
Problem Set 2

Sum of Squares Seminar

September 14, 2017, Due Septmber 25, 2017

Adjacency matrix
Several problems involve the adjacency matrix of a graph, so we recall the definition here. The
adjacency matrix A of a graph G is defined to be the matrix whose entries are as follows:

1. ∀i, Aii = 0

2. ∀i < j, Aij = Aji = 1 if (i, j) ∈ E(G) and Aij = Aji = 0 if (i, j) /∈ E(G)

Problem 1: Vectors for PSD Matrices (20 points)
Recall the following very useful characterization of PSD matrices. A matrix M is PSD if and only
if there are vectors {vi} such that ∀i, j,Mij = vi · vj . Further recall the Cholesky-Banachiewicz
or Cholesky-Crout algorithm for finding the Cholesky decomposition (which gives us such a set of
vectors).

1. Let cia be the ath coordinate of vi. Set c11 =
√
M11 and set cia = 0 whenever a > i.

2. For all i < k, take cki =
Mik−

∑i−1
a=1 ckacia
cii

(take cki = 0 if Mik −
∑i−1

a=1 ckacia = cii = 0)

3. For all k, take ckk =
√
Mkk −

∑k−1
a=1 c

2
ka

(a) 5 points: Let M =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

.

Find vectors v1, v2, v3, v4 such that ∀i, j ∈ [1, 4],Mij = vi · vj . Can you see the pattern?

(b) 15 points: Show that if this algorithm fails on a matrix M then M is not PSD. (hint is
available)



Problem 2: Goemans-Williamson Dual (15 points)
(a) 10 points: What is the dual of the Geomans-Williamson semidefinite program?

(b) 5 points: Deduce that the value of the Goemans-Williamson semidefinite program is always
at most |E(G)|

2
+ nλmax(−A)

4
where λmax(−A) is the maximum eigenvalue of −A.

Problem 3: Goemans-Williamson on the Cycle (15 points)
Let G be the cycle graph on n vertices, i.e. E(G) = {(i, i+ 1) : i ∈ [1, n]} ∪ {(1, n)}

(a) 10 points: What are the eigenvalues and eigenvectors of A? (hint is available)

(b) 5 points: What will the Goemans-Williamson program output when gven G? In particular,
what vector vi will be associated to each vertex i and what will the final value be?

Problem 4: Eigenvalues of the Hypercube Graph (15 points)
Let G be the graph with one vertex for each point of the hypercube {−1, 1}n and edges E(G) =
{(x, y) : x, y differ in k coordinates} where k is even.

(a) 10 points: What are the eigenvectors and eigenvalues of the adjacency matrix A? (hint is
available)

Note: the expression for the eigenvalues will be somewhat messy. Challenge question: It
is intuitively clear that when k is significantly greater than n

2
, λmax(−A) is given by the

coordinate cuts. Can you prove it?

(b) 5 points: Assuming that λmax(−A) is given by the coordinate cuts, deduce that Goemans-
Williamson gives the correct value on G. Letting Θ = cos−1(n−2k

n
), what happens when we

round the feasible solution (to the SDP) where each vertex x is mapped to x√
n

(viewing x as
a vector)?

Problem 5: Optimization Versus Feasibility Testing (10 points)
Let’s say that we want to find the minimum value of some function h subject to a set of polynomial
constraints. We have seen two alternative ways to use SOS to lower bound this. The two ways are
as follows:

2



1. The first way (which was discussed briefly in Lecture 1) is to add h ≤ c (equivalently,
h = c − z2 for a new variable z) as a problem constraint and use SOS as a feasibility test
to determine if this is feasible. We can then use binary search to find the minimal value of c
where SOS thinks the equations are feasible and output this value.

2. The second way (which we saw in Lecture 3) is find the minimal possible value of Ẽ[h]
over any pseudo-expectation values Ẽ which respect the problem constraints and output this
value.

Does one of these alternatives give a better bound than the other? If so, why? If not, why not?

Problem 6: Applying Goemans-Williamson (25 points)
Apply the Goemans-Williamson semidefinite program and rounding algorithm to the following
graphs (the adjacency matrices for the graphs are provided as .txt files on the course website):

(a) A random G(n, 1
2
) graph on n = 30 vertices.

(b) Half of the hypercube graph described in problem 4 with n = 6 and k = 4.

(c) A graph formed by taking two communities of size 15, adding each edge within a community
with probability .3, and adding each edge between communities with probability .7.

(d) The Peterson graph.

For your answers, please give the value of the Goemans-Williamson progam and a cut obtained by
the rounding algorithm. Optionally, you may also give the matrices outputted by the program and
the radom vector used for the rounding, as this allows each step of the algorithm to be checked.
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Hints
1b. To show that M is not PSD, find a vector w such that wTMw < 0. If the algorithm fails

because Mkk <
∑k−1

a=1 c
2
ka, we can instead take ckk = i

√∑k−1
a=1 c

2
ka −Mkk. Now write iek as a

linear combination of the vectors v1, · · · , vk. If the algorithm fails because cii = 0 and Mik 6=∑i−1
a=1 ckacia, show that there is a vector w on the first i coordinates such that

1. w is an eigenvector of the submatrix of M consisting of the first i rows and columns which
has eigenvalue 0.

2. The inner product of w with the kth row/column of M is nonzero.

Now use this to find a vector w′ such that w′TMw′ < 0

3a. This is one of the few times in this seminar where it is very useful to use complex numbers!
Show that ∀k ∈ [0, n − 1], the vector vk with jth coordinate vkj = e

2πijk
n is an eigenvector of the

adjacency matrix. To show this and find its eigenvalue, think geometrically! In other words, view
these complex numbers as vectors in the complex plane.

4a. Use discrete Fourier analysis over the hypercube! In particular, by symmetry, all vectors of the
following form are eigenvectors: Let A ⊆ [1, n] and set vx = (−1)|A∩Lx| where Lx = {i ∈ [1, n] :
xi = −1}.
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