

* Does degree 4 SOS or higher degree SOS give
further improvements? Can we show a
superconstant lower bound for a constant
number of rounds of SOS?
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