
Problem Set 5

Sum of Squares Seminar

October 20, 2017, Due October 30, 2017

Graph Matrix Definition
Recall the definition of the graph matrices RH

Definition 0.1. Given a graph H with ordered distinguished sets of vertices U, V , we take RH to
be the matrix such that

RH(A,B) =
∑

G′:∃σ:V (H)→V (G):σ(U)=A,σ(V )=B,σ(H)=G′

χE(G′)

where A,B are ordered sets of vertices, χE(G) = (−1)|E\E(G)|, and we require σ to respect the
orderings on U,A, V,B.

Remark 0.2. This definition is the same as the definitionRH(A,B) =
∑

σ:V (H)→V (G):σ(U)=A,σ(V )=B χσ(E(H))

up to a constant factor. The advantage of this definition is that it avoids counting the same Fourier
character multiple times for a given matrix entry. This difference will not matter for this problem
set.

Problem 1: Decomposing Graph Matrices (15 points)
Express each of the following matrices as a linear combination of the matrices RH

(a) 5 points: M(a1,a2),(b1,b2) = 1 if a1, a2, b1, b2 are all distinct and there are precisely 3 edges
between a1, a2, b1, b2 and is 0 otherwise.

(b) 5 points: M(a1,a2),(b1,b2) = 2 if a1 = b1 and (a2, b2) ∈ E(G) and is zero otherwise.

(c) 5 points: Mab = (|v ∈ V (G) \{a, b} : (a, v) ∈ E(G)|− n−2
2

)(|w ∈ V (G) \{a, b} : (b, w) ∈
E(G)| − n−2

2
) if a 6= b and Maa = 0



Solution
(a) M =

∑
j

∑
H:U={u1,u2},V={v1,v2},U∩V=∅,|E(H)|=jcjRH where c0 = 20

64
, c2 = −4

64
, c4 = 4

64
,

c6 = −20
64

, and c1 = c3 = c5 = 0

(b) Let H1 be the graph with distinguished sets of vertices U = {u1, u2}, V = {v1, v2} where
U ∩ V = {u1} = {v1} and E(H1) = ∅. Similarly, let H2 be the graph with distinguished
sets of vertices U = {u1, u2}, V = {v1, v2} where U ∩ V = {u1} = {v1} and E(H1) =
{(u2, v2)}. M = RH1 +RH2

(c) Let H1 be the graph with distinguished sets of vertices U = {u} and V = {v}, additional
vertices W = {w1, w2}, and edges E(H1) = {(u,w1), (v, w2)}. Let H2 be the graph with
distinguished sets of vertices U = {u} and V = {v}, additional vertices W = {w}, and
edges E(H1) = {(u,w), (v, w)}. M = 1

4
(RH1 +RH2)

Problem 2: Norms of Graph Matrices (15 points)
For each matrix M in problem 1, give probabilistic bounds on ||M || and on ||M − E[M ]||

Remark 0.3. Here it is fine to state that the bounds hold with high probability without stating what
that probability is. In case you’re curious, in the rough norm bounds there is a factor of polylog(1

ε
)

where ε is the probability of failure.

Solutions

By the matrix norm bounds, these matrices have norm Õ

(
n

maxH:cH 6=0 {|V (H)|−sH}
2

)
where cH is the

coefficient of H in M and sH is the minimum size of a vertex separator of H .

(a) With high probability, ||M || and ||M −E[M ]|| are both Θ(n2). Note that for ||M −E[M ]||,
the H with E(H) = {(u1, u2), (v1, v2)} has minimum separator size 0. Thus, for this H ,
|V (H)| − sH = 4

(b) With high probability, ||M || is Õ(n) as |V (H1)| − sH1 = 2. In M − E[M ], the coefficient
of RH1 is zeroed out. V (H2)− sH2 = 1, so with high probability, ||M − E[M ]|| is Õ(

√
n)

(c) Here E[M ] = 0 and with high probability, ||M || is Θ(n2)

2



Problem 3: Analyzing Nd(I) (30 points)
In this problem, we consider the variance of Nd(I), the number of cliques of size d containing a
subset of vertices I .

(a) 10 points: If we decompose N4(∅) (viewed as a 1 × 1 matrix) as a linear combination of
the graph matrices RH , which RH appear and what are their coefficients (up to a constant
factor)? For your answer, only use H which have no isolated vertices.

(b) 10 points: Let M be the n × n matrix with entries Maa = N4({a}) and Mab = 0 if a 6= b.
If we decompose M as a linear combination of the graph matrices RH , which RH appear
and what are their coefficients (up to a constant factor)? For your answer, only use H which
have no isolated vertices (except for a).

(c) 10 points: Give a probabilistic bound (up to constant and logarithmic factors) on how much
N4(∅) and N4({i}) may differ from their expected values. Based on your analysis, what is
the main source of this variance? What do you think the pattern is for general Nd(I)?

