
Problem Set 3 Solutions

Sum of Squares Seminar

October 24, 2017

Problem 1: SOS Proofs (20 points)
Give sum of squares proofs for the following facts (over R):

(a) 5 points: ∀x, y, z, w, 4xyzw ≤ x4 + y4 + z4 +w4 (this is essentially the AM-GM inequality
on 4 terms)

(b) 5 points: If
∑n

i=1 x
2
i = 1 then

∑n
i=1 xi ≤

√
n

(c) 10 points: If
∑n

i=1 x
2
i = 1 then

∏n
i=1 x

2
i ≤ n−n (hint is available)

(d) Challenge question: IfM is a doubly stochastic n×nmatrix (i.e. all entries are nonnegative,
all rows sum to one, and all columns sum to 1), then the permanent of M is at least n!

nn

Solutions
(a) x4 + y4 + z4 + w4 = (x2 − y2)2 + (z2 − w2)2 + 2(xy − zw)2 + 4xyzw ≥ 4xyzw

(b)
∑n

i=1 xi =
√
n− 1

2

∑n
i=1 ( 4
√
nxi − 1

4√n)2 −
√
n
2

(1−
∑n

i=1 x
2
i ) ≤

√
n

(c) We show by induction that ∀k ∈ [1, n], 1

(n
k)

∑
i1<···<ik

∏k
j=1 x

2
ij
≤ 1

nk . The base case k = 1

is trivial. Now observe that since
∑n

i=1 x
2
i = 1,

∑
i1<···<ik

k∏
j=1

x2ij = (
n∑
i=1

x2i )
∑

i1<···<ik

k∏
j=1

x2ij

= (k + 1)
∑

i1<···<ik+1

k+1∏
j=1

x2ij +
∑
i

∑
i1<···<ik−1:i1,··· ,ik−1 6=i

x4i

k−1∏
j=1

x2ij

= (k + 1)
∑

i1<···<ik+1

k+1∏
j=1

x2ij +
∑

i1<···<ik−1

∑
i:i/∈{i1,··· ,ik−1}

x4i

k−1∏
j=1

x2ij



Since x4i + x4i′ ≥ 2x2ix
2
i′ ,

∑
i1<···<ik−1

∑
i:i/∈{i1,··· ,ik−1}

x4i

k−1∏
j=1

x2ij ≥
2

n− k
∑

i1<···<ik−1

∑
i,i′:i<i′,i,i′ /∈{i1,··· ,ik−1}

x2ix
2
i′

k−1∏
j=1

x2ij

=
2
(
k+1
2

)
n− k

∑
i1<···<ik+1

k+1∏
j=1

x2ij

Putting these equations together,

∑
i1<···<ik

k∏
j=1

x2ij ≥
(k + 1)n

n− k
∑

i1<···<ik+1

k+1∏
j=1

x2ij

Thus, (
n

k + 1

) ∑
i1<···<ik+1

k+1∏
j=1

x2ij ≤
1

n

(
n

k

) ∑
i1<···<ik

k∏
j=1

x2ij ≤ n−(k+1)

where the last inequality follows from the inductive hypothesis.

Problem 2: Decomposing an L1 pseudo-metric space (15 points)
Recall the objective function for the relaxation of sparsest cut:∑

i<j,(i,j)∈E(G) dij∑
i<j dij

Let G be the cycle on 6 vertices, i.e. V (G) = v1, · · · , v6 and E(G) = {(vi, vi+1) : i ∈ [1, 5]} ∪
{(v1, v6)}. Assume that we are given the following mapping of v1, · · · , v6 into R2:

v1 = (0, 1), v2 = (1, 0), v3 = (2, 0), v4 = (3, 0), v5 = (3, 2), v6 = (0, 2)

(a) 5 points: What is the value of the objective function given by this L1 metric? What is the
actual sparsity of G?

(b) 10 points: Decompose this L1 metric as a positive linear combination of cut spaces. Which
cut space(s) give the best value for the objective function?
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Solutions
(a) The distances for this L1 metric are as follows: d(v1, v2) = 2, d(v1, v3) = 3, d(v1, v4) = 4,

d(v1, v5) = 4, d(v1, v6) = 1, d(v2, v3) = 1, d(v2, v4) = 2, d(v2, v5) = 4, d(v2, v6) = 3,
d(v3, v4) = 1, d(v3, v5) = 3, d(v3, v6) = 4, d(v4, v5) = 2, d(v4, v6) = 5, and d(v5, v6) = 3.

Thus,
∑

i,j:i<j,(i,j) inE(G) d(vi, vj) = 2 + 1 + 1 + 2 + 3 + 1 = 10 and
∑

i,j:i<j d(vi, vj) = 42,
giving an objective value of 10

42
= 5

21

(b) Looking at the first coordinate, we have the following cuts, each with wieght 1

(a) S = {1, 6}, S̄ = {2, 3, 4, 5}
(b) S = {1, 2, 6}, S̄ = {3, 4, 5}
(c) S = {1, 2, 3, 6}, S̄ = {4, 5}

Looking at the second coordinate, we have the following cuts, each with wieght 1

(a) S = {2, 3, 4}, S̄ = {1, 5, 6}
(b) S = {1, 2, 3, 4}, S̄ = {5, 6}

The cuts S = {1, 2, 6}, S̄ = {3, 4, 5} and S = {2, 3, 4}, S̄ = {1, 5, 6} have the optimal
sparsity.