Solutions
(a)

N4(∅) =
∑

V⊆[1,n]:|V |=4

∑
E:V (E)⊆V

1

64
χE =

∑
E

∑
V :V (E)⊆V

1

64
χE

where V (E) is the set of endpoints of E. Thus, N4(∅) can be decomposed as follows (all H
here have empty U, V and have no isolated vertices):

1. N4(∅) has coefficient 1
64

(
n
4

)
for the empty H .

2. N4(∅) has coefficient 1
64

(
n−2

2

)
for the H consisting of a single edge.

3. N4(∅) has coefficient 1
64

(n − 3) for the H consisting of two edges with one common
endpoint.

4. N4(∅) has coefficient 1
64

(n− 3) for the H consisting of a triangle.

5. N4(∅) has coefficient 1
64

for all H such |V (E(H))| = 4 where V (E(H)) is the set of
endpoints of edges of H .

(b)

N4({a}) =
∑

V⊆[1,n]:|V |=4

∑
E:V (E)⊆V

1

64
χE =

∑
E

∑
V :V (E)⊆V

1

64
χE

where V (E) is the set of endpoints of E. Thus, M can be decomposed as follows (all H
here have U = V = {u} and have no isolated vertices except for u):

1. M has coefficient 1
64

(
n−1

3

)
for the H with no edges.
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2. M has coefficient 1
64

(
n−2

2

)
for theH consisting of a single edge, one of whose endpoints

is u.

3. M has coefficient 1
64

(n− 3) for all H such that |V (E(H)) ∪ {u}| = 3

4. M has coefficient 1
64

for all H such that |V (E(H)) ∪ {u}| = 4

(c) Using the matrix norm bounds, with high probability N4(∅)−E[N4(∅)] is Õ(n3). The main
source of this variance is the variance of the number of edges in the input graphG. Similarly,
with high probability, N4({a}) − E[N4({a})] is Õ(n2.5). The main source of this variance
is the variance of the degree of a.

More generally, with high probability Nd(∅) = (1± Õ( 1
n
))2−(d

2)
(
n
d

)
and the main source of

this variance is the variance of the number of edges in the input graph G. Conditioned on
I being a clique, with high probability Nd(I) = (1 ± Õ( 1√

n
))2(|I|2 )−(d

2)
(
n−|I|
d−|I|

)
and the main

source of this variance is the variance of the number of vertices which are adjacent to every
vertex in I .

Problem 4: Analyzing E[M ′] (10 points)

Recall that E[M ′] is the matrix with entries (E[M ′])IJ = 2(|I|2 )+(|J|2 )−(|I∩J|2 ) ( k
|I∪J|)

( n
|I∪J|)

where |I| =

|J | = d
2
. Further recall the Di and Pi bases for the Johnson scheme. (Di)IJ = 1 if |I ∩ J | = i and

is 0 otherwise. (Pi)IJ =
(|I∩J |

i

)
.

Decompose E[M ′] in terms of the Pi basis (your answer will be a bit messy) and deduce that
E[M ′] has a high minimal eigenvalue.

Solution

Recall that Di =
∑ d

2
j=i (−1)j−i

(
j
i

)
Pj . We now have that

E[M ′] =

d
2∑
i=0

2(( d2 )

2 )+(( d2 )

2 )−(i
2)

(
k
d−i

)(
n
d−i

)Di =

d
2∑
i=0

d
2∑
j=i

(−1)j−i
(
j

i

)
2(( d2 )

2 )+(( d2 )

2 )−(i
2)

(
k
d−i

)(
n
d−i

)Pj
=

d
2∑
j=0

j∑
i=0

(−1)j−i
(
j

i

)
2(( d2 )

2 )+(( d2 )

2 )−(i
2)

(
k
d−i

)(
n
d−i

)Pj
Since n >> k, for each j the dominant term will be the term where i = j so the coefficient of each

Pj will be roughly 2(( d2 )

2 )+(( d2 )

2 )−(j
2) ( k

d−j)
( n
d−j)

which is much bigger than 0. In particular, the coefficient

of P d
2

= Id is Θ
(
k
d
2

n
d
2

)
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Problem 5: Wigner’s Semicircle Law (30 points)
Wigner’s semicircle law on the spectrum of ±1 symmetric random matrices says the following.
If M is a symmetric ±1 random matrix then as n goes to infinity, the proportion of eigenvalues
between x

√
n and (x+ dx)

√
n approaches 1

2π

√
4− x2. In this problem, we explore why Wigner’s

semicircle law holds. Let Ck = 1
k+1

(
2k
k

)
be the kth Catalan number.

(a) 15 points: Show that for all k ≥ 1,E
[
tr
((
MMT

)k)]
= Ckn

k+1±O(nk) (hint is available)

(b) 10 points: Show that
∫ 2

x=−2
1

2π
x2k
√

4− x2dx = Ck (hint is available)

(c) 5 points: To the best of your ability, explain why this implies that Wigner’s semicircle law
holds. One thing you could do is to assume that the eigenvalues of M divided by

√
n ap-

proach some distribution and then argue that this distribution must be 1
2π

√
4− x2.

Solutions
(a)

E
[
tr
((
MMT

)k)]
=

∑
a1,b1,··· ,ak,bk

k∏
i=1

MaibiMai+1bi

where ak+1 = a1. Consider the terms which have nonzero expected value. For these terms,
eachMab must appear an even number of times. We can ignore the terms which have at most
k distinct indices as these will contribute O(nk).

Lemma 0.4. For the terms which have k + 1 distinct indices and have nonzero expected
value:

(a) For all i, j, ai 6= bj

(b) We can draw the constraint graph showing which indices are equal to each other as
follows. We place the indices a1, b1, · · · , ak, bk on a circle. Whenever ai2 = ai1 and
there is no j such that aj = ai1 = ai2 and i1 < j < i2 then we draw an edge from ai1
to ai2 . If we draw the constraint graph in this way then there will be no edge crossings.

Proof. The base case k = 2 is trivial. For k > 2, note that there must be a unique index as
otherwise there would be at most k distinct indices. Without loss of generality, assume this
index is b1. If so, then we must have that a1 = a2 so we can contract these indices together,
delete b1, and apply the inductive hypothesis.

With this lemma in hand, we have the following bijection between constraint graphs on
a1, b1, · · · , ak, bk and walks of length 2k where we go up or down at each step and never go
below height 0.
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To go from a walk to a constraint graph, for j ∈ [0, k − 1], label the (2j)-th vertex of the
walk aj+1 and label the (2j+ 1)-th vertex of the walk bj+1. The final step of the walk will be
to ak+1 = a1. Whenever we take a step down, draw a constraint edge between the endpoint
of the step and the previous vertex at that height.

Conversely, to go from a constraint graph to a walk, start at a1, go through the vertices
b1, a2, b2, · · · , ak, bk in order. Whenever a new index is encountered, take a step up. When-
ever an index is encountered which has been encountered before, take a step down.

For each constraint graph with k + 1 distinct indices, there are nk+1 − O(nk) different pos-
sibilities. Thus, E

[
tr
((
MMT

)k)]
= Ckn

k+1 ±O(nk)

(b) Observe that for all k ≥ 1,∫
(cos(Θ))2kdΘ = sin(Θ)(cos(Θ))2k−1 + (2k − 1)

∫
(sin(Θ))2(cos(Θ))2k−2dΘ

= sin(Θ)(cos(Θ))2k−1 + (2k − 1)

∫
(cos(Θ))2k−2dΘ− (2k − 1)

∫
(cos(Θ))2kdΘ

Thus,

2k

∫
(cos(Θ))2kdΘ = sin(Θ)(cos(Θ))2k−1 + (2k − 1)

∫
(cos(Θ))2k−2dΘ

which implies that∫ π

0

(cos(Θ))2kdΘ =
2k − 1

2k

∫ π

0

(cos(Θ))2k−2dΘ = π
k∏
j=1

(
2j − 1

2j

)
Using this and taking the substitution x = 2cos(Θ),∫ 2

x=−2

1

2π
x2k
√

4− x2dx =
22k+1

π

∫ π

Θ=0

(cos(Θ))2k(sin(Θ))2dΘ

=
22k+1

π

∫ π

Θ=0

(cos(Θ))2kdΘ− 22k+1

π

∫ π

Θ=0

(cos(Θ))2k+2dΘ

= 22k+1

(
1− 2k + 1

2k + 2

) k∏
j=1

(
2j − 1

2j

)
=

22k

(k + 1)

k∏
j=1

(
2j − 1

2j

)

Since
∏k

j=1 (2j − 1) = (2k)!
2k(k!)

and
∏k

j=1
1
2j

= 1
2k(k!)

,∫ 2

x=−2

1

2π
x2k
√

4− x2dx =
1

k + 1

(
2k

k

)
= Ck

as needed.
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(c) Assume that the eigenvalues divided by
√
n approach some distribution f(x), i.e. the propor-

tion of eigenvalues between x
√
n and (x + dx)

√
n approaches f(x)dx as n → ∞. Further

assuming that tr
(
(MMT )k

)
is concentrated around it’s expectation, for all k ≥ 0,

lim
n→∞

E[tr
(
(MMT )k

)
]

nk+1
= lim

n→∞

1

n

∑
i

(
λi√
n

)2k

=

∫ ∞
x=−∞

x2kf(x)dx = Ck

For odd moments, observe that M and −M are equally likely so we must have that for all
k ≥ 0,

∫∞
x=−∞ x

2k+1f(x)dx = 0.

Thus, for all k ≥ 0,
∫∞
x=−∞ x

kf(x)dx =
∫∞
x=−∞ x

k 1
2π

√
4− x2dx

Note: A more rigorous explanation may be added in the future.
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Hints

5a. Use the following characterization of the Catalan numbers. Ck is the number of ways to take
a total of k steps up and k steps down. With this characterization of the Catalan numbers, it is
sufficient to find a bijection between such walks and constraint graphs on a cycle of length 2k with
k + 1 distinct indices.

5b. Take the substitution x = 2cos(Θ) and use the fact (which can be shown by integration by
parts) that for all k ≥ 1,

∫ π
0

(cos(Θ))2kdΘ = 2k−1
2k

∫ π
0

(cos(Θ))2k−2dΘ
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