Problem 3: Degree 4 Motzkin Polynomial Analgoue (15 points)
Consider the polynomial p(x, y, z) = x2y2 + x2z2 + y2z2 − 4xyz + 1.

(a) 5 points: Prove that ∀x, y, z, p(x, y, z) ≥ 0

(b) 10 points: Prove that p(x, y, z) cannot be written as the sum of squares of polynomials

Solutions
(a) Applying the AM-GM inequality on x2y2, x2z2, y2z2, and 1 we obtain that

1

4

(
x2y2 + x2z2 + y2z2 + 1

)
≥ 4
√

(x2y2)(x2z2)(y2z2)(1) = xyz

Multiplying by 4 and rearranging, we obtain that x2y2 + x2z2 + y2z2 − 4xyz + 1 ≥ 0, as
needed.
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(b) The Newton polytope P of p(x, y, z) is the convex hull of (0, 0, 0), (2, 2, 0), (2, 0, 2), (0, 2, 2),
so 1

2
P is the convex hull of (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1). The only integer points in 1

2
P

are (0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1) so if p(x, y, z) were a sum of squares of polynomials
it would have to be a sum of terms of the form (axy + bxz + cyz + d)2. However, there is
no way for any such term to give a nonzero coefficient for xyz. Thus, p(x, y, z) cannot be
written as a sum of squares of polynomials, as needed.

Problem 4: SOS Proof of Cauchy-Schwarz with Expected Values
(25 points)

Recall the Cauchy-Schwarz inequality: (
∑n

i=1 xiyi)
2 ≤ (

∑
i=1 x

2
i ) (
∑

i=1 y
2
i ). In lecture, we saw

an SOS proof of one analogous statement about pseudo-expectation values, namely

Ẽ

( n∑
i=1

xiyi

)2
 ≤ Ẽ

[(∑
i=1

x2i

)(∑
i=1

y2i

)]

In this problem, we prove that there is also a sum of squares proof of the following alternative
analogue of Cauchy-Schwarz:

Ẽ

[
n∑
i=1

xiyi

]2
≤ Ẽ

[∑
i=1

x2i

]
Ẽ

[∑
i=1

y2i

]
(a) 10 points: Prove that for any pseudo-expectation values Ẽ, (Ẽ[xy])2 ≤ Ẽ[x2]Ẽ[y2]

(b) 5 points: Deduce that for all i, j,

2Ẽ[xiyi]Ẽ[xjyj] ≤ Ẽ[x2i ]Ẽ[y2j ] + Ẽ[x2j ]Ẽ[y2i ]

(c) 10 points: Use this to prove that for any pseudo-expectation values Ẽ,

Ẽ

[
n∑
i=1

xiyi

]2
≤ Ẽ

[∑
i=1

x2i

]
Ẽ

[∑
i=1

y2i

]

(hints are available)

Solutions

(a) Consider the pseudo-expectation value of
(√

Ẽ[y2]x±
√
Ẽ[x2]y

)2

.

Ẽ

[(√
Ẽ[y2]x±

√
Ẽ[x2]y

)2
]

= 2Ẽ[x2]Ẽ[y2]± 2

√
Ẽ[x2]Ẽ[y2]Ẽ[xy] ≥ 0
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Unless Ẽ[x2] = 0 or Ẽ[y2] = 0, this implies that ∓Ẽ[xy] ≤
√
Ẽ[x2]Ẽ[y2] which implies

that (Ẽ[xy])2 ≤ Ẽ[x2]Ẽ[y2], as needed. If Ẽ[x2] = 0 or Ẽ[y2] = 0 then from the in-class
exercise in lecture, Ẽ[xy] = 0

(b) Using part a, 2Ẽ[xiyi]Ẽ[xjyj] ≤ 2
√
Ẽ[x2i ]Ẽ[y2i ]Ẽ[x2j ]Ẽ[y2i ]. Now note that

(√
Ẽ[x2i ]Ẽ[y2i ]−

√
Ẽ[x2j ]Ẽ[y2i ]

)2

= Ẽ[x2i ]Ẽ[y2i ]+Ẽ[x2j ]Ẽ[y2j ]−2
√
Ẽ[x2i ]Ẽ[y2i ]Ẽ[x2j ]Ẽ[y2i ] ≥ 0

Combining these equations, 2Ẽ[xiyi]Ẽ[xjyj] ≤ Ẽ[x2i ]Ẽ[y2j ] + Ẽ[x2j ]Ẽ[y2i ], as needed.

(c) Summing the equation in part b over all i < j,∑
i,j:i<j

2Ẽ[xiyi]Ẽ[xjyj] ≤
∑
i,j:i<j

(
Ẽ[x2i ]Ẽ[y2j ] + Ẽ[x2j ]Ẽ[y2i ]

)
Applying the equation in part a with x = xi and y = yi and summing over all i,∑

i

(Ẽ[xiyi])
2 ≤

∑
i

Ẽ[x2i ]Ẽ[y2i ]

Adding these equations together, we obtain that

Ẽ

[
n∑
i=1

xiyi

]2
=

(∑
i

Ẽ[xiyi]

)2

≤

(∑
i

Ẽ[x2i ]

)(∑
i

Ẽ[y2i ]

)
= Ẽ

[∑
i=1

x2i

]
Ẽ

[∑
i=1

y2i

]

Problem 5: Reasoning Using Rational Functions (25 points)

Consider the constraint (x2 + 1)y = z2. We can immediately see that y ≥ 0 as y = z2

x2+1
and both

the numerator and the denominator must be non-negative. In this question, we consider whether
the sum of squares hierarchy can capture this reasoning.

(a) 5 points: Give a sum of squares proof that if we add the constraint y ≤ −c (equivalently
y = −c− u2) for any c > 0 then the constraints are infeasible over R.

(b) 20 points: Show that there exist degree 4 pseudo-expectation values Ẽ with Ẽ[y] < 0 which
respect the constraint that (x2 + 1)y = z2 (hint is available).
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Solutions
(a) With the constraint y = −c− u2, we have that

−c = (−c− u2 − y)(x2 + 1) +
(
(x2 + 1)y − z2

)
+ cx2 + u2x2 + z2

so these constraints are infeasible over R

(b) It’s easiest to find the pseudo-expectation values with a semidefinite program. To find such
pseudo-expectation values by hand, we can do the following. We can use an actual dis-
tribution over solutions as a guide and then tweak it to get the desired pseudo-expectation
values.

We take our distribution to have the following components. We choose the signs of x and z
randomly with probability 1

2
, so any monomial which has odd degree in x or z automatically

has expected value 0.

(a) For a small ε1 > 0 which will be chosen later, we take |x| = 1
ε1
, y = 0, |z| = 0 with

probability ε13.9. This contributes ε1−.1 to E[x4] and negligible amounts to everything
else.

(b) For a small ε2 > 0 which will be chosen later, we take |x| = 1
ε2
, y = 1

1+ε22
, |z| = 1

ε2
with

probability ε23.9. This contributes ε2−.1 to E[x4], E[x2z2], and E[z4] and negligible
amounts to everything else.

(c) For a small ε3 > 0 which will be chosen later, we take |x| =
√

1
ε3
− 1, y = 1

ε3
, |z| = 1

ε3

with probability ε33.9. This contributes ε3−.1 toE[y4],E[y2z2], andE[z4] and negligible
amounts to everything else.

(d) For a small ε′1 > 0 which will be chosen later, we take |x| = 1
ε′1
, y = 0, |z| = 0 with

probability ε′1
1.9. This contributes ε′1

−.1 to E[x2] and negligible amounts to all other
terms of degree at most 2.

(e) For a small ε′3 > 0 which will be chosen later, we take |x| =
√

1
ε′3
− 1, y = 1

ε′3
, |z| = 1

ε′3

with probability ε′3
1.9. This contributes ε′3

−.1 to E[y2] and E[z2] and negligible amounts
to all other terms of degree at most 2.

We now take ε1 << ε2 << ε3 << ε′1
3 = ε′3

3. We have that E[y] = 0 and the resulting
moment matrix M is very much PSD, so much so that if we subtract 1 from the entries
corresponding to y and z2, M remains PSD. This now gives us Ẽ[y] = −1, as needed.

6



Hints
1c. More generally, show that ∀k ∈ [1, n], 1

(n
k)

∑
i1<···<ik

∏k
j=1 x

2
ij
≤ 1

nk by showing that if the

inequality holds for k1 and k2 then it holds for k1 + k2 whenever k1 + k2 ≤ n

4a. Consider the pseudo-expectation value of a square whose coefficients are functions of Ẽ[x2],
Ẽ[y2], and/or Ẽ[xy].

4b. Use part a to show that 2Ẽ[xiyi]Ẽ[xjyj] ≤ 2
√
Ẽ[x2i ]Ẽ[y2i ]Ẽ[x2j ]Ẽ[y2i ]

5. One way to find such pseudo-expectation values is to start with an actual expectation over
distribution of solutions and then show that you can change the value of Ẽ[y] to be negative. For
this, it is useful to choose the distribution to make the diagonal entries very large without making
the rest of the matrix too large. For example, if your distribution sets x = B, y = z = 0 with
probability B−3.5 where B is a large constant, this contributes B.5 to E[x4] and almost nothing to
the expected value of any other degree 4 monomial. Thus, we can make the x4 entry arbitrarily
large with negligible effect on the rest of the matrix.

Alternatively, you can write a semidefinite program to find such pseudo-expectation values.
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